
© 2016. Mevlut Bulut. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 16 Issue 3 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Bottom-Up Update Mechanism for Re-Structured Complete
Binary Trees

 By Mevlut Bulut

data structure, complete binary tree, CBT, sCBT, unilateral update, bottom-up update,
replacement selection.

GJCST-C Classification : I.1.2, I.2.2

BottomUpUpdateMechanismforReStructuredCompleteBinaryTrees

Strictly as per the compliance and regulations of:

Keywords:

University of Alabama, United States

Abstract- This paper introduces a bottom-up update mechanism together with a non-recursive initial
update procedure that reduces the required extra memory space and computational overhead. A
new type of tree is defined based on a different geometrical interpretation of Complete Binary Trees.
The new approach paves the way for a special and practical initialization of the tree, which is a
prerequisite for an implementation of unilateral update operation. The details of this special
initialization and the full update procedures are given for Complete Binary Trees. In addition, a
comparison is on is made between the introduced update method and the bilateral update methods
in terms of different performance related metrics.

Mevlut Bulut

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 7

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Author: 615 Idlewild Cir Apt 25 Birmingham, Alabama, USA.
e-mail: mevlutbulut@yahoo.com

space, computational overhead, and number of
accessed memory locations.For all the graphical
descriptions, only Complete Binary Tree (CBT)

structures will be used throughout the article, however
the introduced concepts can be applied to other types
of trees as well.

The bottom-up update mechanism can simply
be described as a unilateral traversing of the nodes from
a leaf host to the root. Unlike the bilateral update
mechanism, which is based upon comparing two sister
node contents followed by the registration of the winner
in the parent node, the unilateral update mechanism
requires that the overall winner of the previously done
consecutive comparisons should be compared to the
content of the parent node. If the parent node content is
not the winner of this comparison, then the consecutive
parent nodes are checked until a parent node content
wins, at which point the winner item and the parent node
content are swapped. The iteration of this procedure
goes on until the root node is reached, where the global
winner is registered.

This article introduces a modified bottom-up
update mechanism which differs from the previously
suggested unilateral implementations[2] in terms of the
required auxiliary memory space, the initial update
technique, and the overhead reduction during the
update operations thanks to the elimination of the
redundant nodes from CBTs. As a result, the overall
implementation of a bottom-up update operation gets
simpler, lighter, and faster.

II. Geometric Definition

Keywords: data structure, complete binary tree, CBT,
sCBT, unilateral update, bottom-up update, replacement
selection.

I. Introduction

t the center of the modern programming
paradigm rises the art of obtaining the maximum
performance out of a given computer system with

limited resources, e.g. computational power, memory or
I/O operation capabilities. In designing comparison
based algorithms such as searching and sorting, in
order to circumvent these limitations, tree formation was
suggested a long time ago[1] and it has been widely
used since then. The main idea of forming a tree or
treating a given array as a tree is to minimize the
number of comparisons as close to the theoretical
minimum as possible. Although there are many different
techniques for the formation (or branching), setup
(usage of nodes and node hierarchy), traversing (top-
down, bottom-up; preorder, in order, etc.), and
initialization of trees (recursive and iterative) new
attempts are still being made to improve the efficiencies
of these algorithms by optimizing the usage of the
limited resources.

As explained in the next section, a new
definition for the root node together with a new
geometric interpretation of tree formation is proposed.
Although the introduced novelties do not change the
number of comparisons for the basic tree operations, it
brings considerable reduction in required memory

A

Bottom-Up Update Mechanism for
Re-Structured Complete Binary Trees

Abstract- This paper introduces a bottom-up update
mechanism together with a non-recursive initial update
procedure that reduces the required extra memory space and
computational overhead. A new type of tree is defined based
on a different geometrical interpretation of Complete Binary
Trees. The new approach paves the way for a special and
practical initialization of the tree, which is a prerequisite for an
implementation of unilateral update operation. The details of
this special initialization and the full update procedures are

made between the introduced update method and the bilateral
update methods in terms of different performance related
metrics.

given for Complete Binary Trees. In addition, a comparison is

Analogous to real trees, the definition of an
abstract tree with a stem is suggested (Figure-1).The
zeroth node is placed at the end of the stem and utilized
as the root of the tree. A CBT with such a structure can
be called a stemmed CBT (like most of the trees in the
real world). Any Stemmed CBT (sCBT) can be
decomposed into smaller sCBTs. In this regard, the
smallest sCBT shell encompass two nodes, one of
which characterizes the body of the tree and the other
one is the root. This definition leads to a new way to
compose and decompose a given tree. Figure-2depicts
how two minimal sCBTs are combined together. One
can decompose a given sCBT along a path from a leaf
node to the root. In cases, the sCBT is utilized for
replacement selection[3] or priority queue applications
[4] then the logic dictates the path of the overall winner
to be chosen as the decomposition path. The
decomposition will be outlined in the ‘initial update’
section.

mailto:mevlutbulut@yahoo.com�

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 8

Y
e
a
r

20
16

 (

)
C

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

Figure 1: Proposed abstract tree

Figure 2 : Two minimal sCBTs are combined through modifying one bond and reforming another, without introducing
any new node. Here, note that two regular CBTs cannot be combined without adding a new node.

III. Unilateral Update

Versus

Bilateral
Update

A CBT setup with loser elements rather than
winner elements was first suggested by[5] with a coined
name ‘loser tree’, as opposed to ‘winner tree’, based
upon the fact that each and every key appearing in an
internal node is a loser exactly once, champion being
the only exception. Although they are all losers exactly
once, they are the winners of all comparisons up to their
current levels. This property is not so different from the
case of so called ‘winner tree’ setup. The logic is the

same: both of them promote the winner towards the
root. Therefore, there is no point for calling one of them
a ‘loser tree’ and the other one a ‘winner tree’. The
difference between these two tree setups is that their
geometries are different. The difference is dictated by
the geometry not by the selection procedure. Therefore,
‘winner tree’ and ‘loser tree’ naming convention is
abandoned here, instead CBT and sCBT are used to
imply the two different geometries and the
corresponding bilateral and unilateral update
mechanisms respectively.

Figure 3 : The winners of two CBTs are compared and the winner (in this case the smaller) is written into the
conjunction node serving as the root of the combined CBT. During this operation, three nodes are accessed and the

root node should be introduced as a new node.

The comparison operation can be regarded as
a procedure to compose two sub-trees. Figure-3 and
Figure-4 show how a comparison between the winners
of two sub-trees is implemented and how the winner is

promoted in CBT and sCBT cases respectively. Note
that the procedure of combining two CBTs is not
possible without adding a new node, whereas in the
sCBT case, there is no need for a new node.

Figure 4

:

When combining two sCBT

swith the ‘smaller wins’ rule, we find the winner of the two keys hosted by the
two roots then register the winner at the root of the combined sCBT, leaving the loser one in the conjunction node.

During this operation, only two nodes are accessed. No extra node is required.

IV.

Initial Update

Figure 5 :

An sCBT as comprised of smaller sCBTs

along the winner path from the leaf node to the root. All
the nodes along this path should host the winners of their own sub-sCBTs.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 9

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

The new idea about initializing an sCBT is that
the global tree can be thought of as a composition of
already initialized smaller sCBTs. There are two different
ways an initialized sCBT can be achieved:

1. Start with the maximum number (N/4) of minimal
sCBTs at the lowest level of the tree; grow them
independently while merging them as necessary.

2. Start with a minimal sCBT, enlarge it by adding two
new leaves and update the obtained sCBT, and
repeat this operation until the targeted sCBT size is
reached.

update, the root (the zeroth node) contains the index of
the winner element of the given key array and all the

by the color coded update paths. Initializing an sCBT
consisting of just two nodes requires only one
comparison between the two leaves hanging from the
only body node of this sCBT. After the comparison, the
loser is stored in the lower node, while the winner is
stored in the upper node. When all depth-1(below the
root node, there is only one node) sCBTs are initialized,
then the initialization of depth-2 sCBTs starts. To
initialize a depth-2 sCBT, we start comparing the two
new leaves that come into the picture when we grow the
previously initialized depth-1 sCBT into a depth-2 sCBT.
The loser of this comparison is stored into the first
parent of these leaves and the winner is kept at hand to
be compared to the content of the next parent node
(which was the winner of the depth-1 sCBT). If it loses
the comparison against the content of the next parent

An sCBT is said to be properly initialized only if
every node along the winner path hosts the winner of the
corresponding sub-sCBT (a node can be the root of
either the left or the right block; whichever side hosts the
content of the root constitutes the body of the sub-
sCBT) and every sub-sCBT also exhibits this same

property. Figure-5 depicts the way we can see a
properly initialized sCBT. We regard the initialized sCBT
as consisted of smaller sCBTs along the path of the
winner key, from the winner leaf to the root. All the node
contents that lose against the winner are the winners of
their own sub- sCBTs.

other nodes contain the indexes of the winner elements
of their own sub-sCBTs. Figure-6 visualizes this method

In the first way, initialization starts with the non-
interfering minimal sCBTs at the bottom of the sCBT and
proceeds upward by growing and/or combining them
until the whole tree size is reached. Following the initial

Figure 6 :

A graphical depiction of two different ways to implement the initial update operation for a given sCBT. The
first way is to initialize the constituent sCBTs

from the smallest to the largest as indicated by the color coding in the
figure, in the order of red, green, and blue. The second way is to start updating them from right to left as identified by

the ascribed counting numbers from zero to five in the figure.

Figure-7

shows that the indexes of the root
nodes of the same depth sCBTs form a sequential array
when they are traversed from the end of the tree array
towards its

head (in this example the sequential array is
5; 4; 3). This gives an easy way of finding the root
indexes during the initial update. The provided C++
code following the ‘Redundant Tree Nodes’ section

uses the advantage of

this first technique.

As an

The advantage of the second technique is that
all sub sCBTs can be processed in a single loop.
Depending on the node hierarchy being used, there are
some cases where this second technique becomes
faster and easier to implement. However, for the simple
node hierarchy used throughout this article, the
implementation of the first technique proves to be

more
efficient.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 10

Y
e
a
r

20
16

 (

)
C

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

node, they are swapped and the one next parent node
will host the winner leaf index of the whole depth-2 sCBT
(green update paths inFigure-6). Then the procedure
goes on to depth-3, depth-4, and so on until the whole
tree is initialized.

In this way, all sub-sCBTs with the same depth
can be handled in a sub- loop, allowing any depth

specific variable to be calculated faster. One such
variable is the index of the root node of a givensub-

the leftmost bottom node of that sub-sCBT until the least
significant bit disappears. Here is a suggested C++
code to find the root index for a given leftmost node:
unsigned long level;
_Bit Scan Forward(&level, leftmost Node);
root= leftmostNode>> (level+1);

example, Figure-7 depicts an sCBT with 12 lexical
leaves. By following the sub-figures from a) to d), the
initialization of this sCBT can be followed step by-step.

The second way for initial update requires the
initialization of sub-sCBTs starting from rightmost
depth -1 sCBT and growing/going to the left while
initializing the next available size/initializable sCBT on
the way. Figure-6 shows the sequence of these
consecutive update paths by ordinal numbers from zero
to five for the initialization of the depicted sCBT.

sCBT, which can be found by right shifting the index of

 Figure 7:

A lexical array of size 12 is used as the leaves of the sCBT

in order to demonstrate the introduced initial
update procedure using the first of the two suggested methods. a) Only the sub-trees with a depth of one are

initialized, in b) the ones with a depth of two and in c) with a depth of four (which is the whole sCBT) are initialized.
Here there is no sub-sCBT with a depth of three. In d) the decomposition of the sCBT along the winner path is

visualized by using different colors for each sub-sCBT.

 V.

Redundant Tree Nodes

If a tree node is written but never read, then
writing that node is considered redundant. In the case of

combination, the bottom nodes, or in other words, the
immediate parent nodes of the leaves are all redundant.
This is because they host the loser keys not the winner

Figure 8 :

Leaving out the redundant tree nodes. During the proposed unilateral update procedure, the
lowest level tree nodes are not read at all, therefore there is no point of using them to write the indexes of the looser
leaves. This reduces the number of required nodes to implement an sCBT to N/2.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 11

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

VI. Update Mechanism

When an update is required after a new key is
assigned to the winner leaf, a unilateral update
procedure is implemented: First, the new key is
compared to its sister, and then the winner of this
comparison is kept at hand as the new winner
candidate. Then this new candidate is compared to the
hosted keys along the winner path. Wherever the key at

hand loses the comparison, it is registered there and the
previously registered key in that node is taken as the
new winner candidate.This procedure goes on until the
root node is reached, where the final winner is
registered.

The following is a working C++ code for the
proposed initial update and the proposed unilateral
update methods. Initial update method follows the first
technique explained in‘Initial Update’section. Although

sCBT and the proposed unilateral update mechanism

ones. Thus, we can implement the sCBT and the
proposed update mechanism by using only N/2 tree
nodes. After comparing the sister leaves, we register
only the winner to the grandparent node (we can think of
the immediate parent node as a ghost node). Figure-8
displays a worked out example of such an sCBT using a
lexical key array.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 12

Y
e
a
r

20
16

 (

)
C

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

VII. Results and Discussion

The benefits of the introduced unilateral update
mechanism compared to the bilateral update
mechanism can be itemized as follows:
1. Every key index appears in the tree at most once.

More precisely, half of the key indexes will appear in
the tree only once, while the other half will not have
any appearance in the reduced sCBT approach. If
there is a necessity for a specific application, sCBT
can also be formed using N nodes, in which case,
the entire key indexes will appear in the tree once
and only once. In the bilateral update, some leaves

are registered as many as log N times while some
others are not registered at all.

2. Except for the computation (or identification) of a
leaf level sister, neither is there a need for any sister
node computation nor a need for accessing its
content.

3. Reduction in the number of read nodes by 50%.
4. During a unilateral update, the number of writes can

be between 1 and log N depending on the results of
the comparisons, whereas during a bilateral update,
log N writes are necessary for every update
operation. The number of writes in bilateral updates
can be reduced by checking the previous guest

the graphical examples up to this point all use ‘even
number of leaf nodes’, the provided code takes care of
odd cases by the additional lines marked with (**). If N
is guaranteed to be even, then these lines can be safely
removed from the code.
// int N; //the size of the keys array.
//float*Keys; // the given array containing the keys.
//int offset=N,*sCBT=new int[(N+1)>>1];//“+1” is necessary for odd N cases.
//sCBT:auxiliary integer array used for the formation of stemmed complete binary tree.
// int max ID= N-1;
Void Initial Update ()
{
Int h = N-1; //h: host, immediate parent node for a pair of leaves.
If (N&1) {sCBT[h>>1]= h; h--; offset++;} // (**)

For (int jump = 2, UpNode = h>>1, Tail= maxID>>1; ;UpNode --)
 {

Int w= 2*h - offset; if(Keys[w^1] < Keys[w]) w ^= 1;
For (int n= h>>1; n >UpNode; n>>= 1)

if (Keys[sCBT [n]] < Keys[w]) swap(sCBT[n],w);
sCBT [UpNode]= w;

h-= jump; if(h > Tail) continue;
h<<= 1;
if(UpNode> 1) jump<<=1; else{ if(UpNode ==0) break; if(h < Tail) h <<= 1;}

}

{
int w= *sCBT;
if((w^1)!=N) // (w^1)==N can happen only ifN is odd. (**)

if(Keys[w^1] <Keys[w]) w ^= 1;//loser doesn’t need to be registered anywhere.

for(int node= (w + offset)>>2; node> 0 ;node >>= 1)
{

Int const guest= sCBT [node];//guest: index of the registered key in the node.
if (Keys[guest] <Keys[w]){sCBT [node]= w; w= guest;}

}
*sCBT= w;

}

}
//w: winner, it was the index of the previous winner key, when a new value is assigned//to the winner key, the sCBT
// should be updated accordingly. This update procedure will provide the index of the new winner key.
voidUpdate_sCBT()

index of a node in order to avoid re-storing the index
which is already there. But this will bring extra
overhead of log N integer index comparisons.

5.

The required number of tree nodes is reduced by
50% in comparison to the required number of nodes

for the bilateral update mechanism implemented on
a CBT.

Figure 9

: Nodes visited during a) unilateral update on an sCBT, b) bilateral update on a CBT.

Table-1 shows the algebraic quantities for the
two different update mechanisms in five different
metrics, whileFigure-9

depicts the visited nodes and the

update paths side by side for these two update
mechanisms, in order to help visualize the differences.

Table

1

:

Comparison

between unilateral update and bilateral update for a full update operation on a complete
binary tree

comprising of N leaves.

Type #of

of Update

Required

Tree Nodes

Comparisons

Accessed Nodes

Sister Node

Computations

writes

reads

Unilateral Update

N/2 Log N

Log N

0 1≤ ≥Log N

Log N

Bilateral Update

2N

Log N

2Log N

Log N

Log N

2Log N

In terms of initial update cost, there is not much
difference between the unilateral and the bilateral
update methods. Both of them require exactly N
comparisons. However, the number of accessed nodes,
writes, and reads are different. In the case of a bilateral
update on a CBT, N nodes are accessed, N reads and
N writes are implemented. On the other hand, the initial

update of an sCBT accesses N/2 nodes, and
implements N/2 reads and a minimum of N/2 writes (in
the worst case scenario, number of writes can be equal

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 13

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

Table 2 : Comparison between unilateral and bilateral initial update operations on a complete binary

tree comprising of N leaves.

Type #of
OfInitial Update

Comparisons Accessed Nodes writes reads

Unilateral Initial Update N N/2 N/2≤ ≥ N N/2

Bilateral Initial Update N N N N

to N if all the comparisons require the swapping of node
content and the winner candidate at hand). Table-2
summarizes these quantities.

VIII. Numerical Comparisons

A test run for a given number of keys was
repeated 10 times but only the averages were used for

maximum encountered error (standard deviation divided
by average) was less than 3%. The computer used for
the presented results was a Dell OptiPlex 790 with an
Intel Core i5-2400 CPU @3.10 GHz and 8GB RAM. The
operating system of the test computer was Windows 7
enterprise 64-bit edition. For coding, Visual C++ 2010
programming environment was used. The compilations

A uniform distribution (0.0<x<1.0) was used to
generate random key values for the hold model[6].
CBTs were constructed using the given number of initial
keys. Then a loop of N hold operations was performed
for timing. Timing was achieved by counting the total
number of CPU cycles between the beginning and the

were done with SSE2 and maximize-speed options
enabled.

end of the computational block by using the CPU clock
register. The accumulated number of CPU cycles was
divided by number of given keys to get an average cost

graphing. For the obtained numerical results, the

for one hold operation. The presented empirical results
have been scaled to the scores of the implementations

running on the same test system based on reference
CBT that Marin used [6].

Figure

10 :

Comparison of numerical performance results for

the introduced unilateral update method and the
reference bilateral update method. The left graph shows

comparison results of unilateral and bilateral initial update
methods

while the right one shows the results of full update

operations for the update mechanisms. The horizontal
axis shows the number of keys, while the vertical axis shows the test scores scaled to the score of the reference

structure (CBT) for the same test. The maximum number of keys used for the tests is 224.

[Fig. 10] presents the obtained results for the
test system in two categories: Initial update
comparisons and full update comparisons. In the case
of initial update comparisons, introduced unilateral initial
update performs at least 20% better than bilateral initial
update except when the number of keys is very small.
This should be because of the smaller footprint of the
bilateral initial update code as can be seen in the
fallowing lines compared to the code for unilateral initial
update given earlier.

//intN; //the size of the keys array.

//float *Keys; // the given array containing the keys.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 14

Y
e
a
r

20
16

 (

)
C

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

//int*CBT=new unsigned [2*N];
//CBT:auxiliary integer array used for the formation of
complete binary tree.
voidInitialUpdate() //Initial Update CBT
{
for(int n=0; n < N; n++) {CBT[N+n]= n;}
for(intn=2*N-1; n > 1; n -= 2)
{if(Keys[CBT[n]] < Keys[CBT[n-1]]) CBT[n/2]= CBT[n];
else CBT[n/2]= CBT[n-1];}
}

Full update comparisons show that the
superiority of unilateral update gets better as the
number of keys increases and it stabilizes around
20%for cases the bulk of the data remains outside the
cache memory.

IX. Conclusion

A new graphical formation of binary trees is
introduced. As a result of this formation, binary trees can
be decomposed or composed without adding or

References Références Referencias

1. Kirchhoff G. Ueber die auflösung der
gleichungen auf welche man bei der
untersuchung der linearen vertheilung
galvanischer ströme geführt wird. Ann Phys
1847; 148: 497-508.

2. Sahni S. Structures, algorithms, and
applications in C++. 2nd ed. Summit, NJ,
USA: Silicon Press, 2005.

3. Friend EH. Sorting on electronic computer
systems. J ACM 1956; 3: 134-168.

4. Marín M, Cordero P. An empirical assessment
of priority queues in event-driven molecular
dynamics simulation. Comput Phys Commun
1995; 92: 214-224.

5. Knuth DE. The art of computer programming,
2nd ed. San Francisco, CA, USA: Addison-
Wesley, 1998.

deleting any nodes regardless of their leaf and node
hierarchies. This new formation leads to a unilateral
bottom-up update mechanism that promises
acceleration by reducing computational overhead,
auxiliary memory field, and memory operations. When
the suggested sCBT structure is used to produce the
initial runs for external sorting [7], it will increase the
average length of the runs, since larger size trees can
be established in a given amount of cache memory
thanks to the elimination of redundant tree nodes. The
suggested unilateral update mechanism can be coupled
with different leaf hierarchies such as Super CBT [8]
and/ or with different node hierarchies such as hardware
conscious trees[9].

6. Marín M. An empirical comparison of priority
queue algorithms. Technical Report. Oxford
University, 1997.

7. Martinez Palau X, DominguezSal D, LarribaPey
JL. Twoway replacement selection.
Proceedings of the VLDB Endowment;
September 2010; 3: pp. 871-881.

8. Bulut M. ReducedCBT and SuperCBT, two new
and improved complete binary tree structures.
Turk J Elec Eng&Comp Sci 2016; 24: 2150-
2162

9. Kim JC, Chhugani NS, Sedlar E, Nguyen AD,
Kaldewey T, Lee VW, Brandt SA, Dubey P.
FAST: fast architecture sensitive tree search on
modern CPUs and GPUs. In: 2010ACM
SIGMOD/PODS Conference; 2010;
Indianapolis, Indiana, USA.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 15

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

This page is intentionally left blank

3

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 16

Y
e
a
r

20
16

 (

)
C

Bottom-Up Update Mechanism for Re-Structured Complete Binary Trees

	Bottom-Up Update Mechanism forRe-Structured Complete Binary Trees
	Author
	Keywords
	I. Introduction
	II. Geometric Definition
	III. Unilateral UpdateVersusBilateralUpdate
	IV.Initial Update
	V.Redundant Tree Nodes
	VI. Update Mechanism
	VII. Results and Discussion
	VIII. Numerical Comparisons
	IX. Conclusion
	References Références Referencias

