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4

Abstract5

We face a business need of discovering a pattern in locations of a great number of points in a6

high-dimensional space. We assume that there should be a certain structure, so that in some7

locations the points are close while in other locations the points are more dispersed. Our goal8

is to group the close points together. The process of grouping close objects is known under the9

name of clustering. 1. We are particularly interested in a hierarchical structure. A plain10

structure may reduce the number of objects, but the data are still difficult to manage or11

present. 2. The classical technique suited for the task at hand is a B-Tree. The key properties12

of the B-Tree are that it is hierarchical and balanced, and it can be dynamically constructed13

from the input data. In these terms, B-Tree has certain advantages over other clustering14

algorithms, where the number of clusters needs to be defined a priori. The BTree approach15

allows to hope that the structure of input data will be well determine without any supervised16

learning. 3. The space is Euclidean and isotropic. This is the most challenging part of the17

project, because currently there are no B-Tree implementations processing indices in a18

symmetrical and isotropical way. Some known implementations are based on constructing19

compound asymmetrical indices from point coordinates, where the main index works as a key,20

while the function of other (999!) indices is lost; and the other known implementations split21

the nodes along the coordinate hyper-planes, sacrificing the isotropy of the original space. In22

the latter case the clusters become coordinate parallelepipeds, which is a rather artificial and23

unnecessary assumption. Our implementation of a B Tree for a high-dimensional space is24

based directly on concepts of factor analysis. 4. We need to process a great deal of data,25

something like tens of millions of points in a thousand-dimensional space. The application has26

to be scalable, even though, technically, out task is not con27

28

Index terms— lustering; hierarchical clustering; dynamic clustering; isotropic clustering; multi-dimensional29
space; b-tree; factor analysis.30

locations of a great number of points in a high-dimensional space. We assume that there should be a certain31
structure, so that in some locations the points are close while in other locations the points are more dispersed.32
Our goal is to group the close points together. The process of grouping close objects is known under the name33
of clustering. 1. We are particularly interested in a hierarchical structure. A plain structure may reduce the34
number of objects, but the data are still difficult to manage or present. 2. The classical technique suited for35
the task at hand is a B-Tree. The key properties of the B-Tree are that it is hierarchical and balanced, and it36
can be dynamically constructed from the input data. In these terms, B-Tree has certain advantages over other37
clustering algorithms,38

where the number of clusters needs to be defined a priori.39
The BTree approach allows to hope that the structure of input data will be well determine without any40

supervised learning. 3. The space is Euclidean and isotropic. This is the most challenging part of the project,41
because currently there are no B-Tree implementations processing indices in a symmetrical and isotropical way.42
Some known implementations are based on constructing compound asymmetrical indices from point coordinates,43
where the main index works as a key, while the function of other (999!) indices is lost; and the other known44
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7 CLUSTERING EXAMPLE

implementations split the nodes along the coordinate hyper-planes, sacrificing the isotropy of the original space.45
In the latter case the clusters become coordinate parallelepipeds, which is a rather artificial and unnecessary46
assumption. Our implementation of a B Tree for a high-dimensional space is based directly on concepts of factor47
analysis. 4. We need to process a great deal of data, something like tens of millions of points in a thousand-48
dimensional space. The application has to be scalable, even though, technically, out task is not considered a true49
Big Data problem. We use dispersed data structures, and optimized algorithms. Ideally, a cluster should be an50
ellipsoid in a high-dimensional space, but such implementation would require to store O(n2) ellipse axes, which51
is impractical. So, we are using multi-dimensional balls defined by the centers and radii. On the other hand,52
calculation of statistical values like the mean and the average deviation, can be done in an incremental way. This53
mean that when adding a point to a tree, the statistical values for nodes of all levels may be recalculated in54
O(1) time. The node statistical values are used to split the overloaded nodes in an optimal way. We support55
both, brute force O(2n) and greedy O(n2) split algorithms. Statistical and aggregated node information n a high-56
dimensional space we assume that a considerable number of coordinates will contain zero values. To optimize57
the memory and storage space we would like to keep non-zero coordinates only. Thus, a Point object contains 358
fields: the number of non-zero coordinates, the array of sorted coordinate indices, and the array of corresponding59
coordinate values.60

1 I61

The Point class provides methods for calculating the Euclidean length of the point vector, getting a particular62
coordinate (or zero,) adding another point to the given point, calculating a few useful { int N = 0; // # of63
non-zero coordinates int[] key; // array of coordinate indices float[] val; // array of coordinate values } functions64
like distance to another point, dot product, and serializing to a base-64 string. Some functions, e.g. adding65
a point, may change the number of non-zero coordinates. The main loop for adding two points looks like the66
following.67

2 II.68

3 Sets Mathematics69

The next step of our approach is the introduction of Sets of Points. The Sets allow calculation of aggregated70
statistical values. The most important value is the number of points (N) in the Set. It needs to be corrected each71
time a new point is added to the Set. The obvious way of calculating the new number of points is to increment72
the current number by one.73

4 N = N + 1;74

Other important statistical values of the set of points are arithmetic mean and the standard deviation. These75
values should also be adjusted every time a point is added to the Set. We could recalculate the arithmetical mean76
(M) from scratch, but we would like to follow the incremental approach and move it towards the newly added77
point (P) by the 1/N of the distance.78

5 M = M + (P -M) /N;79

As for standard deviation, at first sight, it seems to be a value that requires the full recalculation. Fortunately,80
this is not the case. We can store and adjust the standard deviation in an incremental way too, based on the81
following formula.E[X -E(X)]2 = E[X2] -(E[X]) 282

This means that to calculate the standard deviation it is enough to store the sum of the squares of point83
coordinates (S,) which can be adjusted incrementally.84

6 S = S + |P|2;85

And when we need to calculate the standard deviation we will do the following. D = sqrt( S/N -|M|2 ); III.86

7 Clustering Example87

Clustering basically means grouping similar objects together. If the objects have a number of numerical attributes88
they may be represented as points in a multidimensional space. The clustering will mean to partition the whole89
set of points into a number of disjoint sub-sets.90

We can see that initially the points occupy the segment [0,13.] Assume we need to split the set of the given91
points on the number line into two clusters then the resulting clusters will be sub-segments. Even in this simple92
example two different splits are possible. The first splits makes egments [0, 5] and [9, 13] while the other makes93
segments [0, 4] and [5, ??3] (see Figure 1.)94

In terms of segments, the first split looks better, because it finds two compact segments rich of points, while95
the second split covers almost the whole initial segment. In terms of statistical variables, the first split is better96
too, because the sum of the deviations of the resulting sets is minimal.97
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8 IV. Dynamic Clustering, Approach98

If we continue adding new points, then we need to decide which sub-segment each new point belongs to. Points99
below 5 we can add to the first sub-segment, and points above 9 we add to the second sub-segment. We may100
place points between 5 and 9 into either sub segment. Our criterion here is to avoid big segments, or (which is the101
same) to keep the sum of deviations minimal. But we always need to update the boundaries of the sub segments102
so that we can exactly know in which segment a particular point is to be found. If the points are well spread,103
knowing exact boundaries of the segments may also improve unsuccessful search. Let’s consider an example in a104
one-dimensional space. The example is free of the challenges related to multidimensional clustering and is easy105
to comprehend. Assume we are given the set of five numbers {0.4.5. 9.13.} After adding a certain number of106
points to a sub-segment, we will need to split this sub-segment into two sub segments with a smaller number of107
points. This can be done exactly in the same manner as we split the108

9 V. Hierarchical Clustering, Approach109

The bigger the number of points in our data set, the bigger the number segments. Soon it gets big enough, and we110
may need to introduce the next level of hierarchy, when smaller clusters are, in their turn, grouped into clusters111
of the higher level. The approach of adding points, splitting segments, and adding new levels when necessary is112
quite similar to adding objects to a B-tree ??1.] The tree starts with the root node, responsible for all points113
stored in the tree. At each level, the parent node consist of a number of sub-nodes. The points in each sub-node114
are close one to another.115

A classical one-dimensional B-tree design focuses on minimization of the information stored at the node level.116
Namely, a parent node stores a number of adjacent values in ascending order, with the sub-nodes being placed117
between adjacent values, plus one at the beginning and one at each end. Thus we know that the elements of each118
subtree are greater than the left adjacent value and less than the right one.119

On the contrary, our design prefers to store excessive boundary and statistical information about the sub-120
nodes. In the case of one-dimensional space, each node occupies a segment and sub-nodes of one parent do not121
intersect. The boundary segment can be defined by its two ends, or by the middle point (C) and the distance122
(R) to the ends. The letter way will occupy less memory in a general multidimensional case. We also keep the123
number of points in each sub-tree, their arithmetic mean and standard deviation.124

As we stated above, statistical values facilitate splitting the nodes in the optimal way, while the boundary125
information allows us in some cases to terminate an unsuccessful search heuristically.126

10 VI.127

Isotropic b-tree, Approach B-trees do their work great, as long as the attributes of the objects are one-dimensional.128
Unfortunately, there is some problem with direct extension of B-tree to a multidimensional case. The two common129
approaches are the following.130

The mix approach assumes composing the compound index based on the component indices, and then making131
use of a one-dimensional B-tree. The problem with this approach is that the component indices are treated by132
far not equally. One index plays the main role, while the role of the others is insignificant.133

The other approach is more complicated. R-tree [2] is a variant of B-tree where the nodes are bound by134
coordinate rectangles. This approach is more symmetrical in terms of using indices. But the directions along the135
coordinate axes are still different from arbitrary ones.136

We would like to build a variant of B-tree, where the nodes are bound with circles or ellipses. This decision137
ensures that the essential property of isotropy of the physical space is not ignored. Isotropic Dynamic Hierarchical138
Clustering initial segment. After that we will be adding new points to the set of three sub-segments. Then we139
will need to split another sub-segment. And the number of subsegments will increase again.140

11 Global Journal of Computer141

Unlike the static approach where the set of all objects exists before the procedure of clustering starts; dynamic142
approach assumes that clusters are incrementally adjusted each time a new object gets added into the set. This143
eliminates the dedicated step of clustering for the price of a longer time needed to include objects. Dynamic144
clustering provides better flexibility and can be performed with less a priori known information about the data,145
e.g. when the total number of target clusters is unknown.146

12 VII. (Isotropic Dynamic Hierarchical147

Clustering, Two-Dimensional Case )148
The circles are defined by the center point (C) and the radius (R.) It the 2-dimensional space, the center is149

defined by the two coordinates, and so we need to store 3 real values. Alternatively, if we decided to present150
clusters as ellipses in general orientation, we will need to store the semi-principal axes and the angles, which151
would require O(n 2 ) memory, with n being the number of dimensions in the space.152

In the picture to the right, the circles corresponding to the sub-nodes of one and the same parent do not153
intersect. The biggest circle (P) corresponds to the parent node, while C1, C2, and C3 correspond to the sub-154
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17 MULTI-DIMENSIONAL S-TREE, FULL DETAILS

nodes. Keeping on adding new points to the tree we cannot avoid the situation where the sub-nodes start to155
intersect. We will dwell on the intersecting areas later in this paper.156

13 a) Selecting a Sub-Node157

As mentioned in section 4, while adding a new point outside any bounding circle, we need to select the most158
appropriate this, we will try to add the new point to each sub-node, and calculate the new bounding radii. Then159
we will select a sub-node so that the sum of the new squared radii should be minimal, because our goal is to160
make eventually all sub-node circles of about the same absolute size in the given space.161

14 Global Journal of Computer Science and Technology162

Volume XVI Issue III Version I Let’s assume that the old radius was R i , then the new radius will be R i +H i163
/2, where Hi is the distance from the new point to the circle C i . If we select the i-th sub-node, the sum of new164
squared radii will grow by (R i +H i /2)2 -R i 2 , i.e. by R i H i +H i 2 /4, so we need to select the sub-node165
where T i = 4R i H i +H i 2 is minimal.166

15 b) Splitting the Overloaded Node167

When a node gets overloaded, i.e. it includes more than the maximum number of sub-nodes or points; the node168
needs to be split into two nodes at the same level. In the classical B-tree the node is split into two nodes with169
the equal number of elements.170

In our case, we can split the node taking into account the following criteria:171
? the maximum radius of the two new circles is minimal; ? the new nodes intersect with the minimal area;172

the sum of standard deviations of the new nodes is ? minimal.173
To this goal, first we will find the pair of points at the longest distance. In the figure to the right, such a174

pair consists of points a and b. If these points both belonged to one and the same bounding circle, the radius175
of this circle would be greater than the distance Da,b/2, which, as we assume, is the maximum distance. So,176
to minimize the maximum radius we need to distribute points a and b to the different bounding circles Ca and177
Cb. Now we will find point c, so that the distance from c to either of circles Ca and Cb is the longest. In the178
picture above, it is the distance between point c and circle Ca (which now consists of just one point a.) Once179
again, to minimize the would-be radii, we need to distribute point c to the other circle, Cb. Continuing in the180
same manner, we will ultimately get circles Ca and Cb, as shown in the picture.181

16 c) Adjusting Bounding Circles182

Let’s assume that we need to add a new point (Q) to the tree. We start from the root and go down the tree, level183
by level. At each level we need to select the most appropriate sub-node. E.g. at the parent level P, we need to184
select one of the sub-nodes, C1, C2, or C3. Logically, there are two different cases. If the new point belongs to a185
particular bounding circle, no adjustment is needed. But if the new point is outside of any bounding circle, we186
need to select the most appropriate subnode; to add the new point to the selected sub-node; and to adjust the187
corresponding bounding circle, so that it should include the new point as well as all old points. See the figure188
below.189

In the 2-dimensional case, the new minimal bounding circle can be exactly calculated. In the figure above,190
the minimal circle is the circle circumscribed about the triangle of the first two points and point Q. It can be191
calculated from the coordinates of these points. E.g. the radius of the circumscribed circle is L 1 *L 2 *L 3192
/sqrt((L 1 +L 2 +L 3 )*(L 2 +L 3 -L 1 )*(L 1 L 2 +L 3 )*(L 1 +L 2 L 3 ) ), where L 1 , L 2 and L 3 are the193
lengths of the sides.194

In a multi-dimensional space, the situation is much more complicated. Fortunately, we do not need the exact195
minimal bounding circles. The bounding circles are very useful in many procedures where they heuristically allow196
to reduce the amount of calculation, but fortunately they are not critical. So, we would recommend to use a less197
exact but easier to calculate approximation.198

We can easily construct the new bounding circle (C’) about the old bounding circle (C) and the newly added199
point (Q) as shown in the figure to the right. First, we calculate the distance (H) from the point Q to the circle200
C. Then we move the center of the circle C towards Q by H/2. This will be the center of C’. The radius of the201
new circle will be the old radius (R) plus H/2. Thus, the circle C’ will surely contain all old points as well as the202
new point.203

Moreover, the new bounding circle (C’) easily optimized. By construction, the new circle has to lie through204
the point Q, but it doesn’t probably lie through any other actual points. So, we can shrink the circle, so that it205
lies through yet another point.206

17 Multi-Dimensional s-tree, full Details207

So far we have clearly described what we would like to achieve in our multi-dimensional S-Tree. A real208
implementation is not so smooth, and requires solutions to a number of complicated issues.209
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18 a) Overlapped Circle210

As mentioned in Section 7, some sub-nodes of a given node may overlap. Such cases may occur when a new point211
is added to a sub-node, which results in adjusting the bounding circle of this sub-node, or when a sub-node is212
split into two sub-nodes at the same level, Please that, cases, the exact minimal bounding circle may be slightly213
smaller than the quasi-minimal circle constructed above. Moreover, the shrunken circle (C’) depends on the214
initial circle C.215

If the set consists of just one point, the exact minimal circle is the circle with the center in that point and the216
radius of zero. If the set contains two points, the exact minimal circle is the circle from the center of mass and217
the radius of half the distance between the points.218

If the set contains three points, there are two cases. Either, the exact minimal circle is the circle circumscribed219
around these three points. Or, the circle built on the two of the three points as a diameter, provided that the220
third point lies inside it. If we want to build the circle for the second case, we need first to find the two (out of221
the three) points with the longest distance between them. Then, we need to check that the third point (X) will222
make an obtuse-angled triangle. I.e.223

If we do not want to build the exact minimal circle, we may use the shrinking technique. But we will need a224
good first approximation for the minimal circle. As shown above, the circle build on the longest segment plays225
an essential role in construction of minimal circles; besides, and it is easy to calculate. This makes it a good first226
approximation for building quasiminimal bounding areas.227

as discussed in Section 7.2. In this case the actual areas of sub-nodes are not circle, but they are rather ”cut”228
circles, as shown in the picture below.229

The the sub-node areas to be nothing but the ”cut” circles is that the areas need to be convex. Now, the more230
complicated form of the areas makes us change the way we calculate the appropriate sub-node when the given231
point x belongs to both bounding circles.232

In the two-dimensional space we use line L, to determine where point x belongs to. All points at one side of233
line L belong to one sub-node, while all the points at the other side belong to the other sub-node. Analogically,234
in the multi-dimensional space, the border line L will become a plane. All points at one side of the plane will235
belong to one sub-node, and all points at the other side of the plane L will belong to the other subnode.236

Every plane in the multi-dimensional space can be defined by its normal vector and the distance from the237
point of origin. The only drawback is that theoretically we will need a border plane for each pair of sub-nodes.238
E.g. if a parent node has, say, 5 sub-nodes, we will need to store 10 border plains. A more memoryeffective way239
would be to calculate the equation of the plane L on the fly, based on the bounding circles.240

19 b) Splitting the Node241

When a node gets overloaded, i.e. it includes more than the maximum number of sub-nodes or points; the node242
needs to be split into two nodes at the same level.243

While splitting the node, we expect that the results nodes will have bounding areas with smaller radii. Let’s244
assumes that a and b are the points with the greatest distance between them, as in the picture above. If we245
ultimately put these points into one and the same node, the radius of the bounding circle for that node can not246
be less than |a b|, which is almost the radius of the bounding circle for the original node. To avoid this, we have247
to put a and b into different nodes. Now we have nodes Ca and Cb, consists of points a and b, correspondingly.248

At the next step let’s consider, say, the point c. We can either put it into Ca or Cb. And we need to estimate249
how good or bad it would be to put it into a particular node. E.g. we can try to optimize (to keep minimal) the250
maximum radius of Ca and Cb. But, now we know that there is something more unpleasant than just big radii;251
it is overlapped circles. So we may want to keep the circles overlapped in the minimal possible measure.252

20 IX.253

21 Example, Two-Dimensional Case254

The most challenging task of implementing a Btree is a split of overloaded nodes. When a node is split into two255
nodes, there appears a new boundary. All subnodes given need be recursively split by the new boundary. The256
picture below illustrates result a split for a two-dimensional case.257

Namely, as we discussed, the circle C1 can be defined by its center, O 1 , and the radius R1. Analogically, we258
define the circle C2 by the center O 2 and the radius R2. It is easy to see that the border plane L is the set of259
all the point such as the difference between their squared distances to points O 1 and O 2 is constant.|O 1 -x| 2260
-|O 2 -x| 2 = F 1,2261

To be precise, the constant F1,2 is the difference between the squared radii of the circles in question, i.e.262

22 Isotropic Dynamic Hierarchical Clustering263

Here the new boundary is highlighted in red. The new sub-trees are painted olive and violet. The higher levels264
are darker than lower levels, so that it would be easier to trace the centers of clusters.265
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26 XIII.

23 X. Illustration, Three-Dimensional Case266

As we discussed in Section 8.1, ideally, the clusters of a particular level should form isotropic ellipsoids. The267
result we would to should look like soap foam bubbles.268

24 XI. Example Multi-Dimensional Case269

As an example we will cluster wiki pages. 1. The first step is to parse an HTML page and to extract pure text.270
There are several tools available for this purpose. We use Java CC, an open source parser and lexical analyzer271
generator. The generator accepts a formal grammar definition, written in .JJ file, which also allows to define272
additional custom code. The input to the lexical analyzer is a sequence of characters; the output is a sequence273
of tokens.274

In our example, we are interested in skipping HTML tags and parsing the text further, so that it become a list275
of words. At this stage we are dropping everything what is not a word, i.e. numbers, email addresses, references276
to web pages, expressions, identifiers, etc. 2. Then, we analyze the text and map it to a point in a semantic space.277
For each word in text we will find the root. Basically, for verbs we drop endings as -s, -ed, -ing; for nouns we drop278
ending-s. Actually, the procedure is a bit more complicated due to language exceptions. Secondly, we calculate279
the weight of the word. We assume that more frequent words should have a lighter weight than infrequent words.280
So, we distributed all the words to 256 sets with about equal frequencies. Thirdly, we find the meaning of the word281
in question. We have split all words to 1024 groups with similar meanings. Please notice, that one word can have282
more than one meanings, with only one of them being actualized in the text. Without knowing what the actual283
meaning is, we have to add all meaning with the same weights depending on the frequency of the word. Now284
we can define a target point in a 1024dimensional space where each dimension corresponds to a meaning. The285
coordinates of the target point are calculated by accumulating all weights corresponding to particular meanings.286
It also seems reasonable to divide the coordinates by the number of the words in the text, so that repletion of287
sentences or words does not affect the meaning of the text.288

XII.289

25 Conclusions290

Arbitrary points in multi-dimensional space can be isotropically clustered into a balanced hierarchical structure,291
similar to a B-tree.292

Clustering into a multi-dimensional B-tree does not require any supervision or any a priori given information,293
like the number of clusters.294

Clustering into a multi-dimensional tree can be done dynamically and efficiently. Adding new points to the295
tree requires only incremental updates of statistical values associated with nodes.296

Text pages can be mapped to points into 1000dimentional semantic space.297
The search of pages close to a given semantic point can return a hierarchically ordered results, allowing the298

user to select more general or more specific topics.299

26 XIII.300
1 2301
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Figure 5:
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