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Abstract7

Wireless sensor network design is critical and resource allocation is a major problem which8

remains to be solved satisfactorily. The discrete nature of sensor networks renders the existing9

skeleton extraction algorithms inapplicable. 3D topologies of sensor networks for practical10

scenarios are considered in this paper and the research carried out in the field of skeleton11

extraction for three dimensional wireless sensor networks. A skeleton extraction algorithm12

applicable to complex 3D spaces of sensor networks is introduced in this paper and is13

represented in the form of a graph. The skeletal links are identified on the basis of a novel14

energy utilization function computed for the transmissions carried out through the network.15

The frequency based weight assignment function is introduced to identify the root node of the16

skeleton graph. Topological clustering is used to construct the layered topological sets to17

preserve the nature of the topology in the skeleton graph. The skeleton graph is constructed18

with the help of the layered topological sets and the experimental results prove the robustness19

of the skeleton extraction algorithm introduced. Provisioning of additional resources to20

skeletal nodes enhances the sensor network performance by 2021

22

Index terms— 3d, algorithm, protocol, wireless sensor networks, skeleton extraction, skeleton node.23

1 Introduction24

ireless sensor networks constitute sensor nodes that are deployed over a topological area. Sensor nodes are25
independent, low resource devices possessing processing units, sensing devices, communication bandwidth, power26
resources and radio trans-receiver systems. Network life time, accurate data aggregation, and overhead reduction27
are desired characteristics of sensor network deployments. Network design is critical to construct efficient28
wireless sensor networks. Sensor networks are used for varied applications like unforeseen disaster relief [1] and29
[2], underwater sensor networks [3], monitoring activities [4], surveillance in military applications [5], medical30
monitoring systems [6] and many more. Network design is critical in sensor network deployments to achieve31
the desired goals [7]. Considering the varied application domain of sensor networks, it can be stated that the32
deployment methodology and the geographic deployment environments greatly vary. Wireless sensor network33
design, deployments of sensor nodes and analyzing the resources to be allocated to the sensor nodes is a major34
problem that exists. The shape of wireless sensor network deployments generally considered are usually in the35
shapes of a square or oval which is not the case in actual deployments [8].36

Moreover researchers generally consider 2D topologies or 3D projections schemes to model the surface coverage37
which lead to inaccuracies and deviations from realistic environments [9]. In real word applications, sensor network38
deployments are complex 3D spaces. Generally researchers use a simple 2D ideal plane [10,11] or a 3D full space39
models [12,13] for the environment which are inadequate to achieve realistic results. A recent study conducted by40
Linghe Kong et al. [9] highlights the surface coverage problems for deployments of sensor networks in the idealistic41
world. In Ref. [9], the authors ascertain that the field of interest is neither 2D nor 3D but consists of complex42
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3 LITERATURE REVIEW

surfaces, with the help of the Tungurahua volcano monitoring project ??14] shown in Fig. 1. Furthermore, the43
authors in Ref. [9] define a coverage dead zone that exists in adopting a 2D surface coverage model described in44
Fig. 2 of this paper. Let us consider a set of seven sensor nodes termed Node A -Node G as shown in Fig. ??. The45
sensor nodes appear to be deployed in an elevated 3D terrain or a hill sort of a terrain. The 2D representation46
of the similar topology is presented in Fig. ??. While considering 2D topologies, nonexistent or impractical links47
are established as shown by a thick grey line in the figure. This error generally occurs in the network and the48
physical layer modeling. From the above mentioned examples, it is evident that the 2D models that currently49
exist may not be applicable to real world scenarios. In the research work presented, the authors propose to50
consider 3D complex surface models for modeling sensor network deployments.51

Skeleton extraction techniques have been extensively studied in the areas of image processing [15], medical52
image processing [16], computer graphics [17] and computer vision [18] and [19]. The use of skeleton extraction53
to represent the shape properties is well established. The skeleton extraction algorithms discussed above cannot54
be directly applied to wireless sensor network topologies as wireless sensor network topologies are discrete in55
nature and not continuous. Also the skeleton of wireless sensor networks depends on the network connectivity of56
the sensor nodes and not on the topological position alone. Wireless sensor networks are noisy by nature owing57
to the fact that the hop based approach is used to compute distances and not the Euclidean distance. The effect58
of noise tends to inaccurate skeleton extraction proved in Ref. [21]. In post skeleton node identification, the59
skeleton node connectivity also poses another challenge as the skeleton connectivity is physical layer based and60
not discrete. The use of skeleton extraction techniques to represent wireless sensor network topologies and thus61
enhance the performance is proposed by researchers in Ref. [20][21][22]. However, the application to the 3D62
topologies is still limited. The research work presented here considers sensor network deployments in 3D complex63
spaces.64

This paper introduces a skeleton extraction algorithm applicable to 3D wireless sensor network topologies65
where the coverage of the network is considered as a complex 3D function. In order to extract the skeleton,66
transmissions are initiated from each sensor node to all the other sensor nodes recursively and are modeled as67
transmission vectors. An energy utilization function is defined to identify the skeletal links. The skeleton is68
represented as a graph and the root node is computed using the frequency based weight assignment function.69
The skeleton nodes are extracted from the skeletal links. The skeleton graph construction is achieved by layered70
topological sets that represent decomposed clusters of the topology. The distance function is defined to organize71
the position of the skeleton nodes in the skeleton graph.72

The remaining manuscript is organized as follows. The literature is reviewed in section two of this paper. The73
proposed skeleton extraction algorithm is presented in the third section. The experimental study is described in74
the subsequent section. The conclusions of the research work are drawn in the last section of this paper.75

2 II.76

3 Literature Review77

The skeleton extraction algorithms proposed by researchers can be broadly classified into four categories namely78
thinning and boundary propagation, distance field-based, geometric based, and generalfield function based79
methods [18]. In the thinning and boundary based methods, the skeleton is represented as a thin line describing80
the topology. It is usually achieved by recursively shrinking of objects to a core thin line representing the topology81
[23]. To reduce the processing time which is a major drawback of the thinning and boundary based methods,82
researchers have also proposed parallel implementations of the thinning algorithms in 3D objects [24]. Most of the83
distance field based algorithms adopt a three step approach to extract the skeleton. The primary step constitutes84
in obtaining the ridge points of the object. Then a pruning methodology is applied followed by the connectivity85
phase to construct the skeleton. For connectivity, many algorithms like the shortest path( D D D D D D D D )86

technique [25,26], minimum spanning tree [27,28], LM path technique [29] or other geometric techniques are87
utilized. The advantage of distance field methods is that they are computationally lighter when compared to88
the other methods and is very effective in the case of tubular objects. The major drawback of the distance89
field algorithms is that on application to arbitrary objects, the skeleton extraction is not accurate. In the90
geometric based methods of skeleton extraction the objects are represented as sets of scatter points or structures91
of polygonal meshes. Voronoi diagram representations [30][31][32] is a popular example for geometric based92
methods for skeleton extraction. The polyhedral geometric method to represent 3D structures is discussed in93
Ref. [33,34]. The drawbacks of the geometric methods are that they are computationally more expensive when94
compared to the thinning and boundary based methods and they produce medial surfaces rather than the skeleton95
curve. In the general field generation based methods, varied functions are utilized to represents fields and these96
functions are utilized to generate skeleton curves. Potential field functions [35,36], visible repulsive force functions97
[37], electrostatic field functions [38], radial basis functions [39] are a few considered by researchers. The field98
generation algorithms are less sensitive to noise and produce better results when compared to the geometric99
methods. As the field generation functions are first or second order functions, they are computationally heavy100
to solve and are considered unstable. The skeleton extraction methodologies may not be applicable to wireless101
sensor network topologies directly, which is the purpose of the research work proposed here.102

Skeleton extraction in wireless sensor networks pose many challenges as discussed in the previous section of103
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the paper. The migration of topology shapes to geometrical ones and the use of a dynamic medial axis model104
to present these geometric shapes are used for skeleton extraction in Ref. [40]. A medial axis based naming105
and routing protocol for wireless sensor networks is proposed in Ref. [21]. The methodology proposed in Ref.106
[21] consists of two protocols, namely, the medial axis construction protocol and the medial axis based routing107
protocol. In the medial axis construction protocol, the skeleton nodes are identified and the skeleton of the108
wireless sensor network topology is constructed. The medial axis based routing protocol achieves efficient load109
distribution during routing through the sensor networks due to the local decision capacities while routing.110

In Ref. [8], a connectivity based skeleton extraction algorithm applicable to wireless sensor network topologies111
is proposed. The coarse skeleton graph is extracted by boundary partitioning to identify the skeletal sensor112
nodes, generating the skeletal arcs, extending connectivity amongst the skeletal arcs. This coarse skeleton is113
finally refined to give the skeleton graph. The network topology. A distance transform based skeleton extraction114
algorithm for large scale wireless sensor networks is proposed in Ref. [22]. The algorithm proposed by Wenping115
Liu et al. [22] is more applicable to the practical applications as it does not require accurate or complete116
boundaries of sensor network topologies, exhibits lower communication overheads and is robust to noise. In117
Ref. [22], the coarse skeleton is generated by constructing the node map based distance transform of the sensor118
network; using the distance map the skeleton nodes are identified and the arcs are connected using a controlled119
folding scheme. The coarse skeleton is refined using the shortest path trees to construct the skeleton graph. The120
drawbacks of the skeleton extraction algorithms for wireless sensor networks discussed here is that the authors121
have considered the surface coverage in only 2D topologies and not the complex 3D topologies of wireless sensor122
networks that practically exist and proved in Ref. [9].123

4 a) Preliminary Notations124

Let us consider a 3?? wireless sensor topology ?? be represented as a graph ð�?”¾ð�?”¾ (?? , ??), where ??125
represents the sensor node set and ?? is the wireless link set. The location wireless sensor node ?? ?? ? ??126
described by Cartesian coordinates is represented by?? ?? ?? = ??? ?? ?? , ?? ?? ?? , ?? ?? ?? ?(1)127

The skeleton or critical nodes to be identified in the sensor network topology ð�?”¾ð�?”¾ is defined by a set128
?? and the remaining nodes are defined by the set ?? .?? = ?? ? ??(2)129

Let the transmission radius of the sensor node be represented as ?? ?? and the sensing radius be represented130
as ?? ?? . As 3D topologies in complex spaces are considered, the coverage of the ?? sensor nodes [9] can be131
defined as© 2013 Global Journals Inc. (US)132

algorithm proposed in Ref. [8] accurately preserves the network topology and is robust to the noisy sensor A133
Novel Skeleton Extraction Algorithm for 3d Wireless Sensor Networks III.134

Proposed System -Skeleton Extraction Algorithm For 3d Wireless Sensor Networks( D D D D D D D D ) Year135
1 ? ?1 ? ??(?? ?? ?? ?? ? )(2?? 2 ?? 2 2??(???? 2 + ?? ?? ) + 2?????? ?? ? )((?? ?? + ?? ?? ?? + ???? 2 )136
cos ?? ?? (?? ? ?? + ?? ?? ?? + ???? 2 ) ? )? ?? ? ??(?? ? ?? +?? ?? ??+???? 2 )(3)137

Where ?? ?? represents the area ?? ?? is the perimeter ?? is the sensor deployment intensity ?? ?? is the138
angle between ?? ?? and ?? ?? plane and ?? ? ?? is the area of the ?? plane projection of ?? ?? . The skeleton139
of the 3D wireless topology ?? can be considered to represent a graph ð�?”¾ð�?”¾ ?? (?? , ?? ?? ), where140
ð�?”¾ð�?”¾ ?? ? ð�?”¾ð�?”¾ and ?? ?? is a set of skeleton links amongst ?? ?? and ?? ?? . ?? ?? represents141
the set of the extreme sensor nodes in the topology ??and ?? ?? represents the sensor node which is common to142
all the skeleton links ?? ?? . In order to extract the skeleton of sensor networks generally a transmission based143
scheme is adopted ??41] [42], in which each sensor node initiates a transmission to the other nodes and then the144
response messages or the route reply messages are used to derive ð�?”¾ð�?”¾ ?? and hence the authors of this145
paper adopt a similar mechanism. The major drawback of such mechanisms already adopted is that the network146
energy utilized associated with the transactions is established heuristically and are not applicable to 3D sensor147
networks. In order to overcome this drawback, the research work presented here does not consider the heuristic148
mechanism generally adopted and introduces a novel energy utilization function represented as ð�?”¢ð�?”¢(??) to149
compute the energy utilized during transmissions. The energy utilization function is derived in a manner such150
that if energy utilization of path between a set of sensor nodes is the least, then the link ?? ? ?? ?? . b) Energy151
Utilization Function ð�?”¢ð�?”¢(??) for Skeleton Extraction152

Let ?? be a skeleton node and ?? represent a nonskeleton node. Let ð�?”£ð�?”£(??) represent a frequency153
based weight assignment function that assigns skeleton nodes with higher values than the non-skeleton nodes. In154
other words, ð�?”£ð�?”£(??) > ð�??”ð�??”(??).155

Let’s consider sensor node ?? ?????? at a location ?? ?? ?????? ? ?? ?? transmitting some data to the sensor156
node ?? ?????? located at ?? ?? ?????? ? ?? ?? . If the energy utilized in obtaining the optimal link route is157
defined as?(?? ?????? ) = ?? â??” ?? ?? ?????? ?? ?????? ? ð�?”¢ð�?”¢ ???(??)????? ?? ?????? ?? ??????(4)158

Where ??(??) ? [0, ?) ? ?? ?? is the function that computes the optimal energy route. ð�?”¢ð�?”¢ represents159
the energy utilized The energy utilized in obtaining the optimal route can also put forth the least time interval160
for any active transmission from ?? ?????? to ?? ?????? when the physical radio layer transmission speed is ??,161
i.e.,| ??( ?? ?????? ) | × ??( ?? ?????? ) = 1(5)162

The energy utilized ð�?”¢ð�?”¢ with respect to the radio layer transmission rate can be therefore defined as??(163
?? ?????? ) = 1 ð�?”¢ð�?”¢( ?? ?????? ) ?(6)164

The generalized form of the above equation can be defined as??( ??) = 1 ð�?”¢ð�?”¢( ??) ?(6a)165
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5 C) ?? ?? POINT COMPUTATION

Where ??( ??) is the radio layer speed function defined as??( ??) = ???ð�?”£ð�?”£(??)?(7)166
The skeleton of a 3D sensor network topology consists of a set of nodes ?? and a set of links connecting these167

skeleton nodes ?? ?? represented as a graph ð�?”¾ð�?”¾ ?? ? ð�?”¾ð�?”¾ . Let (?? ?? , ?? ?? ) represent a168
sensor node pair. The node pair ??? ?? , ?? ?? ? ? ?? if the energy utilization function is defined asð�?”¢ð�?”¢(169
??) = ?? ???ð�?”£ð�?”£(??)(8)170

where ?? > 0 and is defined as?? > (1 ?? ? ) ln ??(?? 2 ?? + ?? 2 ?? + ?? 2 ??) ?? â??” (????, ????, ????)171
? ?172

Where ???? , ???? , ???? is the spacing, ?? â??” is the minimum function and ?? is the minimum value of173
the absolute difference between the neighboring sensor nodes.174

5 c) ?? ?? point computation175

In the research work presented here, the authors adopt the contour or snake model introduced in Ref. [43] to176
obtain the skeleton nodes of the 3D wireless sensor network topology ?? . The snake or vector of the tran-177
smissions that propagate through ?? can be defined as?? ?? (??) = [ ?? ?? (??) ?? ?? (??) ?? ?? (??) ]178
??(9)179

The snake ?? ?? (??) minimizes the energy function defined as Eq. ( 10), yet maintaining topology features180
where ð�??”ð�??” ?? (??) is the edge map derived, ?? = (??, ??, ??) and the parameter of regularization is181
represented as ?? .? ?? (?? ?? ) = ?(?? ( |??? ?? (??)| 2 + |??? ?? (??)| 2 + |??? ?? (??)| 2 ) ) + ( |ð�??”ð�??”182
?? (??)| 2 |?? ?? (??) ? ?ð�??”ð�??” ?? (??)| 2 ????)(10)183

The energy function ? ?? of the snake of the ?? ?? is dominated by the partial derivatives of or the primary184
term in the case where ?ð�??”ð�??” ?? (??) is small. In the case where ?ð�??”ð�??” ?? (??) is large, ? ?? (??185
?? ) is greatly dominated by the second term and the energy involved can be minimized by assuming ?? ?? =186
?ð�??”ð�??” ?? (??). The use of generalized diffusion equations [44,45] is considered to find the solution of the187
snake ?? ?? (??) . The ?? ?? (??) of the ?? ??? node is computed from the remaining node points in the188
topology ?? by utilizing a diffusion based procedure and these computations converge to a set of skeleton links189
?? ? ?? ?? . The diffusion based procedure is slow by nature and converges towards the center of the topology190
and in order to compute ð�?”¾ð�?”¾ ?? , we define the frequency based weight assignment ð�?”£ð�?”£(??) as191
follows where ?? ? is the max function and ?? â??” is the min function.ð�?”£ð�?”£(??) = 1 ? ((|?? ?? (??)| ?192
?? â??” |?? ?? | ) (?? ? |?? ?? | ? ?? â??” |?? ?? |) ? ) ð�??”ð�??”(11)193

The parameter ð�??”ð�??” represents the strength and is assigned values between 0 and 1 . The parameter194
ð�??”ð�??” is assigned empirically. The weight assignment function defined above enables faster computations195
and convergence.196

The ?? ?? point is a skeleton node that belongs to all the links defined by ?? ?? and can be obtained based197
on the frequency based weight assignment function ð�?”£ð�?”£(??) . The sensor node with the maximum value198
of ð�?”£ð�?”£(??) is set to be ?? ?? . The computation of ?? ?? is iteratively achieved and if another node199
whose weight is higher is obtained, then ?? ?? is a new sensor node. The computation of ?? ?? can be defined200
as?? ?? = ? ??? ? ?ð�?”£ð�?”£(??)?? ??=?? ??=0(12)201

d) Skeleton links ?? ?? identification and skeleton node set ?? construction202
The skeleton links ?? ?? is a set of skeleton links ?? ?? derived from the weight assignment function203

ð�?”£ð�?”£(??). To obtain ?? ?? , the singular skeleton links ?? ?? need to be obtained. Let us consider a204
skeleton node pair represented by (?? ?? , ?? ?? ). Let the sensor node ?? ?? initiate a transmission signal to205
sensor node ?? ?? .206

Let ?? ?? represent the skeleton link that exist between the skeleton node pair (?? ?? , ?? ?? ) . The skeleton207
link ?? ?? is the minimum energy utilized link between the nodes ?? ?? and ?? ?? based on equation (8). Let208
?? be the time taken for the transmission from ?? ?? to ?? ?? . Tracking route reply from ?? ?? to ?? ?? would209
enable the identification of ?? ?? and this process is defined as?? ??+1 = ?? ?? ? ?(???? |????| ? ) , ??(0) = ??210
??(13)211

where represents the error step. Using ordinary differential equations, the above equation can be represented212
as???? ???? ? = ?(???? |????| ? ) , ??(0) = ?? ??(14)213

Where ?? represents the route reply path from ?? ?? to ?? ?? . Adopting the Second order Range-Kutta214
theorem where the stages ð�?”?ð�?”? 1 = ð�??”ð�??”(?? ?? ) , ð�?”?ð�?”? 2 = ð�??”ð�??”(?? ?? + (? 2 ?215
)ð�?”?ð�?”? 1 ) and ð�??”ð�??”(?? ?? ) = ?(????(?? ?? ) |????(?? ?? )| ? ), the above equation can be216
represented as?? ??+1 = ?? ?? + (? × ð�?”?ð�?”? 2 )(15)217

Having obtained a single skeleton link ?? ?? the process is iteratively repeated to obtain the entire skeleton218
links ?? ?? for all the remaining sensor nodes ?? ? ?? | ?? ? ?? ?? . The iterative process exhibits multiple219
overlapping links which can be eliminated by tracking the route reply paths. The sensor nodes that exist on220
the skeleton links are the critical or skeleton nodes and are represented by the set ?? . Year sensor network221
topology ?? into topological clusters that represent the prominent 3D shape information of the topology. The222
skeleton sensor node ?? ?? is considered as the root node of the skeleton graph ð�?”¾ð�?”¾ ?? . Each topological223
cluster consists of a set of regular sensor nodes and a skeleton node. In other terms, each skeleton node is used224
to represent a cluster and the skeleton links form the boundary of that cluster. The cluster is identified in terms225
of the relative distance from the skeleton node ?? ?? . The skeleton graph ð�?”¾ð�?”¾ ?? is constructed from226
the layered topological sets, wherein the skeleton nodes represent a cluster and the skeleton links represent the227
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boundaries. On constructing the ð�?”¾ð�?”¾ ?? , it is observed that the leaf nodes of the graph can be used228
to identify the topological information of the sensor network ?? . The construction of the layered topological229
clusters is critical to obtain the skeleton graph ð�?”¾ð�?”¾ ?? without the loss of topological information. Let230
??(??) represent the distance function. A transmission with a speed parameter ?? (?? > 0) is propagated from231
the skeleton node ?? ?? that can be represented as a partial differential equation. The solution of the partial232
differential equation results in a novel distance function represented as ?? ? (??) . The speed of the transmission233
is defined as??(??) = ?? ?????(??)(16)234

To derive the function ??(??) , it is required to define a parameter ?? . Let us consider a skeleton link ?? ?? ?235
?? ?? that exists between two skeleton node pair(?? ?? , ?? ?? ). Let there exist ?? regular sensor nodes having236
(?? ? 1) links that exist between the skeleton node pair (?? ?? , ?? ?? ) . Let the skeleton transmit a packet237
from ?? ?? to ?? ?? with a radio speed represented as ?? . If ?? ?? ?? represents the time taken to transmit the238
packets amongst two adjacent sensor nodes, then the time taken to reach the destination can be defined as?? =239
? ?? ?? ?? ???1 ??=1 (17)240

And ?? ?? ?? can be defined as?? ?? ?? = ??(?? ???1 , ?? ?? ) ??(?? ?? ) ?(18)241
Let us consider time ?? ? greater than ?? ?? ?? , i.e., (?? ? > ?? ?? ?? ) and can define ?? ? as?? ? ? ??(??242

???1 , ?? ?? ) ?? ??ð�?”£ð�?”£(?? ?? ) ? (19)243
Rearranging the terms of equation ( 19), ?? can be represented as?? ? (1 ð�?”£ð�?”£(?? ?? ) ? ) × (ln(??(??244

???1 , ?? ?? ) ?? ? ? ))(20)245
Considering ð�?”£ð�?”£(?? ?? ) = ð�?”£ð�?”£ ?? ? and ??(?? ???1 , ?? ?? ) = ?? â??” (????, ????, ????)246

, the value of ?? would result in the worst case scenario. Let ?? ? represent the critical value of ?? and can be247
defined as?? ? ? (1 ð�?”£ð�?”£ ?? ? ? ) × (ln(?? â??” (????, ????, ????) ?? ? ? ))(21)248

where 0 < ?? ? < ?? â??” (????, ????, ????) and if ?? ? = ?? â??” (????, ????, ????) then ?? ? = 0 ,249
which means that the transmission around the ?? ?? skeleton is uniform and if ?? ? = 0 , the layered topological250
clusters formed are not accurate. To avoid such scenarios, the authors consider 0 < ?? ? < ?? â??” (????, ????,251
????).252

The time discretized version of the function ?? ? (??) is defined as?? ? (??) ??????? = [?? ? (??)] (22)253
Rapid discretization is not considered as [?? ? (??)] would not result in accurate layered topological cluster254

formulations. All the skeleton nodes having the same ?? ? (??) ??????? form a cluster provided they are not255
adjacent to one another. In ð�?”¾ð�?”¾ ?? , the root node is the topological cluster containing the skeleton node256
?? ?? followed by the clusters exhibiting increasing values of ?? ? (??) ???????? . Two skeleton nodes in the257
ð�?”¾ð�?”¾ ?? are said to be connected if there exists a skeleton link amongst them and, the two topological258
clusters are said to be adjacent if the ancestor skeleton node is common and there exists a skeleton link amongst259
them.260

The identification of the critical sensor nodes or skeleton nodes in the 3D topology ?? is represented as a261
skeleton graph ð�?”¾ð�?”¾ ?? (?? , ?? ?? ) consisting of skeleton nodes and skeletal links, which is presented in262
this section of the paper. The experimental study of the proposed skeleton extraction on varied 3D topologies is263
discussed in the subsequent section of the paper.264

6 IV.265

7 Experimental Study266

In this section of the paper, the experimental study and the 3D topologies datasets used to evaluate the267
performance is discussed. The 3D sensor network( D D D D D D D D ) Year 013 2 E268

viewer is developed using the Windows Presentation Foundation model. The algorithms are developed using269
C#.Net on the Microsoft Visual Studio platform. The 3D datasets are obtained from the AIM@SHAPE Shape270
Repository [46]. The points corresponding to the 3D data sets were considered as sensors. The radio ranges of271
the sensor nodes were varied to achieve complete coverage. The Energy efficient TDMA MAC [47] is considered272
for communication in the sensor network topology. The routing protocol is adopted from the paper of Ref. [48].273
The experimental analysis presented here discusses the evaluation conducted on a set of five topologies shown in274
Table 1.275

The experimental study presented here consists of 2 sections, namely, skeleton graph G S a) ð�?”¾ð�?”¾ ??276
skeleton graph construction of wireless sensor network topologies considered A set of random sensor nodes are277
deployed on the five topologies considered. The radio range of the sensor nodes is varied to achieve complete278
coverage over the entire terrain. Homogenous network deployments are considered to construct the skeleton279
graph ð�?”¾ð�?”¾ ?? . To construct the skeleton graph, first we need to identify the skeletal links ?? ?? and the280
skeleton node set ?? . The skeletal link set consists of a number of skeleton links ?? ? ?? ?? . To identify each281
skeletal link ?? ? ?? ?? , each node is considered as the source and all the other nodes are considered as the282
destination. The energy utilized ð�?”¢ð�?”¢( ??) is monitored and the weights are assigned in accordance to the283
frequency based weight assignment function ð�?”£ð�?”£(??) . The sensor node with the maximum weight ?? ?284
?ð�?”£ð�?”£(??)? is considered as the skeleton node ?? ?? . The route reply tracking on the skeleton links and285
the minimum energy utilized links ?? ? ?? ?? enables to construct the skeleton node set ?? . Having obtained286
the skeleton nodes ?? and the skeletal links ?? ?? , the skeleton graph needs to be constructed based on the287
layered topological sets. To construct layered topological sets, the sensor network topology is decomposed into288
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9 CONCLUSION

clusters such that each cluster contains only one skeleton node. The distance function ?? ? (??) ??????? is289
computed to obtain the position and location of the cluster represented by the skeleton node in ð�?”¾ð�?”¾ ??290
. The skeleton nodes are rearranged to form the skeleton graph ð�?”¾ð�?”¾ ?? centered at the skeleton node ??291
?? .292

The experimental study is conducted on varied topology sizes described in Table 1. The results obtained are293
shown in Table ??. The table shows the terrain views obtained from Ref. [46], sensor deployed, the wireless294
sensor network topology, skeleton nodes identified and the skeleton extracted.295

8 b) sensor network performance analysis with and without296

skeleton node considerations297

To study the effect of the critical nodes or skeleton nodes, two scenarios are considered in this discussion,298
namely, ”BALANCED” and ”PROPOSED SYSTEM” scenario. In the ”BALANCED” scheme, a homogeneous299
sensor network deployment is considered, i.e., all the sensors are assigned with uniform initial power. In the300
”PROPOSED SYSTEM” scenario, the skeleton nodes identified are assigned an additional energy of about 35%301
when compared to the other nodes. The networks were simulated and the results were analyzed. The analysis302
was carried out to study the effect in terms of the network throughput, network overheads and network lifetime.303

The results obtained for the Genoa Gulf [49] topology are shown in Figure 5, 6 and 7. The average throughput304
for the balanced scheme was found to be around 84.9% and for the proposed scheme, it was around 92.7%.305
The network overheads measured in terms of the energy utilized was reduced by about 44.3%. The efficiency306
in terms of the network life time is clearly seen in Figure ??. The average throughput of about 88.6% was307
achieved by the ”PROPOSED SYSTEM” when compared to the average throughput of about 80.7% achieved308
by the ”BALANCED” scheme. An average network overhead reduction of about 31.1% was achieved by the309
”PROPOSED SCHEME”. The network lifetime of the sensor network topology is considerably higher for the310
”PROPOSED SYSTEM” as additional power is assigned to the skeleton nodes identified. From Figure 5-19, it311
can be concluded that the ”PROPOSED SYSTEM”, wherein additional power resources is provided to skeleton312
nodes identified achieved better network performance in terms of network throughput, network lifetime and313
overhead reduction enhancing the efficiency of the wireless sensor network deployments.314

V .315

9 Conclusion316

Network design is critical to construct reliable wireless sensor networks. The coverage of 3D sensor networks is317
complex in nature and the 2D topologies or the 3D projection schemes are not applicable to achieve realistic318
results. Skeleton extraction and its significance applicable to areas as medical image processing, computer vision,319
computer graphics and many more are well understood. These skeleton extraction mechanisms are not applicable320
to complex 3D wireless sensor networks. Limited work has been carried out to extract the skeleton of 3D wireless321
sensor networks.322

This paper proposes a novel skeleton extraction algorithm applicable to 3D wireless sensor network topologies.323
The skeleton is represented as a skeleton graph G S (S, L S ). To construct the skeleton graph each sensor node324
initiates transmission throughout the network and the energy utilized is monitored. A novel energy utilization325
function is e (n) is defined to identify the skeletal links L S . The root node skeleton graph is represented as326
S C and is computed based on the frequency based weight assignment function f (n). The skeleton nodes are327
extracted from the skeletal links and layered topological sets are constructed by adopting a topological clustering328
mechanism. Each cluster considered consists of one skeleton node and is a part of the skeleton graph. The329
distance function is computed for each cluster to determine its position in the skeleton node from the root node330
and the graph G S 1 2331

1© 2013 Global Journals Inc. (US)
2Global Journals Inc. (US)
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[Note: ?? ?? ?????? ?? ??????represents the minimum hop route from sensor node ?? ?????? to sensor node
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1

No Topology Name Coverage Area No Of
Sensor
Nodes

No Of
Skele-
ton
Nodes

No Of
Links

Radio
Range

1 Genoa Gulf [49] 71910 X 56700 X 1617.77 267 56 3744 7578.9
2 Torus [50] 1 X .32 X.95 50 28 400 0.4
3 Matterhorn [51] 46080 X 46080 X 3524.31 130 36 910 7275.8
4 Naples Gulf [52] 5120 X 5120 X 1347 153 57 2672 1080
5 West Sicily [53] 177570 X 112950 X1130.59 154 39 2852 18937.9

Figure 10: Table 1 :
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