
Measurement and Prediction of Software Performance by Models1

G.Kasi Reddy12

1 MGIT3

Received: 6 December 2013 Accepted: 1 January 2014 Published: 15 January 20144

5

Abstract6

Software Performance Engineering (SPE) provides a systematic, quantitative approach to7

constructing software systems that meet performance objectives. It prescribes ways to build8

performance into new systems rather than try to fix them later. Performance is a pervasive9

quality of software systems; everything affects it, from the software itself to all underlying10

layers, such as operating system, middleware, hardware, communication networks, etc.11

Software Perfor - mance Engineering encompasses efforts to describe and improve12

performance, with two distinct approaches: an earlycycle predictive model-based approach,13

and a late-cycle measurement-based approach. Current progress and future trends within14

these two approaches are described, with a tendency (and a need) for them to converge, in15

order to cover the entire development cycle.16

17

Index terms— SPE, performance prediction, performance measurement, UML, debugging.18

1 Introduction19

espite rapidly improving hardware, many recent software systems are still suffering from performance problems,20
such as high response times or low throughputs [1]. Hardware is often not the limiting factor as powerful multi-21
core and many core processors are readily available on the market and modern software systems may run in huge22
data centers with virtually unlimited resources. Performance problems often stem from software architectures23
that are not designed to exploit the available hardware. Instead, these software architectures ignore the advances24
of distributed computing and multi-core and many core processors.25

Systematic approaches for engineering software systems to achieve desired performance properties have been26
proposed [2,3]. They advocate modeling software systems during early development stages, so that performance27
simulations can validate design decisions before investing implementation effort.28

The advent of multi-core processors results in new challenges for these systematic software performance29
engineering (SPE) methods. Modeling software running on thousands of cores requires rethinking of existing30
approaches [4]. While techniques and tools for parallelizing software are evolving [5], novel methods and tools31
need to be created to assist software Author ? : Research Scholar, CSE, JNTU Hyderabad, India. e-mail :32
gkreddy@mgit.ac.in Author ?: Principal and Professor of CSE, KITE women’s college of Professional Engineering33
Sciences, Hyderabad, India. in designing systems that can exploit the capabilities for parallel execution but do34
not overburden software developers during implementation [6].35

2 II. Software Performance Engineering36

SPE is a software-oriented approach; it focuses on architecture, design, and implementation choices. It uses37
model predictions to evaluate trade-offs in software functions, hardware size, quality of results, and resource38
requirements. The models assist developers in controlling resource requirements by enabling them to select39
architecture and design alternatives with acceptable performance characteristics. The models aid in tracking40
performance throughout the development process and prevent problems from surfacing late in the life cycle41
(typically during final testing). [7] SPE also prescribes principles and performance patterns for creating responsive42
software, performance anti-patterns for recognizing and correcting common problems, the data required for43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



7 IV. PREDICTION OF PERFORMANCE BY MODELS

evaluation, procedures for obtaining performance specifications, and guidelines for the types of evaluation to be44
conducted at each development stage. It incorporates models for representing and predicting performance as well45
as a set of analysis methods. [8] III. Progress in Measurement,46

3 Debugging and Testing47

Measurement is used by verification teams to ensure that the system under test meets its specifications, by48
performance modelers to build and validate models, and by designers to find and fix hotspots in the code.49
Interest in the measurement of the performance of a computer system ranges back to the development of the50
very first systems, described in an early survey paper by Lucas [9]. Today, the state of industrial performance51
measurement and testing techniques is captured in a series of articles by Scott Barber [7] including the problems52
of planning, execution, instrumentation and interpretation. For performance test design, an important issue is53
to determine the workload under which the testing is done. An approach is to run the performance tests under54
similar conditions with the expected operational profile of the application in the field [9]. Briand and co-workers55
have pioneered the use of models to create stress tests for time-critical systems, by triggering stimuli at strategic56
instants [10].57

Performance models are often difficult to construct, even with a live system, despite the presence of tools to58
actually measure performance. In the future, model building will become much more automated, and output59
becomes standardized, and the conversion process between measurement information and performance model60
becomes more practical. Ultimately, the model and measurement information will be fed back into design tools,61
so that performance issues are brought to the forefront early in the design process. a) Performance Measurement-62
Best practices These are practices for those responsible for measuring software performance and for performance63
testing. [11] i.64

4 Plan Measurement Experiments to Ensure That Results Are65

Both Representative And Reproducible66

There are two key considerations in planning performance measurements: They must be representative and67
reproducible. To be representative, measurement results must accurately reflect each of the factors that affect68
performance: workload, software, and computer system environment. The goal is to design your measurement69
experiment in a way that balances the effort required to construct and execute the measurement experiment70
against the level of detail in the resultant data. When unimportant details are omitted, both the design effort71
and the overhead required to collect the data are reduced.72

Reproducibility gives you confidence in the results. In order for a measurement to be reproducible, the73
workload, software, and computer system environment must be controlled so that you can repeat the measurement74
and get the same (or very similar) results each time.75

ii.76

5 Instrument Software to Facilitate SPE Data Collection77

You instrument software by inserting code (probes) at key points to measure pertinent execution characteristics.78
For example, you might insert code that records the time at the start and end of a business task to measure79
the end-to-end time for that task. There are at least three reasons for supplementing the standard tools with80
instrumentation: convenience, data granularity, and control.81

iii.82

6 Measure Critical Components Early and Often to Validate83

Models and Verify Their Predictions84

Measurements substantiate model predictions, and confirm that key performance factors have not been omitted85
from the models. Occasionally, software execution characteristics are omitted from a model because their effects86
are thought to be negligible. Later, you may discover that they in fact have a significant impact on performance,87
as illustrated in the following anecdote: An early life cycle model specified a transaction with five database88
”Selects.” During detailed design, ”Order by” clauses were added to three of the ”Selects.” The developers viewed89
the additional clause as ”insignificant” because only one to five records would be sorted for each ”Select.” Upon90
investigation, though, the performance analyst discovered that over 50,000 instructions were executed for each91
sort!92

The way to detect these omissions is to measure critical components as early as possible and continue measuring93
them, to ensure that changes do not invalidate the models.94

7 IV. Prediction of Performance by Models95

The special capability of a model is prediction of properties of a system before it is built, or the effect of a change96
before it is carried out. This gives a special ”early warning” role to early-cycle modeling during requirements97

2



analysis. However as implementation proceeds, better models can be created by other means, and may have98
additional uses, in particular99

? design of performance tests ? configuration of products for delivery ? evaluation of planned evolutions of100
the design, recognizing that no system is ever final.101

8 a) Performance models from scenarios102

Early performance models are usually created from the intended behaviour of the system, expressed as scenarios103
which are realizations of Use Cases. The term ”scenario” here denotes a complex behavior including alternative104
paths as well as parallel paths and repetition. The performance model is created by extracting the demands for105
resource services. Annotated UML specifications are a promising development.106

The annotations include:107
? the workload for each scenario, given by an arrival rate or by a population with a think time between108

requests, ? the CPU demand of steps,109
? the probabilities of alternative paths, and loop counts, ? the association of resources to the steps either impl110

-icitly (by the processes and processors) or explicitly.111
As an illustration, Figure 1 shows a set of applications requesting service from a pool of server threads running112

on a multiprocessor (deployment not shown). Part (a) shows the scenario modeled as a UML sequence diagram113
with SPT annotations, (b) shows a graph representing the scenario steps, and (c) shows the corresponding layered114
queueing network (LQN) model. Studies in [12] [13] use such models.115

At a later stage, scenarios may be traced from execution of prototypes or full deployments, giving accurate116
behaviour. Models can be rebuilt based on117

9 b) Performance models from objects and components118

A performance model can be built based on the software objects viewed from a performance persp -ective. A119
pioneering contribution in this direction defined a ”performance abstract data type” for an object [13], based on120
the machine cycles executed by its methods. To create a performance model, one traces a response from initiation121
at a root object to all the interfaces it calls, proceeding recursively for each call. Queueing and layered queueing122
models were derived based on objects and calls in [14] and [15]. Model parameters (CPU, call frequencies)123
were estimated by measurement or were based on the documentation plus expertise. Object-based modeling is124
inherently compositional, based on the call frequencies between objects. This extends to subsystems composed125
of objects, with calls between subsystems. In [2] an existing application is described in terms of UNIX calls, and126
its migration to a new platform is evaluated by a synthetic benchmark with these calls, on the new platform.127
This study created a kind of object model, but then carried out composition and evaluation in the measurement128
domain. The convergence of models and measurements is an important direction for SPE.129

The object-based approach to performance modeling can be extended to systems built with reusable130
components. Composition of sub-models for Component-Based Software Engineering [16] was described in [17].131
Issues regarding performance contracts between components are discussed in [18]. Components or platform layers132
can be modeled separately, and composed by specifying the calls between them. For example, in [18] a model of133
a J2EE application server is created as a component that offers a large set of operations; then an application is134
modeled (by a scenario analysis) in terms of the number of calls it made to each operation.135

10 Global Journal of Computer Science and Technology136

Volume XIV Issue VI Version I The quantitative parameters of the performance model for the J2EE server -137
and the underlying operating system and hardware platform -were obtained by measurements for two different138
implementations. The main challenge regarding performance characterization of reusable components stem from139
the fact that the offered performance depends not only on the component per se, but also on its context,140
deployment, usage and load. It seems obvious that such approaches apply similarly to Generative techniques141
[17] and to Model-Driven Development. The completion of performance models made from a software design, by142
adding components that make up its environment but are outside the design, is also largely based on composition143
of sub-models [19]. This is an aspect of Model-Driven Development.144

11 V. Convergence of the Measurement and Modeling Ap-145

proaches146

The present state of performance engineering is not very satisfactory, and better methods would be welcome to all.147
One way forward is to combine knowledge of different kinds and from different sources into a converged process.148
Figure 2 outlines such a process, with the main concepts and their relationships. The notation is based on the149
newly adopted OMG standard Software Process Engineering Meta model (SPEM) [20]. At the core of SPEM150
is the idea that a software process is a collaboration between abstract active entities called ProcessRoles (e.g.,151
usecase actors) that perform operations called Activities on concrete entities called WorkProducts. Documents,152
models, and data are examples of WorkProduct specializations. Guidance elements may be associated to different153
model elements to provide extra information.154

3



12 VI. EFFICIENT MODEL-BUILDING TOOLS

Figure 2 uses stereotypes defined in [20]. Concepts related to the model-based approach appear on the left155
of Figure 2, and to the measurement-based approach on the right. A distinction is made between performance156
testing measurements (which may take place in a laboratory setting, with more sophisticated measurement tools157
and special code instrumentation) and measurements for monitoring live production systems that are deployed158
on the intended target system and used by the intended customers. The In a convergence of data-centric and159
modelcentric methods, data (including prior estimates) provides the facts and models provide structure to organize160
and to extract significance from the facts. Our exploration of the future will examine aspects of this convergence.161
Models have a key role. They integrate data and convert it from a set of snapshots into a process capable of162
extrapolation. To achieve this potential we must develop robust and usable means to go from data to model (i.e.,163
model-building) and from model to ”data” (solving to obtain predictions). We must also learn how to combine164
measurement data interpretation with model interpretation, and to get the most out of both. Capabilities165
supported by convergence include:166

? efficient testing, through model-assisted test design and evaluation ? search for performance-related bugs,167
? performance optimization of the design ? scalability analysis ? reduced performance risk when adding new168
features, ? aids to marketing and deployment of products.169

The future developments that will provide these capabilities are addressed in the remainder of this section. A170
future tool suite is sketched in Figure 3.171

12 VI. Efficient Model-Building Tools172

The abstractions provided by performance models are valuable, but some way must be found to create the models173
more easily and more quickly. For performance models made early in the lifecycle from specified scenarios,174
automated model-building has been demonstrated [6] and is supported by the UML profiles [21]. The future175
challenge is to handle every scenario that a software engineer may need to describe, and every way that the176
engineer can express them (including the implied scenario behaviour of object call hierarchies, and the composition177
of models from component designs).178

The multiplicity of model formats hinders tool development, and would be aided by standards for performance179
model representations, perhaps building on [22]. Interoperability of performance building tools with standard180
UML tools is also helpful. For instance, the PUMA architecture [23] shown in Figure ?? supports the generation181
of different kinds of performance models (queueing networks, layered queueing networks, Petri nets, etc.) from182
different versions of UML (e.g., 1.4 and 2.0) and different behavioural representations (sequence and activity183
diagrams). PUMA also provides a feedback path for design analysis and optimization. Mid and late-cycle184
performance models should be extracted from prototypes and implementations. Trace based automated modeling185
has been described in [23], including calibrated CPU demands for operations. Future research can enhance this186
with use of additional instrumentation (e.g. CPU demands, code context), efficient processing, and perhaps187
exploit different levels of abstraction. Abstraction from traces exploits certain patterns in the trace, and domain-188
based assumptions; these can be extended in future research. 1 2

Figure 1:
189

1© 2014 Global Journals Inc. (US) Measurement and Prediction of Software Performance by Models
2© 2014 Global Journals Inc. (US)

4



1

Figure 2: Figure 1 :

2

Figure 3: Figure 2 :

5



12 VI. EFFICIENT MODEL-BUILDING TOOLS

Figure 4:

3

Figure 5: Figure 3 :

6



[Schaefer et al.] ‘\Engineering parallel applications with tunable architectures’. C A Schaefer , V Pankratius , W190
F Tichy . Proceedings of the 32nd, (the 32nd)191

[Hwu et al. (2007)] ‘\Implicitly parallel programming models for thousand-core microprocessors’. W Hwu , S192
Ryoo , S.-Z Ueng , J Kelm , I Gelado , S Stone , R Kidd , S Baghsorkhi , A Mahesri , S Tsao , N Navarro ,193
S Lumetta , M Frank , S Patel . Proc. 44 th ACM/IEEE Design Automation Conference (DAC ’07), (44 th194
ACM/IEEE Design Automation Conference (DAC ’07)) june 2007. p. .195

[Vandierendonck and Mens ()] ‘\Techniques and tools for parallelizing software’. H Vandierendonck , T Mens .196
IEEE Softw 2012. 29 (2) p. .197

[Woodside et al. ()] ‘\The Future of Software Performance Engineering’. M Woodside , G Franks , D C Petriu198
. Proc. Future of Software Engineering (FOSE’07), (Future of Software Engineering (FOSE’07)) 2007. IEEE199
Computer Society. p. .200

[Corona and Pani (2013)] ‘A Review of Lean-Kanban Approaches in the Software Development’. Erika Corona ,201
Filippo Eros Pani . WSEAS Transactions on Information Science and Applications January 2013. 10 (1) p. .202

[ACM/IEEE International Conference on Software Engineering ()] ACM/IEEE International Conference on203
Software Engineering, 2010. ACM. 1 p. . (ser. ICSE ’10)204

[Petriu and Woodside ()] ‘Analysing Software Requirements Specifications for Performance’. D B Petriu , C M205
Woodside . Proc. 3rd Int. Workshop on Software and Performance, (3rd Int. Workshop on Software and206
PerformanceRome) 2002.207

[Woodside et al. ()] ‘Automated Performance Modeling of Software Generated by a Design Environment’. M208
Woodside , C Hrischuk , B Selic , S Bayarov . Performance Evaluation 2001. 45 (2-3) p. .209

[Barber ()] ‘Creating Effective Load Models for Performance Testing with Incomplete Empirical Data’. S Barber210
. Proc. 6 th IEEE Int. Workshop on Web Site Evolution, (6 th IEEE Int. Workshop on Web Site Evolution)211
2004. p. .212

[Manoj Kumar Tyagi et al. (2013)] ‘Design of Traditional/Hybrid Software Project Tracking Technique: State213
Space Approach’. Manoj Kumar Tyagi , M Srinivasan , L S S Reddy . WSEAS Transactions on Information214
Science and Applications November 2013. 11 (11) p. .215

[Smith et al. ()] ‘From UML models to software performance results: an SPE process based on XML interchange216
formats’. C U Smith , C M Lladó , V Cortellessa , A Dimarco , L Williams . Proc WOSP’2005, (WOSP’2005)217
2005. Palma de Mallorca. p. .218

[Global Journal of Computer Science and Technology Volume XIV Issue VI Version I 23] Global Journal of219
Computer Science and Technology Volume XIV Issue VI Version I 23,220

[Cortellessa et al. ()] ‘Nonfunctional Modeling and Validation in Model-Driven Architecture’. V Cortellessa , A221
Di Marco , P Inverardi . Proc 6 th Working IEEE/IFIP Conference on Software Architecture, (6 th Working222
IEEE/IFIP Conference on Software ArchitectureMumbai, India) WICSA 2007. 2007.223

[Reussner et al. (2004)] ‘Parametric Performance Contracts for Software Components and their Compositional-224
ity’. R H Reussner , V Firus , S Becker . 9th Int. Workshop on Component-Oriented Programming, (Oslo)225
June 2004.226

[Xu et al. (2003)] ‘Performance Analysis of a Software Design using the UML Profile for Schedulability,227
Performance and Time’. J Xu , M Woodside , D C Petriu . Proc. 13 th Int. Conf. Modeling Techniques and228
Tools for Computer Performance Evaluation, (13 th Int. Conf. Modeling Techniques and Tools for Computer229
Performance EvaluationUrbana, USA) Sept. 2003.230

[Woodside et al.] ‘Performance by Unified Model Analysis (PUMA)’. M Woodside , D C Petriu , D B Petriu , H231
Shen , T Israr , J Merseguer . Proc. WOSP’2005, (WOSP’2005Mallorca) p. .232

[Moghal et al. (2004)] ‘Performance Evaluation and Modeling of Web Server Systems’. M R Moghal , N Hussain233
, M S Mirza , M W Mirza , M S Choudry . WSEAS Transactions on Information Science and Applications234
July 2004. 1 (1) p. .235

[Lucas (1971)] ‘Performance evaluation and monitoring’. H LucasJr . ACM Computing Surveys Sept. 1971. 3 (3)236
p. .237

[Jittawiriyanukoon (2006)] ‘Performance Evaluation of Parallel Processing Systems Using Queueing Network238
Model’. C Jittawiriyanukoon . WSEAS Transactions on Computers March 2006. 3 (5) p. .239

[Wu and Woodside ()] ‘Performance Modeling from Software Components’. X Wu , M Woodside .240
Proc.WOSP’2004, (.WOSP’2004Redwood Shores, Calif) 2004. p. .241

[Smith and Williams ()] Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software, C242
U Smith , L G Williams . 2002. Addison-Wesley.243

[Woodside et al. ()] ‘Performancerelated Completions for Software Specifications’. M Woodside , D B Petriu , K244
Siddiqui . Proc 24th Int. Conf. on Software Engineering, (24th Int. Conf. on Software EngineeringOrlando)245
2002.246

7



12 VI. EFFICIENT MODEL-BUILDING TOOLS

[Bertolino and Mirandola ()] ‘Software performance engineering of component-based systems’. R Bertolino ,247
Mirandola . Proc. Workshop on Software and Performance, (Workshop on Software and Performance) 2004.248
p. .249

[Software Process Engineering Metamodel Specification ()] Software Process Engineering Metamodel Specifica-250
tion, formal/05-01-06, 2006. Object Management Group251

[Szypersky et al. ()] C Szypersky , D Gruntz , S Murer . Component Software: Beyond Object Oriented252
Programming, 2002. Addison-Wesley.253

[Garousi et al. ()] ‘Traffic-aware Stress Testing of Distributed Real-Time Systems based on UML Models’. V254
Garousi , L Briand , Y Labiche . Proc. Int. Conference on Software Engineering, (Int. Conference on Software255
EngineeringShanghai, China) 2006. p. .256

[UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) RFP, OMG doc ()]257
UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) RFP, OMG doc,258
realtime/05-02-06, 2005. Object Management Group259

8


	1 Introduction
	2 II. Software Performance Engineering
	3 Debugging and Testing
	4 Plan Measurement Experiments to Ensure That Results Are Both Representative And Reproducible
	5 Instrument Software to Facilitate SPE Data Collection
	6 Measure Critical Components Early and Often to Validate Models and Verify Their Predictions
	7 IV. Prediction of Performance by Models
	8 a) Performance models from scenarios
	9 b) Performance models from objects and components
	10 Global Journal of Computer Science and Technology
	11 V. Convergence of the Measurement and Modeling Approaches
	12 VI. Efficient Model-Building Tools

