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Abstract-  Malicious software also known as malware are the 
critical security threat experienced by the current ear of internet 
and computer system users. The malwares can morph to 
access or control the system level operations in multiple 
dimensions. The traditional malware detection strategies 
detects by signatures, which are not capable to notify the 
unknown malwares. The machine learning models learns from 
the behavioral patterns of the existing malwares and attempts 
to notify the malwares with similar behavioral patterns, hence 
these strategies often succeeds to notify even about unknown 
malwares. This manuscript explored the detailed review of 
machine learning based malware detection strategies found in 
contemporary literature. 

  
 

 

I. introduction 

he term “Malware” stands for malicious software, 
and it usually specifies as hostile software 
application. According to G. Mc Graw et al., [1] 

there are multiple causes as code added, changed, or 
removed from the software it get corrupt and it 
deliberately causes harm and disrupt normal computing 
activity. A virus had a broad range of destructive 
software applications such as viruses, Trojans, 
Spywares and other intrusive code [2]. 

The malware can discriminate by the capability 
of replication, propagation, self-execution and 
corruption of the operating system. If the computer 
system gets extortion it influence on confidential 
information, integrity and denial of assistance. In 
malware Replication is a crucial component as it assure 
its existence. 

In some cases Replication generates 
consumption and continuation of system resources (e. 
g. hard disk, RAM). If confidential assets are being used 
by any other malware types other   than the   user,   to  
conceal themselves from anti-malware detector they use 
a technique called polymorphic or metamorphic 
techniques. 
 

  
  

  
 

  
   

The operating system gets corrupt through data 
transfer from desecrate device to another protected 
device familiar, such as executable files, boot records of 
disk drives or exhausting network bandwidth, by using 
local or network files system. In such case malware 
makes operating system susceptibility and few software 
bugs are faults and it starts its life cycle at the same 
system and infected system simultaneously by remotely 
control. 

According to a McAfee simplified report (year 
2013) says that “malware continues to grow” [3] and by 
G Data and king [4] [5] soft Laboratory declare n-
number of innovative malware will emerge promptly and 
to build an anti-malware the analyzers and constructors 
are enhanced by their unique techniques and methods 
[6]-[10]. To construct a malicious software the 
techniques which are been used to categorized and 
estimate in groups such as obfuscation techniques, 
invocation methods, platform, spreading and 
propagation techniques. 

To actuate a program has a malicious attentive 
or not, malware detection system is used. In this 
detection system there are two different functions, 
detection and analysis [12]. Detection system is a 
protecting one as it may or may not be prevail in the 
same system [13] and the tasks can be split into client 
and server as it analogous in cloud-based antivirus [8, 
12]. A numerous renovations are made on detection and 
analysis functions [5], [12], [15]-[19]. 

In malware detection system specialized 
solutions are added to expansion in success and 
achievement. Such as cloud computing [10], network 
based detection system [20], web, virtual machine [21], 
[22], agent technology [23]-[29] or by the use of hybrid 
methods and technologies. 

II. Review of Contemporary 
Literature and Contributions 

In earlier stage malware had come up with 
signature based detection. But now in this stage 
malware signature has introduced an automatic 
generation and it is pretended to be important and it 
increased its pattern in similar speed. 

The signature based detection system has 
some imperfection as follows to continue the updates of 
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signature it requires high maintenance cost. By inclusion 
such methods it could be evenly avoided by malware in 
polymorphic form [30]. To conquer the imperfection, it 
embraces code in normal vision to grab the consecrate 
original maliciousness. To vary the polymorphic 
techniques and apply, this grabbed malicious code is 
used but still it is anemic to detecting obfuscated 
malware. Apart from this some execution paths can be 
explored execution [31] [30]. 

Due to certain requirements the malware 
analysis is all ways conserved the techniques in the 
prior, consequently dynamic analysis was considered. 
To identify and execute a complicate malware dynamic 
analysis methods are used. In dynamic analysis the 
malware shows how it operates and recognize the 
unknown malware which is identically operates like a 
known malware [32]. There are two familiar primary 
dynamic methods are control flow analysis and API call 
analysis. [33] [34]. 

API call data display how the malware gets 
operates and it can be obtained by both static and 
dynamic approaches. The API list and PE format of the 
executable files can be derived by the static approach 
[35] [36] [37] [38]. In dynamic approach. [39] [40] [41], 
[42] [43] [44] API calls can be recognized by running 
executable files it usually run in virtual machine. 

In API call there two familiar ways to evaluate 
the data accumulated by static approach. The first one 

implements simple statistical analysis, for example, to 

count the frequency of API call which is aspect to 

organize malware [35]. The second approach is to 

gather the API call data through data mining or machine 
learning techniques. In another way the API call 
sequence data which gathered by the dynamic 
approach are helpful to creates a behavioral patterns. 
The information accumulated by the dynamic approach 
also operates simple statistics such as frequency 
counting [39] and data mining or machine learning [40] 
[42] [44]. 

  
 

 
 

  
 
 

 
 

 
 

 
The API call analysis been done with API call 

approaches. In this abstraction the dynamic method is 
applied to excerpt API call sequences. To obtain 
austerity patterns,  DNA sequence  alignment algorithms 

(MSA and LCS) are adapted. With API call sequence 
patterns and the critical API call sequence, we can 
recognize the unknown malware or its variation with 
elevated efficiency. 

Anderson et al. [49] defined a malware 
detection strategy that builds a set of graphs from the 
given instruction set and then analyzes these graphs to 
notify the proneness of the malware activity. In order to 
build the graphs the markov chains were defined on 2-
gram sequences. The graphs defined form the training 
set further used to build a similarity matrix using graph 
kernel. The graph kernel is the mix of Gaussian and 
spectral kernels, which are in use to assess the similarity 
between graph edges and similarity between graphs 
respectively. Further the support vector machine that 
learns from the similarities between graph edges and 
graphs is used to classify the input call sequences. 

By using such liberal malware software the 
multiple kernel is achieved and learning design used in 
this work to exhibit selective refined differences 
occurrence of malware. The inadequacy of this 
approach is computed consequence is very high, hence 
the use of this approach is discouraged. 

Bayer et al. [50] prospect a technique that 
groupsthe call sequences generated by Anubis [51]. 
The behavior adequately of the call sequences is 
considered as objective to cluster the call sequences by 
Locality Sensitivity Hashing (LSH) [52]. The constraint of 
the model is that LSH is capable to generate 
probabilistic clusters. 

Biley et al. [53] argued that malware prototyping 
is not consistent among the notable antivirus products 
available. In order to this the authors devised a novel 
classification strategy that classifies the malware 
according to the changes observed at system state. A 
strategy that prototypes the behavior of the malware is 
used, further the malwares are classified according to 
these behavior prototypes. The distance between a 
class and a malware is assessed by the distance metric 
called “normalized compression distance (NCD)”. The 
constraint observed in empirical study of this model is 
that the behavior prototype definition is static and limited 
to malwares that are not fall in zero-day category 
(unknown malwares). park et al. [54] defined a 
classification strategy that classifies malware based on 
the graphs generated from the call sequences. Further 
graph similarities between confirmed malware call 
sequence graph and unknown call sequence graph will 
be assessed. The similarity index is the “max number of 
subgraphs identified in both graphs”. The malwares 
those controls the system privileges without initiating the 
system call sequences are not traceable by this 
classification model, which is a significant constraint of 
this model. Firdausi et al. [55] defined a machine 
learning model for malware detection. The said model 
initiates the process by exploring the behavioral patterns 
of the malware samples given for training, which is done 
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In other way, researchers are analyzed more 
ways to develop API call sequence information. In earlier
research API call had introduced API call graph [45] with 
various kinds of call graph analysis. To get more
consequential features for call graph analysis, the
analyzer had espoused the mechanism of social 
network analysis. [46] According to analyzers the affinity
among API call sequences is based on cosine similarity
function and lengthy jaccard measure. Due to modern
research [33] [34] [47] [48] more information had been
added such as control flow information and API
argument information to inflate the efficiency in the
mining process.



by the model called Anubis [51]. Further these observed 
behavioral patterns will be organized as sparse vectors 
and learns the behavior prototypes. The malware 
samples given for testing will be classified, which is 
based on the behavioral prototypes learned in training 
phase. The performance of the model is estimated 
through benchmark classifiers and they are “j48”, 
“multilayer perception neural networks (MLP)” “Naïve 
Bayes”, “Support Vector Machine (SVM)” and                          
“k- Nearest Neighbors (kNN)”. The experimental results 
indicating that the J48 classification delivered much 
classification accuracy. 

Nari et al. [56] devised a network flow 
behavioral analysis framework for malware detection. 
The network transactions obtained from PCAP files were 
considered to extract the network flows. Further a 
network activity representation graph is drawn from 
these network flows. The given network flows labeled as 
malware were used in training phase. Further this 
framework learns representation of the features such as 
size of the graph, average, maximum and root level out-
degree and count of specific nodes of the network 
activity graphs of the given input network flows. Further 
these features specific information uses to classify the 
input malware samples in testing phase. In order to 
perform the classification, the WEKA library [57] was 
used. The experimental study indicating that the J48 is 
the best classifier among all classifiers available in 
WEKA library. 

Lee et al. [58] explored a machine learning 
based malwares clustering. The training phase builds 
the behavioral profiles of the malware samples given as 
training data and the profile includes the system 
resources invoked by the system calls and their 
arguments. Further the similarities between behavioral 
profiles were considered distance function to cluster the 
malwares, which was done by k-medoids. The outliers 
are adjusted to the clusters based on the nearest 
neighbor strategy. This approach is the combination of 
static and dynamic clustering strategy that clusters 
known features by k-medoid and unknown and new 
features by nearest neighbor approach. This strategy is 
evincing that hybrid approach is more robust in order to 
classify the known as well as unknown features 
effectively. 

Another hybrid approach for malware detection 
was devised by Santos et al. [59]. This approach tracks 
the known features (static features) through the analysis 
of the sequence of operational codes in given malicious 
executable and the unknown features (dynamic 
features) were noticed from the observation of 
exceptions and operations in system calls. The 
experimental study was done under various classifiers 
and results obtained were evincing the significant 
accuracy in malware classification Islam et al. [60] 
explored a similar strategy that extracts static and 
dynamic features to classify the executables into 

malevolent or benevolent. The features such as function 
length, function executable frequency and length of the 
strings involved are included in known features and the 
features such as function identity and function 
arguments are included in unknown features. The 
experiments were done using the classifiers called 
Support Vector Machine, Decision Tree and Random 
Forest and results evincing that the random forest is the 
best classifier among all considered. 

 The malware classification method devised by 
Anderson et al. [61] is using the divergent input sources 
such as control flow graphs, static call sequences, 
portioned executables, dynamic call sequences and file 
signatures. Further this model learns the weight of these 
input combinations from the given training set of 
malevolent and benevolent executables. The observed 
weights of these input combinations are used further to 
classify the malevolent and benevolent executables 
during testing phase. The process overhead is the 
significant constraint of this model observed against 
dense and high speed network streams. 

III. Conclusion 

The current era of internet and computer 
systems are prone to serious security threats due to the 
malicious software which are also referred as malware. 
Hence the significant research contributions aimed to 
define malware detection and prevention strategies in 
contemporary literature. All of these contributions are fall 
in the categories of either anomaly based, signature 
based or call sequence analysis based detection. The 
signature based models are capable to notify and 
prevent the malwares that are notified earlier. In contrast 
to this the anomaly models and call sequence analysis 
models are capable to identify the malwares based on 
the similarities learned from previous malware attacks. 
The difference between the anomaly and call sequence 
analysis models is that the anomaly based learning 
models can adopt user defined features, whereas the 
call sequence analysis models notify the similarities 
learned from the call sequences of 2-gram, 3-gram or n-
gram. This manuscript aimed to affirm the objectives 
and limits of the contributions found in recent literature. 
The conclusion of the review evincing that the machine 
learning based models that learns from either anomalies 
or call sequence are tolerable the constraints observed 
in signature based malware detection strategies. The 
anomaly and call sequence learning models found in 
contemporary literature are not adequate to defend the 
challenges evincing from the vibrant and unjust network 
data. Hence the significant contributions are in demand 
to handle the challenges evinced in current era of 
internet and computer system usage. 
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