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6

Abstract7

Abstract: malicious software also known as malware are the critical security threat8

experienced by the current ear of internet and computer system users. The malwares can9

morph to access or control the system level operations in multiple dimensions. The traditional10

malware detection strategies detects by signatures, which are not capable to notify the11

unknown malwares. The machine learning models learns from the behavioral patterns of the12

existing malwares and attempts to notify the malwares with similar behavioral patterns, hence13

these strategies often succeeds to notify even about unknown malwares. This manuscript14

explored the detailed review of machine learning based malware detection strategies found in15

contemporary literature.16

17

Index terms— malware detection, malware signature, API call sequence, anomalies, static analysis, dynamic18
analysis, machine learning.19

1 I. introduction20

he term ”Malware” stands for malicious software, and it usually specifies as hostile software application. According21
to G. Mc Graw et al., [1] there are multiple causes as code added, changed, or removed from the software it get22
corrupt and it deliberately causes harm and disrupt normal computing activity. A virus had a broad range of23
destructive software applications such as viruses, Trojans, Spywares and other intrusive code [2].24

The malware can discriminate by the capability of replication, propagation, self-execution and corruption of25
the operating system. If the computer system gets extortion it influence on confidential information, integrity26
and denial of assistance. In malware Replication is a crucial component as it assure its existence.27

In some cases Replication generates consumption and continuation of system resources (e. g. hard disk, RAM).28
If confidential assets are being used by any other malware types other than the user, to conceal themselves from29
anti-malware detector they use a technique called polymorphic or metamorphic techniques.30

The operating system gets corrupt through data transfer from desecrate device to another protected device31
familiar, such as executable files, boot records of disk drives or exhausting network bandwidth, by using local32
or network files system. In such case malware makes operating system susceptibility and few software bugs are33
faults and it starts its life cycle at the same system and infected system simultaneously by remotely control.34

According to a McAfee simplified report (year 2013) says that ”malware continues to grow” [3] and by G Data35
and king [4] [5] soft Laboratory declare nnumber of innovative malware will emerge promptly and to build an36
anti-malware the analyzers and constructors are enhanced by their unique techniques and methods [6]- [10]. To37
construct a malicious software the techniques which are been used to categorized and estimate in groups such as38
obfuscation techniques, invocation methods, platform, spreading and propagation techniques.39

To actuate a program has a malicious attentive or not, malware detection system is used. In this detection40
system there are two different functions, detection and analysis [12]. Detection system is a protecting one as it41
may or may not be prevail in the same system [13] and the tasks can be split into client and server as it analogous42
in cloud-based antivirus [8,12]. A numerous renovations are made on detection and analysis functions [5], [12],43
[15]- [19].44
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3 REVIEW OF CONTEMPORARY LITERATURE AND CONTRIBUTIONS

In malware detection system specialized solutions are added to expansion in success and achievement. Such45
as cloud computing [10], network based detection system [20], web, virtual machine [21], [22], agent technology46
[23]- [29] or by the use of hybrid methods and technologies.47

2 II.48

3 Review of Contemporary Literature and Contributions49

In earlier stage malware had come up with signature based detection. But now in this stage malware signature50
has introduced an automatic generation and it is pretended to be important and it increased its pattern in similar51
speed.52

The signature based detection system has some imperfection as follows to continue the updates of T signature it53
requires high maintenance cost. By inclusion such methods it could be evenly avoided by malware in polymorphic54
form [30]. To conquer the imperfection, it embraces code in normal vision to grab the consecrate original55
maliciousness. To vary the polymorphic techniques and apply, this grabbed malicious code is used but still it is56
anemic to detecting obfuscated malware. Apart from this some execution paths can be explored execution ??31]57
[30].58

Due to certain requirements the malware analysis is all ways conserved the techniques in the prior, consequently59
dynamic analysis was considered. To identify and execute a complicate malware dynamic analysis methods are60
used. In dynamic analysis the malware shows how it operates and recognize the unknown malware which is61
identically operates like a known malware [32]. There are two familiar primary dynamic methods are control flow62
analysis and API call analysis. ??33] [34].63

API call data display how the malware gets operates and it can be obtained by both static and dynamic64
approaches. The API list and PE format of the executable files can be derived by the static approach [35] [36]65
[37] [38]. In dynamic approach. [39] [40] [41], ??42] [43] [44] API calls can be recognized by running executable66
files it usually run in virtual machine.67

In API call there two familiar ways to evaluate the data accumulated by static approach. The first one68
implements simple statistical analysis, for example, to count the frequency of API call which is aspect to organize69
malware [35]. The second approach is to gather the API call data through data mining or machine learning70
techniques. In another way the API call sequence data which gathered by the dynamic approach are helpful71
to creates a behavioral patterns. The information accumulated by the dynamic approach also operates simple72
statistics such as frequency counting [39] and data mining or machine learning [40] [42] [44].73

The API call analysis been done with API call approaches. In this abstraction the dynamic method is applied74
to excerpt API call sequences. To obtain austerity patterns, DNA sequence alignment algorithms (MSA and75
LCS) are adapted. With API call sequence patterns and the critical API call sequence, we can recognize the76
unknown malware or its variation with elevated efficiency.77

Anderson et al. [49] defined a malware detection strategy that builds a set of graphs from the given instruction78
set and then analyzes these graphs to notify the proneness of the malware activity. In order to build the graphs79
the markov chains were defined on 2gram sequences. The graphs defined form the training set further used to80
build a similarity matrix using graph kernel. The graph kernel is the mix of Gaussian and spectral kernels, which81
are in use to assess the similarity between graph edges and similarity between graphs respectively. Further the82
support vector machine that learns from the similarities between graph edges and graphs is used to classify the83
input call sequences.84

By using such liberal malware software the multiple kernel is achieved and learning design used in this work85
to exhibit selective refined differences occurrence of malware. The inadequacy of this approach is computed86
consequence is very high, hence the use of this approach is discouraged.87

Bayer et al. [50] prospect a technique that groupsthe call sequences generated by Anubis [51]. The behavior88
adequately of the call sequences is considered as objective to cluster the call sequences by Locality Sensitivity89
Hashing (LSH) ??52]. The constraint of the model is that LSH is capable to generate probabilistic clusters.90

Biley et al. [53] argued that malware prototyping is not consistent among the notable antivirus products91
available. In order to this the authors devised a novel classification strategy that classifies the malware according92
to the changes observed at system state. A strategy that prototypes the behavior of the malware is used, further93
the malwares are classified according to these behavior prototypes. The distance between a class and a malware94
is assessed by the distance metric called ”normalized compression distance (NCD)”. The constraint observed in95
empirical study of this model is that the behavior prototype definition is static and limited to malwares that96
are not fall in zero-day category (unknown malwares). park et al. [54] defined a classification strategy that97
classifies malware based on the graphs generated from the call sequences. Further graph similarities between98
confirmed malware call sequence graph and unknown call sequence graph will be assessed. The similarity index99
is the ”max number of subgraphs identified in both graphs”. The malwares those controls the system privileges100
without initiating the system call sequences are not traceable by this classification model, which is a significant101
constraint of this model. Firdausi et al. [55]102
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In other way, researchers are analyzed more ways to develop API call sequence information. In earlier research104
API call had introduced API call graph [45] with various kinds of call graph analysis. To get more consequential105
features for call graph analysis, the analyzer had espoused the mechanism of social network analysis. [46]106
According to analyzers the affinity among API call sequences is based on cosine similarity function and lengthy107
jaccard measure. Due to modern research [33] [34] [47] [48] more information had been added such as control flow108
information and API argument information to inflate the efficiency in the mining process. by the model called109
Anubis [51]. Further these observed behavioral patterns will be organized as sparse vectors and learns the behavior110
prototypes. The malware samples given for testing will be classified, which is based on the behavioral prototypes111
learned in training phase. The performance of the model is estimated through benchmark classifiers and they112
are ”j48”, ”multilayer perception neural networks (MLP)” ”Naïve Bayes”, ”Support Vector Machine (SVM)” and113
”k-Nearest Neighbors (kNN)”. The experimental results indicating that the J48 classification delivered much114
classification accuracy.115

Nari et al. [56] devised a network flow behavioral analysis framework for malware detection. The network116
transactions obtained from PCAP files were considered to extract the network flows. Further a network activity117
representation graph is drawn from these network flows. The given network flows labeled as malware were used118
in training phase. Further this framework learns representation of the features such as size of the graph, average,119
maximum and root level outdegree and count of specific nodes of the network activity graphs of the given input120
network flows. Further these features specific information uses to classify the input malware samples in testing121
phase. In order to perform the classification, the WEKA library [57] was used. The experimental study indicating122
that the J48 is the best classifier among all classifiers available in WEKA library.123

Lee et al. [58] explored a machine learning based malwares clustering. The training phase builds the behavioral124
profiles of the malware samples given as training data and the profile includes the system resources invoked by the125
system calls and their arguments. Further the similarities between behavioral profiles were considered distance126
function to cluster the malwares, which was done by k-medoids. The outliers are adjusted to the clusters based127
on the nearest neighbor strategy. This approach is the combination of static and dynamic clustering strategy128
that clusters known features by k-medoid and unknown and new features by nearest neighbor approach. This129
strategy is evincing that hybrid approach is more robust in order to classify the known as well as unknown130
features effectively.131

Another hybrid approach for malware detection was devised by Santos et al. [59]. This approach tracks the132
known features (static features) through the analysis of the sequence of operational codes in given malicious133
executable and the unknown features (dynamic features) were noticed from the observation of exceptions and134
operations in system calls. The experimental study was done under various classifiers and results obtained were135
evincing the significant accuracy in malware classification Islam et al. [60] explored a similar strategy that136
extracts static and dynamic features to classify the executables into malevolent or benevolent. The features137
such as function length, function executable frequency and length of the strings involved are included in known138
features and the features such as function identity and function arguments are included in unknown features. The139
experiments were done using the classifiers called Support Vector Machine, Decision Tree and Random Forest140
and results evincing that the random forest is the best classifier among all considered.141

The malware classification method devised by Anderson et al. [61] is using the divergent input sources such142
as control flow graphs, static call sequences, portioned executables, dynamic call sequences and file signatures.143
Further this model learns the weight of these input combinations from the given training set of malevolent144
and benevolent executables. The observed weights of these input combinations are used further to classify the145
malevolent and benevolent executables during testing phase. The process overhead is the significant constraint146
of this model observed against dense and high speed network streams.147

5 III.148

6 Conclusion149

The current era of internet and computer systems are prone to serious security threats due to the malicious150
software which are also referred as malware. Hence the significant research contributions aimed to define malware151
detection and prevention strategies in contemporary literature. All of these contributions are fall in the categories152
of either anomaly based, signature based or call sequence analysis based detection. The signature based models153
are capable to notify and prevent the malwares that are notified earlier. In contrast to this the anomaly models154
and call sequence analysis models are capable to identify the malwares based on the similarities learned from155
previous malware attacks. The difference between the anomaly and call sequence analysis models is that the156
anomaly based learning models can adopt user defined features, whereas the call sequence analysis models notify157
the similarities learned from the call sequences of 2-gram, 3-gram or ngram. This manuscript aimed to affirm158
the objectives and limits of the contributions found in recent literature. The conclusion of the review evincing159
that the machine learning based models that learns from either anomalies or call sequence are tolerable the160
constraints observed in signature based malware detection strategies. The anomaly and call sequence learning161
models found in contemporary literature are not adequate to defend the challenges evincing from the vibrant162
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6 CONCLUSION

and unjust network data. Hence the significant contributions are in demand to handle the challenges evinced in163
current era of internet and computer system usage. 1 2

Figure 1:
164
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