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6

Abstract7

Genetic Algorithms are among the most efficient search-based techniques to automatically8

generate unit test cases today. The search is guided by a fitness function which evaluates how9

close an individual is to satisfy a given coverage goal. There exists several coverage criteria10

but the default criterion today is branch coverage. Nevertheless achieving high or full branch11

coverage does not imply that the generated test suite has good quality. In object oriented12

programs the state of the object affects its behavior. Thereupon, test cases that put the object13

under test, in new states are of interest in the testing context. In this article we propose a new14

fitness function which takes into consideration three factors for evaluation: the approach level,15

the branch distance and the new states reached by a test case. The coverage targets are still16

the branches, but during the search, the state of the object under test evolves with the scope17

to produce individuals that discover interesting features of the class and as a consequence can18

discover errors. We implemented this fitness function in the eToc tool. In our experiments the19

usage of the proposed fitness function towards the original fitness function results in a relative20

increase of 15.621

22

Index terms— structural testing, test case generation, search based software testing, fitness function, object23
state, coverage criteria, mutation score.24

1 I. INTRODUCTION25

ue to the fact that the influence of software in all areas has grown rapidly in the past 40 years, the software26
has become very complex and also its reliability is fundamental. All the software development phases have been27
adapted to produce these complex software systems, but especially the testing phase is of critical importance28
and testing thoroughly today’s software systems is still a challenge. According to a study [1] conducted by the29
National Institute of Standard & Technology, approximately 80% of the development cost is spent on identifying30
and correcting defects. It is a well-known fact that it is a lot more expensive to correct defects that are detected31
during later system operation. Considering past experiences, inadequate and ineffective testing can result in32
social D problems and human/financial losses. In order to improve the testing infrastructure, several efforts have33
been made to automate this process.34

In the unit testing level, there are three approaches towards automation: random testing, static analysis35
(Symbolic Execution [3]) and metaheuristic search. A considerable number of tools have been developed based36
on these approaches; eg. RANDOOP [4], EvoSuite [5], AgitarOne [6]. Nevertheless, the effectiveness of these37
tools is still not completely proved, because the results obtained from the experiments depend on the subjects38
under test. Usually, a coverage criteria is used to evaluate these tools, but achieving a high degree of code39
coverage does not imply that a test is actually effective at detecting faults [7]. According to [8], today there is40
no tool to find more than 40.6% of faults.41

This article is focused on structural testing at the unit level of Java programs using Search-Based Software42
Testing (SBST) [9]. According to [10], SBST has been used to automate the testing process in several areas43
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4 IV. COVERAGE CRITERIA A) TYPES OF COVERAGE CRITERIA

including the coverage of specific program structures, as part of a structural, or white-box testing strategy.44
Every unit (class) of the software must be tested before proceeding to the other stages of the development cycle.45
SBST is a branch of Search Based Software Engineering (SBSE). SBSE is an engineering approach in which46
optimal or near optimal solutions are sought in a search space of candidate solutions. The search is guided by a47
fitness function that distinguishes between better and worse solutions. SBSE is an optimization approach and it48
is suitable for software testing since test case generation is often seen as an optimization or search problem. Since49
SBST techniques are heuristic by nature, they must be empirically investigated in terms of how costly and effective50
they are at reaching their test objectives and whether they scale up to realistic development artifacts. However,51
approaches to empirically study SBST techniques have shown wide variation in the literature. There exist several52
search-based optimization methods used for test automation; e.g. genetic algorithms, hill climbing, ant colony53
optimization and simulated annealing, etc, but Genetic algorithms (GAs) are among the most frequently applied54
in test data generation.55

GAs have several components which need to be defined in order for the GA to be implemented.56
According to [10], the component that affects mostly the results obtained from the search is the fitness function.57

The fitness function is a mathematical representation of the coverage goal the search should achieve. There are58
different coverage goals each of them aims at covering certain parts of the unit under test. These different59
coverage criteria verify the quality of a test suite. The gold criterion is strong mutation, but today this criterion60
it is mainly used by the research community for evaluation of proposed techniques. The most used criterion is61
branch coverage [11]. However achieving high branch coverage (even 100%), for some classes is not sufficient.62

In object oriented programs the state of the object is a factor that affects the execution of a method. This is63
why the state of the object of the Class Under Test (CUT), should evolve during the search in order to discover64
hidden features of the class [12]. A test case that puts the object in one or several new states is of interest in65
the testing context. The scope of this paper is to propose and evaluate a new fitness function, which rewards66
the test cases according to branch coverage and also according to the new states the object has taken during the67
execution of the test.68

The rest of this paper is organized as follows: In the second section we explain in what unit testing of java69
programs consists and in the third section we present an overview of GAs. The fourth section is focused on70
branch coverage and the fifth section presents the proposed fitness function. The implementation of the proposed71
fitness function is described in section six. The seventh section gives details of the experimental setup and in72
the eighth section the results achieved are presented and discussed. We conclude finally with the conclusions we73
have come preparing and accomplishing this study.74

2 II.75

3 UNIT TESTING FOR OBJECT ORIENTED SOFTWARE76

Software testing at the unit level (Java classes) consists of three steps:77
1) The design of test cases 2) The execution of these test cases78
3) The determination of whether the output produced is correct or not. The second step is performed fully79

automatically using frameworks like JUnit ??2]. Automatically generating the test oracle is still a challenge80
and there exists few research publications regarding this topic [13], therefore the third step is almost completely81
performed manually by the testers. Regarding the first step, there exist a lot of research effort for the generation82
of test cases automatically. Due to the complexity and the diversity of the programs under test this is still an83
open research topic. Moreover test cases in object oriented unit testing are not just a sequence of input values like84
in procedural languages. According to [14], a unit test of a Java class must accomplish the following four tasks:85
The space of potential solutions is searched in order to find the best possible solution. This process is started86
with a set of individuals (genotypes) which are generated randomly from the whole population space (phenotype87
space). New solutions are created by using the crossover and mutation operators. The replacement mechanism88
selects the individuals which will be removed so that the population size does not exceed a prescribed limit. The89
basis of selection is the fitness function which assigns a quality measure to each individual. According to the90
fitness function, the parent selection mechanism evaluates the best candidates to be parents in order to produce91
better individuals in the next generation. It is the fitness function which affects the search towards satisfying92
a given coverage criteria. Usually the fitness function provides guidance which leads to the satisfaction of the93
coverage criterion. For each individual the fitness is computed according to the mathematical formula which94
represents how close is a candidate to satisfy a coverage goal, e.g. covering a given branch in the unit under test.95
GAs are stochastic search methods that could in principle run for ever. The termination criterion is usually a96
search budget parameter which is defined at the beginning of the search and represents the maximum amount of97
time available for that particular search.98

4 IV. COVERAGE CRITERIA a) Types of Coverage Criteria99

Automatic unit testing is guided by a structural coverage criterion. There exist many coverage criteria in100
literature, each of them aims at covering different components of a CUT. Nevertheless, not all the criteria have101
the same strength and can be fulfilled practically. Furthermore some criteria are subsumed by other criteria.102
Below is a list of coverage criteria for structural testing of Java programs. [15]. This criterion is difficult to103
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apply and computationally expensive and it is practically only used for predicting suite quality by researchers.104
Another option to achieve high quality test cases with search based technique is to use a combination of multiple105
criteria. [16] performed an experiment to evaluate the effects of using multiple criteria and concluded that: ?106
Given enough time the combination of all criteria achieves higher mutation score than each criterion separately107
(except Weak Mutation). ? Using all the criteria increases the test suite size by more than 50% that the average108
test suite size of each constituent criterion used separately. ? The next best criterion (after Weak Mutation) to109
achieve high mutation scores is branch coverage.110

The usage of multiple criteria increases the overall coverage and mutation score with the cost of a considerable111
increase in test suite length, so the usage of the combination in practice will be not feasible, because managing112
large test suites is difficult. A balance between mutation score and average test suite size is achieved with branch113
coverage criterion.114

5 b) Branch Coverage115

The most used criterion is branch coverage, but even though it is an established default criterion in the literature,116
it may produce weak test sets (mutation score less than 30% [17]). For example consider the Stack implementation117
in Figure ??. public118

6 Analyzing class Stack we notice the following errors :119

? If method pop is called first and then is called method push, an uncaught exception is thrown (field size before120
calling push is -1). ? If method pop is called two times consequently an uncaught exception is thrown (field size121
before calling pop is -1). ? If method push is called four times consequently and then is called method pop an122
uncaught exception is thrown (field size before calling pop is 4).123

? It is obvious that branch coverage is not sufficient for class Stack! Is there any possibility to improve the124
fitness function for branch coverage in order to obtain a test suite with higher quality? Both of the methods are125
covered by the test generated, but it is evident that the state of the object (the value of field size) before calling126
them affects the results of the tests. The same method called on different states of the object behaves differently.127
This is why, a possibility to improve the suite’s ability to detect errors, is to evolve the state of the object during128
the search in order to put the object in new states that probably can discover interesting behaviors of the CUT.129
Since the search is guided by the fitness function, then this function should also consider the states reached by a130
test before evaluating it.131

7 V. THE PROPOSED FITNESS FUNCTION132

Fitness functions are a fundamental part of any search algorithm. They provide the means to evaluate individuals,133
thus allowing a search to move towards better individuals in the hope of finding a solution [18]. The approach134
considered here is to minimize the fitness function during the search. The fitness function proposed in this135
paper rewards the individuals based on how close they are at covering a target (branch) and the states they put136
the object under test. This function is a mathematical equation depending on the:? Approach level ? Branch137
Distance ? New states achieved a) Approach Level138

For each target, the approach level show how many of the branch’s control dependent nodes were not executed139
by a particular input [20]. The fewer control dependent nodes executed, the ”further away” an input is from140
executing the branch in control flow terms. The approach level is the most used factor in the fitness function for141
structural criteria, but the fitness landscape contain plateaus because the search is unaware of how close a test142
case was to traversing the desired edge of a critical branching node.143

8 b) Branch Distance144

The branch distance is computed using the condition of the decision statement at which the flow of control145
diverted away from the current ”target” branch. For every operator the branch distance is calculated using the146
formulas introduced by Tracey [19].147

The approach level is more important that the branch distance and as a consequence the branch distance148
should be normalized at the fitness function formula. This distance will be normalized at a value between 0.0149
and 1.0. Value 0.0 means ”true”; the desired branch has been reached. Values close to 1.0 means that the150
condition is far from being fulfilled. Intermediate values guide slightly the search towards the accomplishment151
of the condition (in order to remove plateaus in the fitness landscape). The formula for branch distance in our152
proposed fitness function is the formula introduced by Arcuri [21].153

9 ????(????????????????????) = ???? ???? + ??154

BD is the branch distance before normalization and ?? is 1.155

10 c) New States Achieved (NSA)156

With the term state in this paper we refer to: Definition 1. State: The set of the values of all the fields in the157
CUT before calling a method + the method called.158

3



12 A) THE INTRUMENTOR

For example, for the class Stack the two states:159
? field size = 0 and filed st = !null, before calling method push ? field size = 0 and filed st = !null, before160

calling method pop are considered two different states and both of them are interesting in the testing context.161
The total number of states in the CUT is computed as a product of all the possible combinations Even though162
class Stack is very simple, and the branch coverage obtained is 100%, the mutation score is relatively low (29%).163
We added an assertion in the test (line 7) and used the JUnit framework to run it in Eclipse. The test passed.164
The tester may assume the class is correct with 100% branch coverage and a passing test.165

Is branch coverage sufficient for this class? of the class fields (declared non final) after abstraction (explained166
in the next section), with the number of public methods.167

The approach level is more important that the number of new states achieved and as a consequence168
this factor should be normalized at the fitness function formula. The normalization formula is:?????? =169
????????????_?????????? -????????????_?????? ????????????_??????????170

The greater the number of the new states achieved by a test case the smaller this factor in the overall171
fitness.???????????? = ???????????????_?????????? + ???? ????+1 + ???????????? _?????????? -????????????172
_?????? ???????????? _?????????? d) Abstract States173

If we use the real values of the fields, the number of states will be infinite. Moreover, not all the states are174
of equal relevance during testing. For example, from the testing prospective, calling method pop() of the class175
Stack with field size = 1, is the same as calling method pop with filed size = 2. On the other hand calling method176
pop() with filed size = 0 in not the same, since this state reveals an interesting behavior of the object under test.177
Therefore, we use abstractions over the values of the fields rather than the concrete values themselves. We use178
a state abstraction function provided by Dallmeier at al. [34]. The abstraction is performed based on the three179
rules below:180

? If the type of the field is concrete (int, double, long etc), the value will be translated in three abstract values:181
x i < 0, x i = 0 and x i > 0.182

? If the type of the field is an object, the value will be translated in two abstract values: x i = null dhe x i183
null ? If the type of the field is Boolean, there is no need to do translation, since there are only two values.184

For example the combinations of the field values of class Stack, after abstraction are those listed in Table 1.185

11 IMPLEMENTATION OF THE PROPOSED FITNESS186

FUNCTION187

The proposed fitness function was implemented in the eToc [22] tool. eToc is a simple search based tool for unit188
testing of Java programs. Is uses GA and branch coverage criterion. This tool has been mentioned in many189
research works and has been used as the basis for the design of other tools. eToc is appropriate for the scope190
used in this work. In the high level architecture of this tool [22], the Branch Instrumentor module and the Test191
Case Generator module need to be differently implemented for the search to be guided by the proposed fitness192
function. The new implementation of these modules is described below.193

12 a) The Intrumentor194

The function of the instrumentor module is to transform the source code of the CUT in order to provide195
information about the executed branches, the branch distance and the states achieved during execution. The196
new statements added during instrumentation must not change the behavior of the CUT. In order to obtain197
information for the states reached by the object under test, for each of the attributes (except those declared198
final) of the CUT, a get method will be added. A static analysis can be used to provide information about the199
mutators and inspectors methods of a class [23][24], but in this case a static whole-program analysis is required,200
which is very expensive for this context used. Since it is not the purpose here to obtain a behavioral model of201
the CUT, the get methods are appropriate to be used as inspectors for obtaining the state of the object because202
these methods: ? Return the value of an attribute ? Do not take parameters ? Do not have any side effects in203
the execution of the program.204

Based on the state definition given in section 5.C, the get methods should be called before the execution of205
each method of the CUT, so during instrumentation the statements calling the get methods are added before the206
existing statements of each method. The concrete values are translated in abstract values as described in section207
5.D. Then the states reached by a test case are saved in a LinkedList and consequently during fitness evaluation208
the new states achieved by a test case can obtained. The instrumented version of the CUT is executed repeatedly209
with the scope to cover a specified target (branch of the CUT). The state lists resulting after each execution210
are compared with the state lists of the test cases that make up the population. The new states reached by an211
individual are used to compute part of its fitness.212

This module is also responsible for the minimization of the generated test suite. Normally during minimization213
the tests that do not cover any target that is not covered by any other test are omitted from the test suite. Taking214
into consideration that a test case that reaches one or more new states is important in the testing context, before215
removing a test case because it does not cover any new target, it will be reconsidered regarding the states it puts216
the object under test in. The test cases which contain unreached states in their state lists, will be part of the217
final test suite. The proposed minimization has the advantage that it probably increases the number of tests in218
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the generated test suite and as a consequence it also increases the length of the test suite. On the other side219
the usage of the proposed fitness function is expected to increase the capability of the test suite to detect errors.220
An experimental evaluation of the new fitness function is presented in the In this work we aim to answer the221
following research questions:222

? RQ1: How does the usage of the proposed fitness function affect the branch coverage? ? RQ2: How does223
the usage of the proposed fitness function affect the mutation score of the suite? ? RQ3: How does the usage of224
the proposed fitness function affect the number of suite’s test cases and their size?a) System Characteristics225

For the experiments we used a desktop computer running Linux 32 bit Operating System, 1 GB of main226
memory and a Intel Core 2 Duo CPU E7400 2.8GHz x 2 Processor.227

13 b) Subject Selection228

Selecting the classes under test is very important since this selection affects the results of the experiments.229
We chose 7 open source projects and selected randomly 23 classes from them. Also, the class Stack discussed230
throughout this paper was used as a subject for the experiments. To obtain comprehensive results, the evaluation231
must be done to real and not simple subjects. Also these subjects should not have any common characteristics232
which affect the obtained results. The characteristics of the 24 classes are listed in Table 2. The information233
about LOC (without comments and empty lines) and cyclomatic complexity is obtained using Metrics 1.3.6234
[25], as a plugin in Eclipse. As can be noted from Table 2, the classes have very different characteristics and235
complexity.236

Five of the projects were downloaded from SourceForge [26] which is today the greatest open source repository237
(more than 300,000 projects and two million of users). One project was downloaded from the Apache Software238
Foundation [27] which exists from 1999 and has more than 350 projects (including Apache HTTP Server). Class239
StringTokenizer was taken from the java.util package which is part of jdk 1.8.0. This package has been used by240
several studies for evaluation of automatic test case generation techniques. a) Parameters of GA Defining the241
parameters of GAs to obtain the optimal results is difficult and a lot of research effort is dedicated to this topic242
[28] [29]. Therefore we let the parameters of the GA to their default values [22]. The values of three of the most243
relevant parameters are listed in Table ??. Regarding the search budget, it was determined depending on the244
experiment and will be shown next for each experiment. To overcome the randomness of the genetic algorithms245
each experiment was repeated 5 times.246

The results of the experiments (average of all runs) are presented in Table ??. The branch coverage was247
measured with EclEmma. For both functions the average branch coverage is greater when the search budget is248
10 min. This result was expected since the individuals improve during the search and more time results in better249
solutions.250

In order to do the best comparison of the approaches we focus on the case with search budget of 10 min in251
this section, since for the scope of the experiment, it is not appropriate to compare results affected by the limited252
search time.253

The difference between the average branch coverage is inconsiderable (0.4%) when a search budget of 10 min254
is used. This difference may be due to the randomness of the results achieved by the search. Since the approach255
presented in this work does not change the targets to cover, the almost equal coverage was expected. For the256
class ExplorerFrame, there is an increase of 7% in the coverage achieved by the proposed approach. Even though257
the targets are identical, the proposed function rewards the individuals that reach more new states and therefore258
the test cases after minimization may be different and more complex. So, this increase probably is the effect of259
indirect coverage.260

Only in the case of class ArrayUtil there was a decrease of 1% in the coverage achieved, with budget 2 min,261
but more likely it is due to the randomness of the search. For the class NewsFactory the search failed to produce262
results for both approaches. We changed the parameters of the GA, but even for a population of 20, or 30263
individuals, no results were generated. It is not the scope of this work to investigate the reasons why this264
happened.265

? RQ2: How does the usage of the proposed fitness function affect the mutation score of the suite?266
Since mutation score is the measure used in the strongest criterion (Mutation Coverage), here we have used267

it to measure the quality of the generated test suite. Computing the mutation score for a test suite requires268
determining, for every mutant, whether the test suite succeeds or fails when run on the mutant. In the worst269
case each test must be run on each mutant. For each of the classes the mutants were generated using as a plugin270
in Eclipse the tool MuClipse v1. ?? [30]. Mu Clipse generates mutants using the traditional operators and the271
operators in the class level [31]. The number of generated mutants for each class is given in generated, so that272
these cases can be used by MuClipse. Then, the generated tests were executed with JUnit against all the mutants273
and the presence of failures shows that the tests were able to kill the mutants.274

The results of the mutation scores of each class for all the configurations are given in Table ??.275
The mutation scores achieved by both of the fitness functions are far from the optimal value (100%). Almost276

this range of mutation scores is also obtained from other studies [32]. The main reasons of these low scores are:277
? the targets to cover are the branches and not the mutants ? the presence of equivalent mutants (behave the278
same as the original program) which cannot be killed.279
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14 IX. CONCLUSIONS

Nevertheless, despite the relatively low mutation scores, our interest is focused on the difference between the280
scores achieved by the original function against the proposed function.281

For 6 classes (6/23 = 26%) there is an improvement in the mutation score achieved when using a search budget282
of 10 min against a search budget of 2 min.283

For the same reasons mentioned in the discussion of RQ1, to answer RQ2 we are focusing mainly at the284
results achieved with a search budget of 10 min. The average mutation score reached by the original function is285
35.9%, whereas the mutation score reached by the proposed function is 41.5%, thus a difference of 5.6%. The286
improvement is 5.6/35.9 = 15.6%. For 15 classes out of 23 (15/23 = 65%), there is an improvement in the287
mutation score achieved by the proposed function; for the remaining 8 classes (8/23 = 35%), the scores achieved288
are identical. There is no class where using the proposed function results in a lower mutation score. Even though289
we are aware that the results depend fact that CUT chosen have different characteristics), the results obtained290
are very promising.291

? RQ3: How does the usage of the proposed fitness function affect the number of suite’s test cases and their292
size?293

Automatically generated JUnit tests need to be manually checked in order to detect faults because automatic294
oracle generation is not possible today. This is the reason why not only the achieved coverage of the generated295
test suite is important, but the size of the test suite is of the same importance [33].296

Here we refer to the size of a test suite as the number of statements after the minimization phase (without297
assertions).298

Only the results achieved with a search budget of 10 min, are shown in Table ??, because in answering RQ3299
we are interested in the number of tests generated and their size in the ”worst case”. The minimization phase300
does not depend on the search budget, so the results with search budget of 10 min, subsume the scenario with a301
search budget of 2 min. The LOC of the generated suite was obtained with the tool Metrics 1.3.6.302

There is an increase of 314 -290 = 24 tests in the total number of test generated, or a relative increase of303
24/290 = 8.2%. This increase is acceptable, although the number of tests in the test suite is not relevant in304
respect to the size of the test suite, because having many short size tests is not a problem for the tester who is305
detecting faults.306

Regarding the size of the test suite, we can see from the results in Table ??, that using the proposed fitness307
function results in an average test suite size of 33.9 (781/23) statements. The relative increase is (33.9 -30.1) /308
30.1 = 12.6%. For 8 of the classes (34%), there is no change in the average test suite size. Regarding classes309
ExponentialFunction and GAAlgorithm (8.7% of the classes), there is a decrease in the average test suite size,310
although there is no decrease either in branch coverage or mutation score. These results are explained with the311
appearance of indirect coverage [36].312

ArrayUtil is the class with the greatest test suite size because of the large number of branches (167). The313
average increase in test suite size with the usage of the proposed function is the consequence of two reasons: ?314
During the minimization phase the test cases that do not cover any target, but put the object under test in new315
states, are added in the minimized test suite (as explained in Section 6)316

? Two different fitness functions probably will generate different test suites with different number of statements317
(not necessarily a larger number).318

14 IX. CONCLUSIONS319

This paper concerns the fitness function used to guide the search during automatic unit test generation of Java320
classes. The branch coverage criterion is easy to implement but can produce weak test sets. Test cases that321
put the object under test in new states discover hidden behaviors and consequently are relevant in the testing322
context. Targeting all the states during the search is impossible due to the fact that some of them are infeasible.323
In this article we presented a new fitness function that takes into consideration the states reached during the324
execution of a test case. The implementation of this fitness function is very simple since the targets to cover325
remain the branches, but the state evolve during the search and the minimization phase the tests that reach one326
or more new states are not removed even though these tests does not reach any uncovered branches. The usage327
of the proposed fitness function does not decrease the branch coverage and results in a relative increase of 15.6%328
in the achieved average mutation score with the cost of a relative increase of 12.6% in the average test suite size.329
The results are promising but since the subjects under test are very different further evaluation of the proposed330
approach needs to be performed. 1 2331

1RQ1: In our experiments, there is no difference in the average branch coverage achieved between the usage
of the original fitness function and the proposed fitness function.

2RQ2: In our experiments, the usage of the proposed fitness function results in a relative increase of 15.6% in
the average mutation score achieved against the original fitness function.RQ3: In our experiments, the usage of
the proposed fitness function results in a relative increase of 8.2% in the average number of test cases and 12.6%
in the average test suite size achieved against the original fitness function.
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Figure 2:
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sion I

class Stack { ( )
private int size = 0; private int st [] = new int [4]; void push (int x){
if (size < st.length) st[size++] = x; } int pop (){ return st[size–];
} The class Stack is very simple (8 LOC, 2 attributes, 2 methods).
Suppose the test suite generated } is the test suite given in Figure
2. 1. @Test 2. public void test0() { 3. Stack s0 =new Stack();

Global Jour-
nal of Com-
puter Science
and Technol-
ogy

4. s0.push(1);
5. s0.push(0);
6. int int0 = s.pop();
7. assertEquals(0, int0);
8. s.push(0);
9. s.push(0);

[Note: C © 2016 Global Journals Inc. (US) Figure1 : Example Stack implementation 10. s.push((-1916)); 11.
s.push((-1916)); 12. } Figure 2 :]

Figure 3:
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14 IX. CONCLUSIONS

1

size st
state1 = 0 null
state2 > 0 null
state3 < 0 null
VI.

Figure 4: Table 1 :
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Jipa Label 18 11 42 3 4 1.8 https://sou

Variable 40 23 87 3 4 2.1 rceforge.n
Total 2762 943 5021 111 264 /

[Note: C© 2016 Global Journals Inc. (US)]

Figure 5: Table II :
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lll

Parameter Value
Population Size 10
Search Budget 600s
Maximal number of generations/target 10
b) Experiment
For each of the classes we run eToc with the
following configurations:
1. Original Fitness (OF) function with search
budget of 2 min
2. Proposed Fitness (PF) function with search
budget of 2 min
3. Original Fitness (OF) function with search
budget of 10 min
4. Proposed Fitness (PF) function with search
budget of 2 min

Figure 6: Table lll :
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IV

A Fitness Function for Search-Based Testing of Java Classes, which is Based on the States Reached by the
Object under Test

VII. ExponentialFunction 100 100 EXPERIMENTAL EVALUATION 100 100 60 55 60 60 8 16 7 15
ArrayUtil 100 99 100 100 9 9 9 9 64 141 64 141
PolyFunction - - 85 87 - - 31 38 27 89 30 98
Complex 100 100 100 100 34 37 34 37 13 27 12 31
StringTokenizer 65 65 69 69 15 21 19 23 8 18 16 33
GAAlgorithm 93 93 93 93 33 33 33 50 10 21 8 19
Genome 44 44 55 55 0 4 0 4 3 6 4 10
Population 92 92 100 100 32 32 32 32 11 29 11 29
ExplorerFrame 8 15 8 15 0 3 0 3 2 2 2 3

Year
2016

ObjectViewManager 54 DirectoryDialog 6 NewsFactory - 54
6
-

54 6 - 54
6
-

17
0
-

24
0
-

17
0
-

24
0
-

2
5
-

3
11 -

2
5
-

3
11
-

12 SongInfo BatchJob 50 100 100 50 50 100 50
100

22
62

27
69

24
62

27
69

5 10 12
20

8
9

19
22

Volume
XVI
Is-
sue
II
Ver-
sion
I

StringSorter OptionPanel Label Vari-
able Average Total

100 100 –100 100 100 100 60.5 69 – 100 37 100 100 74.8 75.2 37.9 42.7 35.9 41.5 100 17 17 17 17 37 –3 9 100 55 55 55 55 100 55 56 56 59 —— 6 7 4 6 -290 17
21
16
9 -
693

6
8
4
9
-
314

17
19
16
19 -
781

Global
Jour-
nal
of
Com-
puter
Sci-
ence
and
Tech-
nol-
ogy
C (
)

Average Of All Runs For Each Cut BC with PF (2 min) BC with OF (10 BC with PF (10 MS with OF (2 MS with PF (2 MS with OF (10 100 100 100 29 72 29 RQ1: How does the usage of the proposed fitness Class BC with OF (2 min) Staku 100 function affect the branch coverage? MS with PF (2 72 No.
test
with
OF
2

Test length with OF 8 No.
test
with
PF
4

Test
length
with
PF
15

Option 69 69 69 69 41 49 41 49 62 147 71 166
TypeHandler 75 75 75 75 46 46 46 46 12 24 12 24
AlreadySelectedException 100 100 100 100 100 100 100 100 3 5 3 5
OptionGroup 100 100 100 100 84 89 84 89 8 27 7 35
Rational 94 94 94 94 75 79 75 79 12 24 12 31
ExponentialFunction 100 100 100 100 60 55 60 60 8 16 7 15
© 2016 Global Journals Inc. (US) 1

Figure 7: Table IV :
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Year 2016
13
( )

[Note: C© 2016 Global Journals Inc. (US)]

Figure 8: Table 2 .
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