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clustering. 

clustering; hierarchical clustering; dynamic clustering; isotropic  clustering; multi-
dimensional space; b-tree; factor analysis. 

GJCST-C Classification :  H.3.3, I.5.3 

 

IsotropicDynamicHierarchicalClustering 
 

Strictly as per the compliance and regulations of:

 
 

 

 

 

 

 

Keywords:



Isotropic Dynamic Hierarchical Clustering 
Victor Sadikov α & Oliver Rutishauser σ 

    
 

                       
 

  
 

 
 

 

 
 
 

 
 
 

 
 

 
  

 
  

 
 
 
 
 

 
 

 
 

  

  
 
 
 

 
 

  
 

 
 

 
 

 
 

 
 

 

also allows to manipulate (to search, to delete) 
aggregated sets of closely located points. 

5. Hierarchical information retrieval. When searching, the 
user is provided with the highest appropriate nodes in the 
tree hierarchy, with the most important clusters emerging 
in the hierarchy automatically. Then, if interested, the user 
may navigate down the tree to more specific points. The 
system is implemented as a library of Java classes 
representing Points in multi-dimensional space, Sets of 
points with aggregated statistical information (mean, 
standard deviation,) B-tree, and Nodes with a support of 
serialization and storage in a MySQL data base. 

CCS Concepts 
• Theory of computation→Theory and algorithms for 

applicationdomains→Machinelearningtheory→Uns
upervised learningand clustering • Mathematics of 
computing→Mathematical software → Statistical 
software •Information systems→Information 
retrieval →Retrieval tasks and goals→Clusteringand 
classification 

Keywords: clustering; hierarchical clustering; dynamic 
clustering; isotropic clustering; multi-dimensional space; 
b-tree; factor analysis. 
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Abstract- We face a business need of discovering a pattern in
locations of a great number of points in a high-dimensional
space. We assume that there should be a certain structure, so 
that in some locations the points are close while in other
locations the points are more dispersed. Our goal is to group 
the close points together. The process of grouping close 
objects is known under the name of clustering.
1. We are particularly interested in a hierarchical structure. A 

plain structure may reduce the number of objects, but the 
data are still difficult to manage or present.

2. The classical technique suited for the task at hand is a B-
Tree. The key properties of the B-Tree are that it is
hierarchical and balanced, and it can be dynamically
constructed from the input data. In these terms, B-Tree 
has certain advantages over other clustering algorithms, 
where the number of clusters needs to be defined a priori. 
The BTree approach allows to hope that the structure of 
input data will be well determine without any supervised
learning.

3. The space is Euclidean and isotropic. This is the most
challenging part of the project, because currently there 
are no B-Tree implementations processing indices in a
symmetrical and isotropical way. Some known
implementations are based on constructing compound
asymmetrical indices from point coordinates, where the
main index works as a key, while the function of other
(999!) indices is lost; and the other known 
implementations split the nodes along the coordinate 
hyper-planes, sacrificing the isotropy of the original 
space. In the latter case the clusters become coordinate 
parallelepipeds, which is a rather artificial and 
unnecessary assumption. Our implementation of a B Tree 
for a high-dimensional space is based directly on 
concepts of factor analysis.

4. We need to process a great deal of data, something like 
tens of millions of points in a thousand-dimensional
space. The application has to be scalable, even though,
technically, out task is not considered a true Big Data
problem. We use dispersed data structures, and 
optimized algorithms. Ideally, a cluster should be an 
ellipsoid in a high-dimensional space, but such 
implementation would require to store O(n2) ellipse axes, 
which is impractical. So, we are using multi-dimensional 
balls defined by the centers and radii. On the other hand, 
calculation of statistical values like the mean and the 
average deviation, can be done in an incremental way. 
This mean that when adding a point to a tree, the 
statistical values for nodes of all levels may be 
recalculated in O(1) time. The node statistical values are 
used to split the overloaded nodes in an optimal way. We 
support both, brute force O(2n) and greedy O(n2) split 
algorithms. Statistical and aggregated node information

Author α: 200 S Laurel Av. A5-2D20 Middletown, NJ 07748 (732) 420-
7453. e-mail: vic@att.com
Author σ: Atlantic Style P.O.Box 9 Oakhurst, NJ 07755 (732) 455-2081
e-mail:  rutishauser@yandex.com

n a high-dimensional space we assume that a 
considerable number of coordinates will contain zero 
values. To optimize the memory and storage space 

we would like to keep non-zero coordinates only. Thus, 
a Point object contains 3 fields: the number of non-zero 
coordinates, the array of sorted coordinate indices, and 
the array of corresponding coordinate values.

I

The Point class provides methods for 
calculating the Euclidean length of the point vector, 
getting a particular coordinate (or zero,) adding another 
point to the given point, calculating a few useful 

{
int N = 0; // # of non-zero coordinates
int[] key; // array of coordinate indices
float[] val; // array of coordinate values
}



 functions like distance to
 

another point, dot product, 
and serializing to a base-64

 
string.

 
Some functions, e.g. 

adding a point, may change the
 
number of non-zero 

coordinates. The main loop for adding
 
two points looks 

like the following. 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

II.
 

Sets
  
Mathematics

 
The next step of our approach is the 

introduction of Sets of
 
Points. The Sets allow calculation 

of aggregated statistical
 

values.
 

The most important 
value is the number of points

 
(N) in the Set. It needs to 

be corrected each time a new
 
point is added to the Set. 

The obvious way of calculating
 

the new number of 
points is to increment the current

 
number by one.

 
N = N + 1;

 
Other important statistical values of the set of 

points are arithmetic mean and the standard deviation. 
These values should also be adjusted every time a point 
is added to the Set. We could recalculate the 
arithmetical mean (M) from scratch, but we would like to 
follow the incremental approach and move it towards 
the newly added point (P) by the 1/N of the distance. 

M = M + (P - M) /N; 
As for standard deviation, at first sight, it seems 

to be a value that requires the full recalculation. 
Fortunately, this is not the case. We can store and 
adjust the standard deviation in an incremental way too, 
based on the following formula. 

E[X – E(X)]2 = E[X2] – (E[X]) 2 

This means that to calculate the standard 
deviation it is enough to store the sum of the squares of 

point coordinates (S,) which can be adjusted 
incrementally. 

S = S + |P|2; 

And when we need to calculate the standard 
deviation we will do the following. 

D = sqrt( S/N - |M|2 ); 

III. Clustering Example 

Clustering basically means grouping similar 
objects together. If the objects have a number of 
numerical attributes they may be represented as points 
in a multidimensional space. The clustering will mean to 
partition the whole set of points into a number of disjoint 
sub-sets. 

 
 

 
 

 
 
 
 
 

 We can see that initially the points occupy the 
segment [0,13.] Assume we need to split the set of the 
given points on

 
the number line into two clusters then 

the resulting clusters
 
will be sub-segments. Even in this 

simple example two
 
different splits are possible. The first 

splits makes
 
egments

 
[0, 5] and [9, 13] while the other 

makes segments
 
[0, 4] and [5, 13] (see Figure 1.)

 In terms of segments, the first split looks better, 
because it

 
finds two compact segments rich of points, 

while the
 
second split covers almost the whole initial 

segment. In
 
terms of statistical variables, the first split is 

better too,
 
because the sum of the deviations of the 

resulting sets is
 
minimal.

 
IV.

 
Dynamic Clustering, Approach

 
If we continue adding new points, then we need 

to decide
 
which sub-segment each new point belongs 

to. Points
 
below 5 we can add to the first sub-segment, 

and points
 
above 9 we add to the second sub-segment. 

We may place points between 5 and 9 into either sub 
segment. Our criterion here is to avoid big segments, or

 (which is the same) to keep the sum of deviations 
minimal.

 
But we always need to update the boundaries 

of the sub segments
 
so that we can exactly know in 

which segment a
 
particular point is to be found. If the 

points are well spread,
 
knowing exact boundaries of the 

segments may also
 
improve unsuccessful search.
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Isotropic Dynamic Hierarchical Clustering

Figure 1

Let's consider an example in a one-dimensional 
space. The example is free of the challenges related to 
multidimensional clustering and is easy to comprehend. 
Assume we are given the set of five numbers {0.4.5. 
9.13.}

After adding a certain number of points to a 
sub-segment, we will need to split this sub-segment into 
two sub segments with a smaller number of points. This 
can be done exactly in the same manner as we split the 

int Ix = 0; int Ip = 0; int Iz = 0;
for(; Ix != this.N && Ip != p.N ;)
{
if(this.key[Ix] == p.key[Ip])
{
z.key[Iz] = this.key[Ix];
z.val[Iz] = this.val[Ix] + p.val[Ip];
Ix++; Ip++; Iz++;
}
else if(this.key[Ix] < p.key[Ip])
{
z.key[Iz] = this.key[Ix];
z.val[Iz] = this.val[Ix];
Ix++; Iz++;
}
else
{
z.key[Iz] = p.key[Ip];
z.val[Iz] = p.val[Ip];
Ip++; Iz++;
}
}



 
 

 
 
  

 
 

 
 

 
 

 
 

 
V.

 
Hierarchical Clustering, Approach

 The bigger the number of points in our data set, 
the

 
bigger

 
the number segments. Soon it gets big 

enough, and we
 
may need to introduce the next level of 

hierarchy, when
 

smaller clusters are, in their turn, 
grouped into clusters of

 
the higher level. The approach 

of adding points, splitting
 
segments, and adding new 

levels when necessary is quite
 
similar to adding objects 

to a B-tree [1.] The tree starts
 

with the root node, 
responsible for all points stored in the

 
tree. At each level, 

the parent node consist of a number of
 
sub-nodes. The 

points in each sub-node are close one to
 
another.

 A classical one-dimensional B-tree design 
focuses on

 
minimization of the information stored at the 

node level.
 
Namely, a parent node stores a number of 

adjacent values
 
in ascending order, with the sub-nodes 

being placed
 
between adjacent values, plus one at the 

beginning and one
 
at each end. Thus we know that the 

elements of each subtree
 

are greater than the left 
adjacent value and less than the

 
right one.

 On the contrary, our design prefers to store 
excessive

 
boundary and statistical information about the 

sub-nodes. In the case of one-dimensional space, each 
node occupies a

 
segment and sub-nodes of one parent 

do not intersect. The
 
boundary segment can be defined 

by its two ends, or by the
 
middle point (C) and the 

distance (R) to the ends. The
 
letter way will occupy less 

memory in a general multidimensional
 
case. We also 

keep the number of points in
 

each sub-tree, their 
arithmetic mean and standard deviation.

 As we stated above, statistical values facilitate 
splitting the

 
nodes in the optimal way, while the 

boundary information
 

allows us in some cases to 
terminate an unsuccessful search

 heuristically.
 

VI.
 

Isotropic b-tree, Approach
 B-trees do their work great, as long as the 

attributes of the
 

objects are one-dimensional. 
Unfortunately, there is some problem

 
with direct 

extension of B-tree to a multidimensional

 

case. The two 
common approaches are the

 

following.

 
The mix approach assumes composing the 

compound index

 

based on the component indices, and 
then making use of a

 

one-dimensional B-tree. The 
problem with this approach is

 

that the component 
indices are treated by far not equally.

 

One index plays 
the main role, while the role of the others

 

is insignificant.

 
The other approach is more complicated. R-tree 

[2] is a

 

variant of B-tree

 

where the nodes are bound by 
coordinate

 

rectangles. This approach is more 
symmetrical in terms of

 

using indices. But the directions 
along the coordinate axes

 

are still different from arbitrary 
ones. 

We would like to build a variant of B-tree, where 
the nodes

 

are bound with circles or ellipses. This 
decision ensures

 

that the essential property of isotropy 
of the physical space

 

is not ignored.
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Isotropic Dynamic Hierarchical Clustering

initial segment. After that we will be adding new points 
to the set of three sub-segments. Then we will need to 
split another sub-segment. And the number of sub-
segments will increase again.

Unlike the static approach where the set of all 
objects exists before the procedure of clustering starts; 
dynamic approach assumes that clusters are 
incrementally adjusted each time a new object gets 
added into the set. This eliminates the dedicated step of 
clustering for the price of a longer time needed to 
include objects. Dynamic clustering provides better 
flexibility and can be performed with less a priori known 
information about the data, e.g. when the total number 
of target clusters is unknown.

VII. (Isotropic Dynamic Hierarchical
Clustering, Two-Dimensional Case )

The circles are defined by the center point (C) 
and the radius (R.) It the 2-dimensional space, the 
center is defined by the two coordinates, and so we 
need to store 3 real values. Alternatively, if we decided 
to present clusters as ellipses in general orientation, we 
will need to store the semi-principal axes and the 
angles, which would require O(n2) memory, with n being 
the number of dimensions in the space.

In the picture to the right, the circles 
corresponding to the sub-nodes of one and the same
parent do not intersect. The biggest circle (P) 
corresponds to the parent node, while C1, C2, and C3 
correspond to the sub-nodes. Keeping on adding new 
points to the tree we cannot avoid the situation where 
the sub-nodes start to intersect. We will dwell on the 
intersecting areas later in this paper.

a) Selecting a Sub-Node
As mentioned in section 4, while adding a new 

point outside any bounding circle, we need to select the 
most appropriate sub-node. To do this, we will try to add 
the new point to each sub-node, and calculate the new
bounding radii. Then we will select a sub-node so that 
the sum of the new squared radii should be minimal, 
because our goal is to make eventually all sub-node 
circles of about the same absolute size in the given 
space.
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Isotropic Dynamic Hierarchical Clustering

Let’s assume that the old radius was Ri, then 
the new radius will be Ri+Hi/2, where Hi is the distance 
from the new point to the circle Ci. If we select the i-th 
sub-node, the sum of new squared radii will grow by 
(Ri+Hi/2)2 – Ri

2, i.e. by RiHi+Hi
2/4, so we need to select 

the sub-node where Ti= 4RiHi+Hi
2 is minimal.

b) Splitting the Overloaded Node
When a node gets overloaded, i.e. it includes 

more than the maximum number of sub-nodes or 
points; the node needs to be split into two nodes at the 
same level. In the classical B-tree the node is split into 
two nodes with the equal number of elements.

In our case, we can split the node taking into 
account the following criteria:

• the maximum radius of the two new circles is 
minimal;

• the new nodes intersect with the minimal area; the 
sum of standard deviations of the new nodes is

• minimal.

To this goal, first we will find the pair of points at 
the longest distance. In the figure to the right, such a 
pair consists of points a and b. If these points both 
belonged to one and the same bounding circle, the 
radius of this circle would be greater than the distance 
Da,b/2, which, as we assume, is the maximum distance. 
So, to minimize the maximum radius we need to
distribute points a and b to the different bounding circles 
Ca and Cb. Now we will find point c, so that the distance 
from c to either of circles Ca and Cb is the longest. In 
the picture above, it is the distance between point c and 
circle Ca (which now consists of just one point a.) Once 
again, to minimize the would-be radii, we need to 
distribute point c to the other circle, Cb. Continuing in 
the same manner, we will ultimately get circles Ca and 
Cb, as shown in the picture.

c) Adjusting Bounding Circles
Let’s assume that we need to add a new point 

(Q) to the tree. We start from the root and go down the 
tree, level by level. At each level we need to select the 
most appropriate sub-node. E.g. at the parent level P, 
we need to select one of the sub-nodes, C1, C2, or C3. 
Logically, there are two different cases. If the new point 
belongs to a particular bounding circle, no adjustment is 
needed. But if the new point is outside of any bounding 
circle, we need to select the most appropriate subnode; 

to add the new point to the selected sub-node; and to 
adjust the corresponding bounding circle, so that it 
should include the new point as well as all old points. 
See the figure below.

In the 2-dimensional case, the new minimal 
bounding circle can be exactly calculated. In the figure 
above, the minimal circle is the circle circumscribed 
about the triangle of the first two points and point Q. It 
can be calculated from the coordinates of these points.
E.g. the radius of the circumscribed circle is
L1*L2*L3/sqrt((L1+L2+L3)*(L2+L3-L1)*(L1L2+L3)*(L1+L2

L3) ), where L1, L2 and L3 are the lengths of the sides.
In a multi-dimensional space, the situation is 

much more complicated. Fortunately, we do not need 
the exact minimal bounding circles. The bounding 
circles are very useful in many procedures where they 
heuristically allow to reduce the amount of calculation, 
but fortunately they are not critical. So, we would 
recommend to use a less exact but easier to calculate 
approximation.

We can easily construct the new bounding 
circle (C’) about the old bounding circle (C) and the 
newly added point (Q) as shown in the figure to the 
right. First, we calculate the distance (H) from the point 
Q to the circle C. Then we move the center of the circle 
C towards Q by H/2. This will be the center of C’. The
radius of the new circle will be the old radius (R) plus 
H/2. Thus, the circle C’ will surely contain all old points 
as well as the new point.

Moreover, the new bounding circle (C’) can be 
easily optimized. By construction, the new circle has to
lie through the point Q, but it doesn’t probably lie 

  

through any other actual points. So, we can shrink the 
circle, so that it lies through yet another point.
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Isotropic Dynamic Hierarchical Clustering

Let’s shift the center (O) of the circle towards 
the point Q, so that the new circle with the center Oa lies 
both through points Q and A. See the picture above. 
The value of the shift can be calculated based on the 
points Q, O and A. When we shift the center for the point 
A, this doesn’t necessarily mean that any other point B 
will belong to the new shrunken circle. But we can 
repeat this procedure for all points of the set, and find 
the largest shrunken circle, corresponding to the 
shortest allowed shift. That circle will work for all the 
points of the set.

d) Calculation of a Quasi-Minimal Bounding Circle

e) Exact Minimal Bounding Circle

VIII. Multi-Dimensional s-tree, full 
Details

So far we have clearly described what we would 
like to achieve in our multi-dimensional S-Tree. A real 
implementation is not so smooth, and requires solutions 
to a number of complicated issues.

a) Overlapped Circle
As mentioned in Section 7, some sub-nodes of 

a given node may overlap. Such cases may occur when 
a new point is added to a sub-node, which results in 
adjusting the bounding circle of this sub-node, or when 
a sub-node is split into two sub-nodes at the same level, 

Please notice that, in some cases, the exact 
minimal bounding circle may be slightly smaller than the 
quasi-minimal circle constructed above. Moreover, the 
shrunken circle (C’) depends on the initial circle C.

If the set consists of just one point, the exact 
minimal circle is the circle with the center in that point 
and the radius of zero. If the set contains two points, the 
exact minimal circle is the circle from the center of mass 
and the radius of half the distance between the points.

If the set contains three points, there are two 
cases. Either, the exact minimal circle is the circle 

circumscribed around these three points. Or, the circle 
built on the two of the three points as a diameter, 
provided that the third point lies inside it. If we want to
build the circle for the second case, we need first to find 
the two (out of the three) points with the longest 
distance between them. Then, we need to check that the 
third point (X) will make an obtuse-angled triangle. I.e. 

If we do not want to build the exact minimal 
circle, we may use the shrinking technique. But we will 
need a good first approximation for the minimal circle. 
As shown above, the circle build on the longest 
segment plays an essential role in construction of 
minimal circles; besides, and it is easy to calculate. This 
makes it a good first approximation for building quasi-
minimal bounding areas.

as discussed in Section 7.2. In this case the actual
areas of sub-nodes are not circle, but they are rather 
“cut” circles, as shown in the picture below.

  

The reason for the sub-node areas to be
nothing but the “cut” circles is that the areas need to be 
convex. Now, the more complicated form of the areas 
makes us change the way we calculate the appropriate 
sub-node when the given point x belongs to both 
bounding circles.

  In the two-dimensional space we use line L, to 
determine where point x belongs to. All points at one 
side of line L belong to one sub-node, while all the 
points at the other side belong to the other sub-node. 
Analogically, in the multi-dimensional space, the border 
line L will become a plane. All points at one side of the

Let’s assume that point T is the foot of the 
perpendicular dropped from point A on the line (Q,O.)
Then |A T|2 + |T Q|2 = |A Q|2. And |A T|2 + |T Oa|2

= |A Oa|2. But |T Oa| = |T Q| - |Oa Q| and |Oa Q| 
= |Oa A|. So, finally, |Oa Q| should be |A Q|2 / 2 |T 
Q|, where |T Q| is the projection of the vector [Q A] on 
line (Q,O) and can be calculated by means of the dot 
product.

|A X|2 + |X B|2 < |A B|2. Sets of more than three 
points are quite similar.
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Isotropic Dynamic Hierarchical Clustering

plane will belong to one sub-node, and all points at the 
other side of the plane L will belong to the other sub-
node.

Every plane in the multi-dimensional space can 
be defined by its normal vector and the distance from 
the point of origin. The only drawback is that 
theoretically we will need a border plane for each pair of 
sub-nodes. E.g. if a parent node has, say, 5 sub-nodes, 
we will need to store 10 border plains. A more memory-
effective way would be to calculate the equation of the 
plane L on the fly, based on the bounding circles.

b) Splitting the Node
When a node gets overloaded, i.e. it includes 

more than the maximum number of sub-nodes or 
points; the node needs to be split into two nodes at the 
same level.

While splitting the node, we expect that the
results nodes will have bounding areas with smaller 
radii. Let’s assumes that a and b are the points with the 
greatest distance between them, as in the picture 
above. If we ultimately put these points into one and the 
same node, the radius of the bounding circle for that 
node can not be less than |a b|, which is almost the
radius of the bounding circle for the original node. To 
avoid this, we have to put a and b into different nodes. 
Now we have nodes Ca and Cb, consists of points a 
and b, correspondingly.

At the next step let’s consider, say, the point c. 
We can either put it into Ca or Cb. And we need to 
estimate how good or bad it would be to put it into a 

particular node. E.g. we can try to optimize (to keep 
minimal) the maximum radius of Ca and Cb. But, now 
we know that there is something more unpleasant than
just big radii; it is overlapped circles. So we may want to 
keep the circles overlapped in the minimal possible 
measure.

IX. Example, Two-Dimensional Case

The most challenging task of implementing a B-
tree is a split of overloaded nodes. When a node is split 
into two nodes, there appears a new boundary. All sub-
nodes of the given node may need to be recursively split 
by the new boundary. The picture below illustrates the 
result of a split for a two-dimensional case.

Namely, as we discussed, the circle C1 can be 
defined by its center, O1, and the radius R1. 
Analogically, we define the circle C2 by the center O2

and the radius R2. It is easy to see that the border plane 
L is the set of all the point such as the difference
between their squared distances to points O1 and O2 is 
constant.

|O1 - x|2 - |O2 - x|2 = F1,2

To be precise, the constant F1,2 is the 
difference between the squared radii of the circles in 
question, i.e. F1,2 = R1

2 – R2
2 .

So, to find whether point x belongs to the circle 
C1, we need to calculate |O1 - x|2 - |O2 - x|2 - R1

2 + R2
2, 

and to compare it with zero.

In the previous section we have introduced the 
expression L2 – (R2 – r2). It shows in what manner the 
circles are overlapped, and should be greater than zero. 
We will try to optimize (to keep maximal) this expression. 
It gives the same rules for selecting points a, b, and c, 
but gives better results at next steps.
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Here the new boundary is highlighted in red. 
The new sub-trees are painted olive and violet. The 
higher levels are darker than lower levels, so that it 
would be easier to trace the centers of clusters.

X. Illustration, Three-Dimensional Case

As we discussed in Section 8.1, ideally, the 
clusters of a particular level should form isotropic 

ellipsoids. The result we would like to get should look 
like soap foam bubbles.

XI. Example Multi-Dimensional Case

As an example we will cluster wiki pages.
1. The first step is to parse an HTML page and to 

extract pure text. There are several tools available 
for this purpose. We use Java CC, an open source 
parser and lexical analyzer generator. The generator 
accepts a formal grammar definition, written in .JJ
file, which also allows to define additional custom 
code. The input to the lexical analyzer is a sequence 
of characters; the output is a sequence of tokens.
In our example, we are interested in skipping HTML 
tags and parsing the text further, so that it become a 
list of words. At this stage we are dropping 
everything what is not a word, i.e. numbers, email 
addresses, references to web pages, expressions, 
identifiers, etc.

2. Then, we analyze the text and map it to a point in a 
semantic space. For each word in text we will find 
the root. Basically, for verbs we drop endings as -s, 
-ed, -ing; for nouns we drop ending–s. Actually, the 
procedure is a bit more complicated due to
language exceptions. Secondly, we calculate the 
weight of the word. We assume that more frequent 
words should have a lighter weight than infrequent 
words. So, we distributed all the words to 256 sets 
with about equal frequencies. Thirdly, we find the
meaning of the word in question. We have split all 
words to 1024 groups with similar meanings. Please 
notice, that one word can have more than one 
meanings, with only one of them being actualized in 
the text. Without knowing what the actual meaning

is, we have to add all meaning with the same 
weights depending on the frequency of the word.
Now we can define a target point in a 1024-
dimensional space where each dimension 
corresponds to a meaning. The coordinates of the 
target point are calculated by accumulating all 
weights corresponding to particular meanings. It 
also seems reasonable to divide the coordinates by 
the number of the words in the text, so that repletion 
of sentences or words does not affect the meaning 
of the text.

XII. Conclusions

Arbitrary points in multi-dimensional space can 
be isotropically clustered into a balanced hierarchical 
structure, similar to a B-tree.

Clustering into a multi-dimensional B-tree does 
not require any supervision or any a priori given 
information, like the number of clusters.

Clustering into a multi-dimensional tree can be 
done dynamically and efficiently. Adding new points to 
the tree requires only incremental updates of statistical 
values associated with nodes.

Text pages can be mapped to points into 1000-
dimentional semantic space.

The search of pages close to a given semantic 
point can return a hierarchically ordered results, allowing 
the user to select more general or more specific topics.
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