
© 2016. Victor Sadikov & Oliver Rutishauser. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 16 Issue 3 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Isotropic Dynamic Hierarchical Clustering

 By Victor Sadikov & Oliver Rutishauser

Abstract- We face a business need of discovering a pattern in locations of a great number of points in
a high-dimensional space. We assume that there should be a certain structure, so that in some
locations the points are close while in other locations the points are more dispersed. Our goal is to
group the close points together. The process of grouping close objects is known under the name of
clustering.

clustering; hierarchical clustering; dynamic clustering; isotropic clustering; multi-
dimensional space; b-tree; factor analysis.

GJCST-C Classification : H.3.3, I.5.3

IsotropicDynamicHierarchicalClustering

Strictly as per the compliance and regulations of:

Keywords:

Isotropic Dynamic Hierarchical Clustering
Victor Sadikov α & Oliver Rutishauser σ

also allows to manipulate (to search, to delete)
aggregated sets of closely located points.

5. Hierarchical information retrieval. When searching, the
user is provided with the highest appropriate nodes in the
tree hierarchy, with the most important clusters emerging
in the hierarchy automatically. Then, if interested, the user
may navigate down the tree to more specific points. The
system is implemented as a library of Java classes
representing Points in multi-dimensional space, Sets of
points with aggregated statistical information (mean,
standard deviation,) B-tree, and Nodes with a support of
serialization and storage in a MySQL data base.

CCS Concepts
• Theory of computation→Theory and algorithms for

applicationdomains→Machinelearningtheory→Uns
upervised learningand clustering • Mathematics of
computing→Mathematical software → Statistical
software •Information systems→Information
retrieval →Retrieval tasks and goals→Clusteringand
classification

Keywords: clustering; hierarchical clustering; dynamic
clustering; isotropic clustering; multi-dimensional space;
b-tree; factor analysis.

I. Points, Implementation

class Point

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 25

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Abstract- We face a business need of discovering a pattern in
locations of a great number of points in a high-dimensional
space. We assume that there should be a certain structure, so
that in some locations the points are close while in other
locations the points are more dispersed. Our goal is to group
the close points together. The process of grouping close
objects is known under the name of clustering.
1. We are particularly interested in a hierarchical structure. A

plain structure may reduce the number of objects, but the
data are still difficult to manage or present.

2. The classical technique suited for the task at hand is a B-
Tree. The key properties of the B-Tree are that it is
hierarchical and balanced, and it can be dynamically
constructed from the input data. In these terms, B-Tree
has certain advantages over other clustering algorithms,
where the number of clusters needs to be defined a priori.
The BTree approach allows to hope that the structure of
input data will be well determine without any supervised
learning.

3. The space is Euclidean and isotropic. This is the most
challenging part of the project, because currently there
are no B-Tree implementations processing indices in a
symmetrical and isotropical way. Some known
implementations are based on constructing compound
asymmetrical indices from point coordinates, where the
main index works as a key, while the function of other
(999!) indices is lost; and the other known
implementations split the nodes along the coordinate
hyper-planes, sacrificing the isotropy of the original
space. In the latter case the clusters become coordinate
parallelepipeds, which is a rather artificial and
unnecessary assumption. Our implementation of a B Tree
for a high-dimensional space is based directly on
concepts of factor analysis.

4. We need to process a great deal of data, something like
tens of millions of points in a thousand-dimensional
space. The application has to be scalable, even though,
technically, out task is not considered a true Big Data
problem. We use dispersed data structures, and
optimized algorithms. Ideally, a cluster should be an
ellipsoid in a high-dimensional space, but such
implementation would require to store O(n2) ellipse axes,
which is impractical. So, we are using multi-dimensional
balls defined by the centers and radii. On the other hand,
calculation of statistical values like the mean and the
average deviation, can be done in an incremental way.
This mean that when adding a point to a tree, the
statistical values for nodes of all levels may be
recalculated in O(1) time. The node statistical values are
used to split the overloaded nodes in an optimal way. We
support both, brute force O(2n) and greedy O(n2) split
algorithms. Statistical and aggregated node information

Author α: 200 S Laurel Av. A5-2D20 Middletown, NJ 07748 (732) 420-
7453. e-mail: vic@att.com
Author σ: Atlantic Style P.O.Box 9 Oakhurst, NJ 07755 (732) 455-2081
e-mail: rutishauser@yandex.com

n a high-dimensional space we assume that a
considerable number of coordinates will contain zero
values. To optimize the memory and storage space

we would like to keep non-zero coordinates only. Thus,
a Point object contains 3 fields: the number of non-zero
coordinates, the array of sorted coordinate indices, and
the array of corresponding coordinate values.

I

The Point class provides methods for
calculating the Euclidean length of the point vector,
getting a particular coordinate (or zero,) adding another
point to the given point, calculating a few useful

{
int N = 0; // # of non-zero coordinates
int[] key; // array of coordinate indices
float[] val; // array of coordinate values
}

 functions like distance to

another point, dot product,
and serializing to a base-64

string.

Some functions, e.g.

adding a point, may change the

number of non-zero

coordinates. The main loop for adding

two points looks

like the following.

II.

Sets

Mathematics

The next step of our approach is the

introduction of Sets of

Points. The Sets allow calculation

of aggregated statistical

values.

The most important
value is the number of points

(N) in the Set. It needs to

be corrected each time a new

point is added to the Set.

The obvious way of calculating

the new number of
points is to increment the current

number by one.

N = N + 1;

Other important statistical values of the set of

points are arithmetic mean and the standard deviation.
These values should also be adjusted every time a point
is added to the Set. We could recalculate the
arithmetical mean (M) from scratch, but we would like to
follow the incremental approach and move it towards
the newly added point (P) by the 1/N of the distance.

M = M + (P - M) /N;
As for standard deviation, at first sight, it seems

to be a value that requires the full recalculation.
Fortunately, this is not the case. We can store and
adjust the standard deviation in an incremental way too,
based on the following formula.

E[X – E(X)]2 = E[X2] – (E[X]) 2

This means that to calculate the standard
deviation it is enough to store the sum of the squares of

point coordinates (S,) which can be adjusted
incrementally.

S = S + |P|2;

And when we need to calculate the standard
deviation we will do the following.

D = sqrt(S/N - |M|2);

III. Clustering Example

Clustering basically means grouping similar
objects together. If the objects have a number of
numerical attributes they may be represented as points
in a multidimensional space. The clustering will mean to
partition the whole set of points into a number of disjoint
sub-sets.

 We can see that initially the points occupy the
segment [0,13.] Assume we need to split the set of the
given points on

the number line into two clusters then

the resulting clusters

will be sub-segments. Even in this

simple example two

different splits are possible. The first

splits makes

egments

[0, 5] and [9, 13] while the other

makes segments

[0, 4] and [5, 13] (see Figure 1.)

 In terms of segments, the first split looks better,
because it

finds two compact segments rich of points,

while the

second split covers almost the whole initial

segment. In

terms of statistical variables, the first split is

better too,

because the sum of the deviations of the

resulting sets is

minimal.

IV.

Dynamic Clustering, Approach

If we continue adding new points, then we need

to decide

which sub-segment each new point belongs

to. Points

below 5 we can add to the first sub-segment,

and points

above 9 we add to the second sub-segment.

We may place points between 5 and 9 into either sub
segment. Our criterion here is to avoid big segments, or

 (which is the same) to keep the sum of deviations
minimal.

But we always need to update the boundaries

of the sub segments

so that we can exactly know in

which segment a

particular point is to be found. If the

points are well spread,

knowing exact boundaries of the

segments may also

improve unsuccessful search.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 26

Y
e
a
r

20
16

 (

)
C

Isotropic Dynamic Hierarchical Clustering

Figure 1

Let's consider an example in a one-dimensional
space. The example is free of the challenges related to
multidimensional clustering and is easy to comprehend.
Assume we are given the set of five numbers {0.4.5.
9.13.}

After adding a certain number of points to a
sub-segment, we will need to split this sub-segment into
two sub segments with a smaller number of points. This
can be done exactly in the same manner as we split the

int Ix = 0; int Ip = 0; int Iz = 0;
for(; Ix != this.N && Ip != p.N ;)
{
if(this.key[Ix] == p.key[Ip])
{
z.key[Iz] = this.key[Ix];
z.val[Iz] = this.val[Ix] + p.val[Ip];
Ix++; Ip++; Iz++;
}
else if(this.key[Ix] < p.key[Ip])
{
z.key[Iz] = this.key[Ix];
z.val[Iz] = this.val[Ix];
Ix++; Iz++;
}
else
{
z.key[Iz] = p.key[Ip];
z.val[Iz] = p.val[Ip];
Ip++; Iz++;
}
}

V.

Hierarchical Clustering, Approach

 The bigger the number of points in our data set,
the

bigger

the number segments. Soon it gets big

enough, and we

may need to introduce the next level of

hierarchy, when

smaller clusters are, in their turn,
grouped into clusters of

the higher level. The approach

of adding points, splitting

segments, and adding new

levels when necessary is quite

similar to adding objects

to a B-tree [1.] The tree starts

with the root node,
responsible for all points stored in the

tree. At each level,

the parent node consist of a number of

sub-nodes. The

points in each sub-node are close one to

another.

 A classical one-dimensional B-tree design
focuses on

minimization of the information stored at the

node level.

Namely, a parent node stores a number of

adjacent values

in ascending order, with the sub-nodes

being placed

between adjacent values, plus one at the

beginning and one

at each end. Thus we know that the

elements of each subtree

are greater than the left
adjacent value and less than the

right one.

 On the contrary, our design prefers to store
excessive

boundary and statistical information about the

sub-nodes. In the case of one-dimensional space, each
node occupies a

segment and sub-nodes of one parent

do not intersect. The

boundary segment can be defined

by its two ends, or by the

middle point (C) and the

distance (R) to the ends. The

letter way will occupy less

memory in a general multidimensional

case. We also

keep the number of points in

each sub-tree, their
arithmetic mean and standard deviation.

 As we stated above, statistical values facilitate
splitting the

nodes in the optimal way, while the

boundary information

allows us in some cases to
terminate an unsuccessful search

 heuristically.

VI.

Isotropic b-tree, Approach
 B-trees do their work great, as long as the

attributes of the

objects are one-dimensional.
Unfortunately, there is some problem

with direct

extension of B-tree to a multidimensional

case. The two
common approaches are the

following.

The mix approach assumes composing the

compound index

based on the component indices, and
then making use of a

one-dimensional B-tree. The
problem with this approach is

that the component
indices are treated by far not equally.

One index plays
the main role, while the role of the others

is insignificant.

The other approach is more complicated. R-tree

[2] is a

variant of B-tree

where the nodes are bound by
coordinate

rectangles. This approach is more
symmetrical in terms of

using indices. But the directions
along the coordinate axes

are still different from arbitrary
ones.

We would like to build a variant of B-tree, where
the nodes

are bound with circles or ellipses. This
decision ensures

that the essential property of isotropy
of the physical space

is not ignored.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 27

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Isotropic Dynamic Hierarchical Clustering

initial segment. After that we will be adding new points
to the set of three sub-segments. Then we will need to
split another sub-segment. And the number of sub-
segments will increase again.

Unlike the static approach where the set of all
objects exists before the procedure of clustering starts;
dynamic approach assumes that clusters are
incrementally adjusted each time a new object gets
added into the set. This eliminates the dedicated step of
clustering for the price of a longer time needed to
include objects. Dynamic clustering provides better
flexibility and can be performed with less a priori known
information about the data, e.g. when the total number
of target clusters is unknown.

VII. (Isotropic Dynamic Hierarchical
Clustering, Two-Dimensional Case)

The circles are defined by the center point (C)
and the radius (R.) It the 2-dimensional space, the
center is defined by the two coordinates, and so we
need to store 3 real values. Alternatively, if we decided
to present clusters as ellipses in general orientation, we
will need to store the semi-principal axes and the
angles, which would require O(n2) memory, with n being
the number of dimensions in the space.

In the picture to the right, the circles
corresponding to the sub-nodes of one and the same
parent do not intersect. The biggest circle (P)
corresponds to the parent node, while C1, C2, and C3
correspond to the sub-nodes. Keeping on adding new
points to the tree we cannot avoid the situation where
the sub-nodes start to intersect. We will dwell on the
intersecting areas later in this paper.

a) Selecting a Sub-Node
As mentioned in section 4, while adding a new

point outside any bounding circle, we need to select the
most appropriate sub-node. To do this, we will try to add
the new point to each sub-node, and calculate the new
bounding radii. Then we will select a sub-node so that
the sum of the new squared radii should be minimal,
because our goal is to make eventually all sub-node
circles of about the same absolute size in the given
space.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 28

Y
e
a
r

20
16

 (

)
C

Isotropic Dynamic Hierarchical Clustering

Let’s assume that the old radius was Ri, then
the new radius will be Ri+Hi/2, where Hi is the distance
from the new point to the circle Ci. If we select the i-th
sub-node, the sum of new squared radii will grow by
(Ri+Hi/2)2 – Ri

2, i.e. by RiHi+Hi
2/4, so we need to select

the sub-node where Ti= 4RiHi+Hi
2 is minimal.

b) Splitting the Overloaded Node
When a node gets overloaded, i.e. it includes

more than the maximum number of sub-nodes or
points; the node needs to be split into two nodes at the
same level. In the classical B-tree the node is split into
two nodes with the equal number of elements.

In our case, we can split the node taking into
account the following criteria:

• the maximum radius of the two new circles is
minimal;

• the new nodes intersect with the minimal area; the
sum of standard deviations of the new nodes is

• minimal.

To this goal, first we will find the pair of points at
the longest distance. In the figure to the right, such a
pair consists of points a and b. If these points both
belonged to one and the same bounding circle, the
radius of this circle would be greater than the distance
Da,b/2, which, as we assume, is the maximum distance.
So, to minimize the maximum radius we need to
distribute points a and b to the different bounding circles
Ca and Cb. Now we will find point c, so that the distance
from c to either of circles Ca and Cb is the longest. In
the picture above, it is the distance between point c and
circle Ca (which now consists of just one point a.) Once
again, to minimize the would-be radii, we need to
distribute point c to the other circle, Cb. Continuing in
the same manner, we will ultimately get circles Ca and
Cb, as shown in the picture.

c) Adjusting Bounding Circles
Let’s assume that we need to add a new point

(Q) to the tree. We start from the root and go down the
tree, level by level. At each level we need to select the
most appropriate sub-node. E.g. at the parent level P,
we need to select one of the sub-nodes, C1, C2, or C3.
Logically, there are two different cases. If the new point
belongs to a particular bounding circle, no adjustment is
needed. But if the new point is outside of any bounding
circle, we need to select the most appropriate subnode;

to add the new point to the selected sub-node; and to
adjust the corresponding bounding circle, so that it
should include the new point as well as all old points.
See the figure below.

In the 2-dimensional case, the new minimal
bounding circle can be exactly calculated. In the figure
above, the minimal circle is the circle circumscribed
about the triangle of the first two points and point Q. It
can be calculated from the coordinates of these points.
E.g. the radius of the circumscribed circle is
L1*L2*L3/sqrt((L1+L2+L3)*(L2+L3-L1)*(L1L2+L3)*(L1+L2

L3)), where L1, L2 and L3 are the lengths of the sides.
In a multi-dimensional space, the situation is

much more complicated. Fortunately, we do not need
the exact minimal bounding circles. The bounding
circles are very useful in many procedures where they
heuristically allow to reduce the amount of calculation,
but fortunately they are not critical. So, we would
recommend to use a less exact but easier to calculate
approximation.

We can easily construct the new bounding
circle (C’) about the old bounding circle (C) and the
newly added point (Q) as shown in the figure to the
right. First, we calculate the distance (H) from the point
Q to the circle C. Then we move the center of the circle
C towards Q by H/2. This will be the center of C’. The
radius of the new circle will be the old radius (R) plus
H/2. Thus, the circle C’ will surely contain all old points
as well as the new point.

Moreover, the new bounding circle (C’) can be
easily optimized. By construction, the new circle has to
lie through the point Q, but it doesn’t probably lie

through any other actual points. So, we can shrink the
circle, so that it lies through yet another point.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 29

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Isotropic Dynamic Hierarchical Clustering

Let’s shift the center (O) of the circle towards
the point Q, so that the new circle with the center Oa lies
both through points Q and A. See the picture above.
The value of the shift can be calculated based on the
points Q, O and A. When we shift the center for the point
A, this doesn’t necessarily mean that any other point B
will belong to the new shrunken circle. But we can
repeat this procedure for all points of the set, and find
the largest shrunken circle, corresponding to the
shortest allowed shift. That circle will work for all the
points of the set.

d) Calculation of a Quasi-Minimal Bounding Circle

e) Exact Minimal Bounding Circle

VIII. Multi-Dimensional s-tree, full
Details

So far we have clearly described what we would
like to achieve in our multi-dimensional S-Tree. A real
implementation is not so smooth, and requires solutions
to a number of complicated issues.

a) Overlapped Circle
As mentioned in Section 7, some sub-nodes of

a given node may overlap. Such cases may occur when
a new point is added to a sub-node, which results in
adjusting the bounding circle of this sub-node, or when
a sub-node is split into two sub-nodes at the same level,

Please notice that, in some cases, the exact
minimal bounding circle may be slightly smaller than the
quasi-minimal circle constructed above. Moreover, the
shrunken circle (C’) depends on the initial circle C.

If the set consists of just one point, the exact
minimal circle is the circle with the center in that point
and the radius of zero. If the set contains two points, the
exact minimal circle is the circle from the center of mass
and the radius of half the distance between the points.

If the set contains three points, there are two
cases. Either, the exact minimal circle is the circle

circumscribed around these three points. Or, the circle
built on the two of the three points as a diameter,
provided that the third point lies inside it. If we want to
build the circle for the second case, we need first to find
the two (out of the three) points with the longest
distance between them. Then, we need to check that the
third point (X) will make an obtuse-angled triangle. I.e.

If we do not want to build the exact minimal
circle, we may use the shrinking technique. But we will
need a good first approximation for the minimal circle.
As shown above, the circle build on the longest
segment plays an essential role in construction of
minimal circles; besides, and it is easy to calculate. This
makes it a good first approximation for building quasi-
minimal bounding areas.

as discussed in Section 7.2. In this case the actual
areas of sub-nodes are not circle, but they are rather
“cut” circles, as shown in the picture below.

The reason for the sub-node areas to be
nothing but the “cut” circles is that the areas need to be
convex. Now, the more complicated form of the areas
makes us change the way we calculate the appropriate
sub-node when the given point x belongs to both
bounding circles.

 In the two-dimensional space we use line L, to
determine where point x belongs to. All points at one
side of line L belong to one sub-node, while all the
points at the other side belong to the other sub-node.
Analogically, in the multi-dimensional space, the border
line L will become a plane. All points at one side of the

Let’s assume that point T is the foot of the
perpendicular dropped from point A on the line (Q,O.)
Then |A T|2 + |T Q|2 = |A Q|2. And |A T|2 + |T Oa|2

= |A Oa|2. But |T Oa| = |T Q| - |Oa Q| and |Oa Q|
= |Oa A|. So, finally, |Oa Q| should be |A Q|2 / 2 |T
Q|, where |T Q| is the projection of the vector [Q A] on
line (Q,O) and can be calculated by means of the dot
product.

|A X|2 + |X B|2 < |A B|2. Sets of more than three
points are quite similar.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 30

Y
e
a
r

20
16

 (

)
C

Isotropic Dynamic Hierarchical Clustering

plane will belong to one sub-node, and all points at the
other side of the plane L will belong to the other sub-
node.

Every plane in the multi-dimensional space can
be defined by its normal vector and the distance from
the point of origin. The only drawback is that
theoretically we will need a border plane for each pair of
sub-nodes. E.g. if a parent node has, say, 5 sub-nodes,
we will need to store 10 border plains. A more memory-
effective way would be to calculate the equation of the
plane L on the fly, based on the bounding circles.

b) Splitting the Node
When a node gets overloaded, i.e. it includes

more than the maximum number of sub-nodes or
points; the node needs to be split into two nodes at the
same level.

While splitting the node, we expect that the
results nodes will have bounding areas with smaller
radii. Let’s assumes that a and b are the points with the
greatest distance between them, as in the picture
above. If we ultimately put these points into one and the
same node, the radius of the bounding circle for that
node can not be less than |a b|, which is almost the
radius of the bounding circle for the original node. To
avoid this, we have to put a and b into different nodes.
Now we have nodes Ca and Cb, consists of points a
and b, correspondingly.

At the next step let’s consider, say, the point c.
We can either put it into Ca or Cb. And we need to
estimate how good or bad it would be to put it into a

particular node. E.g. we can try to optimize (to keep
minimal) the maximum radius of Ca and Cb. But, now
we know that there is something more unpleasant than
just big radii; it is overlapped circles. So we may want to
keep the circles overlapped in the minimal possible
measure.

IX. Example, Two-Dimensional Case

The most challenging task of implementing a B-
tree is a split of overloaded nodes. When a node is split
into two nodes, there appears a new boundary. All sub-
nodes of the given node may need to be recursively split
by the new boundary. The picture below illustrates the
result of a split for a two-dimensional case.

Namely, as we discussed, the circle C1 can be
defined by its center, O1, and the radius R1.
Analogically, we define the circle C2 by the center O2

and the radius R2. It is easy to see that the border plane
L is the set of all the point such as the difference
between their squared distances to points O1 and O2 is
constant.

|O1 - x|2 - |O2 - x|2 = F1,2

To be precise, the constant F1,2 is the
difference between the squared radii of the circles in
question, i.e. F1,2 = R1

2 – R2
2 .

So, to find whether point x belongs to the circle
C1, we need to calculate |O1 - x|2 - |O2 - x|2 - R1

2 + R2
2,

and to compare it with zero.

In the previous section we have introduced the
expression L2 – (R2 – r2). It shows in what manner the
circles are overlapped, and should be greater than zero.
We will try to optimize (to keep maximal) this expression.
It gives the same rules for selecting points a, b, and c,
but gives better results at next steps.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 31

Y
e
a
r

20
16

 (

)
C

© 2016 Global Journals Inc. (US)

Isotropic Dynamic Hierarchical Clustering

Here the new boundary is highlighted in red.
The new sub-trees are painted olive and violet. The
higher levels are darker than lower levels, so that it
would be easier to trace the centers of clusters.

X. Illustration, Three-Dimensional Case

As we discussed in Section 8.1, ideally, the
clusters of a particular level should form isotropic

ellipsoids. The result we would like to get should look
like soap foam bubbles.

XI. Example Multi-Dimensional Case

As an example we will cluster wiki pages.
1. The first step is to parse an HTML page and to

extract pure text. There are several tools available
for this purpose. We use Java CC, an open source
parser and lexical analyzer generator. The generator
accepts a formal grammar definition, written in .JJ
file, which also allows to define additional custom
code. The input to the lexical analyzer is a sequence
of characters; the output is a sequence of tokens.
In our example, we are interested in skipping HTML
tags and parsing the text further, so that it become a
list of words. At this stage we are dropping
everything what is not a word, i.e. numbers, email
addresses, references to web pages, expressions,
identifiers, etc.

2. Then, we analyze the text and map it to a point in a
semantic space. For each word in text we will find
the root. Basically, for verbs we drop endings as -s,
-ed, -ing; for nouns we drop ending–s. Actually, the
procedure is a bit more complicated due to
language exceptions. Secondly, we calculate the
weight of the word. We assume that more frequent
words should have a lighter weight than infrequent
words. So, we distributed all the words to 256 sets
with about equal frequencies. Thirdly, we find the
meaning of the word in question. We have split all
words to 1024 groups with similar meanings. Please
notice, that one word can have more than one
meanings, with only one of them being actualized in
the text. Without knowing what the actual meaning

is, we have to add all meaning with the same
weights depending on the frequency of the word.
Now we can define a target point in a 1024-
dimensional space where each dimension
corresponds to a meaning. The coordinates of the
target point are calculated by accumulating all
weights corresponding to particular meanings. It
also seems reasonable to divide the coordinates by
the number of the words in the text, so that repletion
of sentences or words does not affect the meaning
of the text.

XII. Conclusions

Arbitrary points in multi-dimensional space can
be isotropically clustered into a balanced hierarchical
structure, similar to a B-tree.

Clustering into a multi-dimensional B-tree does
not require any supervision or any a priori given
information, like the number of clusters.

Clustering into a multi-dimensional tree can be
done dynamically and efficiently. Adding new points to
the tree requires only incremental updates of statistical
values associated with nodes.

Text pages can be mapped to points into 1000-
dimentional semantic space.

The search of pages close to a given semantic
point can return a hierarchically ordered results, allowing
the user to select more general or more specific topics.

XIII. Acknowledgments

This research was not sponsored by National
Science Foundation or any other financial source.

© 2016 Global Journals Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
III

 V
er
sio

n
I

 32

Y
e
a
r

20
16

 (

)
C

Isotropic Dynamic Hierarchical Clustering

ReferencesRéférences Referencias

1. Donald E. Knuth, 1973, Sorting and Searching,
volume 3, The Art of Computer Programming,
Addison-Wesley.

2. Antonin Guttman, 1984, R-trees: a dynamic index
structure for spatial searching, ACM, New York,
USA. (1984-r-treeguttman. pdf)

3. Sean Owen et al. 2011, Mahout in Action, Manning
Publications Co., New York, USA. (ISBN
9781935182689, Mahout. in. Action.pdf)

4. Richard A. Reyment, K. G. Joereskog, 1993, Applied
Factor Analysis in the Natural Sciences, Cambridge
University Press, UK.

5. George A. Miller, 2003, WordNet Lexical Database of
English Language, Cognitive Science Laboratory of
Princeton University

6. Roget's Thesaurus, 2006, Electronic Lexical
Knowledge Base (ELKB) http://www.nzdl.org/ELKB

7. Adam Kilgarriff, 1995, BNC Database and Word
Frequency Lists, http://www.kilgarriff.co.uk/bnc-
readme.html

8. Brian Goetz's, 2003, HTML Parser.

	Isotropic Dynamic Hierarchical Clustering
	Author
	Keywords
	I. Points, Implementation
	II.SetsMathematics
	III. Clustering Example
	IV.Dynamic Clustering, Approach
	V.Hierarchical Clustering, Approach
	VI.Isotropic b-tree, Approach
	VII. (Isotropic Dynamic HierarchicalClustering, Two-Dimensional Case)
	a) Selecting a Sub-Node
	b) Splitting the Overloaded Node
	c) Adjusting Bounding Circles
	d) Calculation of a Quasi-Minimal Bounding Circle
	e) Exact Minimal Bounding Circle

	VIII. Multi-Dimensional s-tree, fullDetails
	IX. Example, Two-Dimensional Case
	X. Illustration, Three-Dimensional Case
	XI. Example Multi-Dimensional Case
	XII. Conclusions
	XIII. Acknowledgments
	ReferencesRéférences Referencias

