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Abstract

 

-

 

Decades

 

onwards

 

companies are creating

 

massive 
data warehouses to store

 

the collected resources.

 

Even 
though the stored resources are available, only few companies 
have been able to know that

 

the actual value stored in the 
database. Procedure used to extract those values is known as 
data

 

mining.

 

We

 

use so-many technologies to apply

 

this

 

data-
mining

 

technique,

 

artificial neural network(ANN)

 

also includes 
in this data-mining techniques

 

,ANN is the

 

information 
processing units which are

 

similar to biological nervous 
systems.

 

Backpropagation is one of the techniques that used 
for classification

 

and LVQ (learning Vector Quantization) can 
be plotted under the competitive

 

learning scheme

 

which is 
also used for classification.

 

This paper elaborates

 

artificial 
neural networks, its characteristics

 

and working of 
backpropagation and LVQ algorithms. In this paper we show 
the intriguing comparisons between backpropagation and 
LVQ (Learning Vector Quantization)

 

for both analog and digital 
data.

 

It also attempts to explain

 

the results between back-
propagation and LVQ.  

 

Keywords: 

 

artificial neural networks (ANN),activation 
function,multi-layer-feedforward-network,sigmoid, least 
mean squared error,

 

backpropagation,

 

training,

 

codebook,

 

competitive networks, learning vector 
quantization.

 

I.

 

INTRODUCTION

 

rtificial neural networks

 

(ANN), is often called

 

as 
“neural networks”, is a data processing

 

model 
based on the biological neural network

 

modeling[5].

 

Neural networks are widely pre-owned

 

to 
understand

 

the patterns

 

and the connections

 

in the 
data.

 

The data may be the outcome of a

 

market 
research effort,

 

etc. 

 

Artificial neural networks have been 
successfully solved many complex practical

 

issues.

 

The

 

Small processing units present in the network are called 
as “Artificial Neuron”,

 

which operates

 

the information 
using a connectionist approach to perform complex 
computations[1][5].

 

Basically, neural network have layered 
architecture with interconnected neurons

 

as from fig-1.1.

 

The neural networks

 

(ANN)

 

can be generally be a either 
a multiple-layer

 

or a single-layer

 

networks.

 

The multilayer 
structure

 

of neural networks

 

is shown in fig-1.1.

 
 
 

 
  
 
 
 
 
 
 
 
 
 

 

Artificial neural networks had
 
been developed 

based on
 
the following hypothesis:

 

•
 

The information
 
is

 
processed among

 
many simple 

processing units,
 
well known

 
as “neurons”.

 

•
 

The signals are processed among
 
these processing 

units which are known as neurons
 

over the 
connection links

 
among them.

 

•
 

Each
 

and every
 

connection link
 

among these
 

neurons 
 

contains
 

an weight, multiples with the 
transmitted

 
signal.

 

•
 

Each and every neuron
 
or processing unit

 
applies 

activation function
 
to its net-input(weight multiplied 

with its signal input)
 
comes from its previous unit.

 

Let consider a neuron h1 from fig-1.2, which 
receives inputs from input neurons

 
y1,y2,y3.

 
The 

weights on the connection from y1,y2,y3
 
are w1, w2, w3. 

The net-input N_y from the input nodes with the 
activations Y1,Y2,Y3

 
to the neuron h1 is defined as 

follows:
 

N_y=w1Y1+w2Y2+w3Y3.
 

As from the final assumption pass this net input 
to the activation function given as h1= f(n_y).

 
 
 
 
 
 
 
  
 
 
 

A
 

Input 
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layer nodes 
Input nodes 

Output 
 

Fig. 1.1 :
  

Architecture of Neural 
networks
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Neuron output generation in ANN
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 Some simplifications are necessary to 
understand the intended

 
properties and to attempt 

requires mathematical analysis.
 
To implement the above 

assumptions the whole process of the neural networks 
are divided in to building blocks.

 
The main building 

blocks of the neural networks are as follows:
 •

 
The

 
Architecture

 
of network.

 •
 

Initializing
 
the weights to the nodes.

 •
 

Activation Functions.
 

a)
 

Architecture
 
of Neural Networks

 The
 

settlement of
 

the neurons into several 
layers

 
and the arrangement of the connection within and 

in-between
 

the layers are known as the network 
architecture.

 
The

 
basic architecture of the simplest 

possible
 

neural
 

networks that performs classification 
subsists

 
of a input layer units and a single output layer 

unit.
 

Number of
 

layers in the neural network can be 
outlined

 
as the number of layers, which has weighted 

interconnected links among the neurons.
 

Advanced 
neural network architecture consists of hidden layer 
along with the input layers and output layers.

 
If the two 

layers
 
of interconnected weights are present, then it is 

found to have hidden layer.
 
The network architecture is 

divided into different types like Feed-Forward, Feed-
back, Competitive.

 
For back-propagation algorithm we 

are using Feed-Forward algorithm, where to LVQ 
(learning Vector Quantization)

 
uses competitive network.

 
• Feed-Forward networks: These feed-forward 

networks have either a single layer of weights, 
where the neurons in the input layer are directly 
having connection links to the neurons in the output 
layer, or multiple layers with an interceding set of 
hidden neurons. Feed-back networks are also 
associated in two different ways i) Singlelayer ii) 
Multilayer. As in the single-layer feed-forward 
networks the weights from input layer does not 
influence the output layer. Whereas in multilayer 
feed forward networks one or many layer of nodes 
(units) between the input layer and the output layer 
units, so this network is used to solve the complex 
problems.  

b) Setting the weights to the nodes: 
The process of setting the weights enables the 

learning rules or training process. A neural network 
focusses on the way in which the weights can be 
changed. The method of tuning the weights on the 
connections among the network layers to attain the 
expected output is known as the network training. The 
internal process in the network training is called as 
learning. Basically, the training process is divided into 
three types i) supervised ii) Unsupervised and iii) 
Reinforcement training. For both Back-propagation and 
for LVQ we are using supervised learning to train the 
data. 
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Supervised Learning Rule: It is a procedure of 
contributing the networks with a sample of inputs and 
collating the output with a target output. Training 
process continues until we get the target output. The 
weights must adjust according to the algorithm. The 
various learning rules that follow the supervised learning 
are Delta rule, generalized delta rule, Competitive 
learning rule. Generalized delta rule is used to train the 
given data set in the back propagation algorithm, where
as competitive learning is the process used to train 
dataset used for LVQ.
• Delta-Rule: This rule is purely based on the least 

mean squared error (LMS). The Mean squared error 
is nothing but the average of all the errors 
calculated between the target and actual values.
This rule is used to minimize the error. Let discuss in 
detail, for a taken input data the output data is
equated with a target output. If the difference
between target and actual data is zero, no learning 
process is considered, otherwise the values of 
weights are adjusted to lessen the error obtained.
The difference between the target output to the 
actual output value is defined as ∆ (wij) = n* ki *erj, 
where n is the learning rate (α), ki is the activation of 
unit and erj is the difference between the target 
value and actual output value. This learning rule not 
only progress the weight vector nearer to the target 
weight vector, it does so in the most efficient way.

Generalized delta rule: Actually the delta rule 
uses the local information about the error, where the 
generalized delta rule deals with error information that is 
not local. The rule is stated in simple sense as follows 
for weights updating in a cycle after all the training 
patterns are presented as Wnew=wold –n*(E(k)) where n 
is learning rate and E(k) is the error difference between 
the target and actual output.

Competitive Learning Rule: In this competitive 
learning rule, the neurons present in the output-layer of 
the neural network compete among themselves to be in 
an active-state. The major idea behind this rule is that to 
allow the processing units (neurons) to challenge for the 
authority to answer a taken sets of inputs, such that only
a output neuron (processing unit) challenge for the right 
to respond for a given subset of inputs. So that only a
neuron in the output-layer is in an active-state at a time. 
The neuron which wins in the competition is known as 
winner-takes-all neuron. Let Wkj denotes the weight of 
input-layer node (unit) j to neuron. The neuron learns by
altering the values of weights from inactive input mode
to active input mode. If a neuron (processing unit) does 
not give acknowledgement to a particular input layout, 
then the learning does not happens in that particular 
neuron. If any of the neuron wins in the competition, 
then its weights are adjusted as follows.
ΔWkj= n (Xj-Wkj), when neuron k wins the competition.
           =0 ,when neuron k losses the competition.
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As from above formulae “n” is well known as the 
learning- rate(α). The values of the weights are initially 
set to random values and those weights are being 
normalized during learning phase (either supervised or 
unsupervised). The winner-takes-all neuron is selected 
by using Euclidean distance. 

c) Activation Function 
The activation function is used to calculate the 

output comeback generated by neurons. Threshold 
function performs final mapping of activations of 
network neurons. The outcome of any neuron is a result 
of thresholding (internal activation). The aggregate of 
the weighted input signals is pertained with activation 
function to get the response. There may be linear and 
non-linear activation functions. Generally, the activation 
functions are classified into different types[2]:  
i. Identity Function. 
ii. Binary Step-Function. 
iii. Bipolar step function. 
iv. Sigmoidal function. 
v. Ramp function. 

We use sigmoidal function for the 
backpropagation algorithm, competitive activation 
function for the LVQ. 

Sigmoid function: Generally these functions are 
represented by S-shaped curved. These functions are 
differentiated by its output ranges. Hyperbolic tangent 
activation function is the most important of  all the 
sigmoid functions with the range of (-1,1). Logistic 
function has its range of values in between (0, 1). These 
functions are represented as follows: 

a. Hyperbolic tangent sigmoid activation function: 
S(y)=tanh(y)= (ey-ey)/( ey+ey  ) 

b. Logistic sigmoid function: 
S(y)=1/( 1+eyx ). 
The graphical representation of  above sigmoid 

functions is shown in following FIG:1.3 (Logistic 
Function) , fig: 1.4 (Hyperbolic tangent function) 

 
Fig:1.3 : Logistic sigmoid function 

 

 
Fig:1.4  :  Hyperbolic tangent sigmoid  function 

 

Function

 

Definition

 

Range

 

Identity

 

X (-∞,∞)

 

Logistic

 

S(x)=1/( 1+e-x ).

 

(0,1)

 

Hyperbolic 
tangent

 
S(x)=(ex-e-x)/( ex+e-x) 

 
(-1,1)

 

Ramp

 

R(x)= x , x>=0

 

=0 , 
x<0

 

R(x)=max(x,0)

 
[-1,+1]

 

Step

 

O, if x<01, x>=1

 

[0,+1]

 

Table 1.1 :

 

Description of activation functions

 

II. OVERVIEW OF BACKPROPAGATION AND LVQ 

a) Backpropagation Algorithm 
Backpropagation is one of the neural network 

learning algorithms, delineated to diminish the mean 
square error. Backpropagation is also well-known as the 
“error backpropagation”, because this algorithm is 
purely based on the error correction learning rule.  This 
algorithm is used to train the multi-layer artificial neural 
network. Back propagation uses supervised learning 
rule, in which it generates error by comparing target 
output to actual output. The backpropagation algorithm 
could be broken down into four main steps[1][2]: 

• Initialization of weights and bias. 

• Implementation of feed forward technique to input 
training patterns. 

• The method of calculating and backpropagating the 
associated errors. 

• Weights Updation. 
  

 
 

 

     
   

 
    

 
  

 
 

 
   

 

 

f(wp+b)= 1/(1+1+e-n), where n=wp+b. 

Every hidden unit in the network
 
then figure-outs 

the activation
 
function

 
as shown above and

 
sends its 

signal to the output unit. The output unit performs
 
the 
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The representation of range of the each 
activation function are defined in table :1.1.

During the first stage, the weights are set-up to 
some random values (e.g., they ranges from
[-1.0,1.0]or[-0.5,0.5])[2].Every processing unit in the 
network is associated with a bias (threshold), which is 
used to generate the net input. After the initialization of 
weights and bias, each training tuple is processed by 
remaining steps. First of all, the training tuple is pass to 
the networks input layer. During the process of feed
forward of input training patterns, each input unit
encounters an input signal and transfer these signals
net-input to every hidden units in the network.Later each 
hidden unit in the network then figure-outs the activation 
function response. The activation function is known as 
the output response of the unit (neurons), where in 
backpropagation we use sigmoidal activation function.
Fig: 2.1 show the neuron output generation in hidden 
and output layer diagrammatic representation. As from 
the fig: 2.1 the output of neuron is generated by using 
activation function i.e, 
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activation function and generates the outcome of the 
neural network for the given input pattern. 
 

       
 
 
 
 
 
 
 
 

Fig. 2.1 : Activation function generation 

During back-propagating the errors, each 
output units equates its calculated activation function 
value (a=f(wp+b)) with its target value to determine the 
error associated with the network. Based on the error, 
the factor ∂ is computed in backpropagation network for 
hidden and output layers. As in the final stage , the 
weights and the bias are updated based up on this 
factor ∂ and the activation.  The backpropagation 
algorithm implementation is represented in flow chart 
from fig: 2.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig: 2.2 : Flow chart of backpropagation algorithm
 

The algorithm used in the back-propagation 
network

 
to train the network is

 
implemented in four 

different stages is as follows:
 

 
 

Weights Initialization[2]: 
Step-1: Initializing the weights and bias to random 
values (ranges from [-1.0,+1.0] or [-0.5,0.5]). 
Step-2: Checking for the stopping condition, if it is false 
do the steps from 3 to 10. 
Step-3: Foe each and every training set, perform the 
steps from 4 to 9 as mentioned below. 

Feed-Forward of input training patterns[3]: 
Step-4: Each and every input unit accepts the input xi 
and transmits that input signal to hidden layer units. 
Step 5: Each hidden unit in the network aggregates its 
weighted input signals. Activation function to zij is 
denoted by Zj 

zij = voj+∑xiVij  .i=1 to n 

Zj= f(zij) 

The result obtained from this activation function 
is the input to next layer in the network. 
Step 6: Each output unit in the network, aggregates its 
weighted input signals . Activation function applied to yik 
is denoted byYk 

yik= wok+∑ZjWjk 

Yk=f (yik) 

 
Backpropagation of the errors: 
Step 7: Error is calculated as 

E(k)= ∑[Oj(k)-Tj(k)]2    j=1 to m 

E=E(k) f(yik) 

Step 8: Find the mean squared error 
Et=1/2 ∑E k=1 to N 

Updating of weights and bias 
Step 9: For the Output layer the weights and the bias are 
updated as follows 
ΔWjk=αEtzj. Updated weight is as follows Wjk (new) = 
Wjk(old) + ΔWjk 
Δwok=αE . To update bias is wok(new) =wok(old) +Δwok 
Similarly the values of weights and the bias are updated 
in the networks hidden layer is as follows: 
ΔVij=αEtxi . The new weight is calculated as Vij(new) 
=Vij(old)+ΔVij 
Δvoj=αE. Updated bias is voj(NEW)=voj(OLD)+Δvoj 

Step 10:  Check the stopping condition. 
Based upon the algorithm stated above the 

terms are defined as  
xi– Inputs that given to the input units. 
voj – Bias used in the hidden layer units. 
Vij – Weights used in hidden layer units. 
wok – Bias used for the outputunits. 
Wjk– Weights that initialized in output layer. 
α– Learning rate. 
 

∑ f 

p 

w 

b 

n 
a 

Unit in 
input/previous 
layer  

Generation of net 
input to next layer 
units  

Output generation using 
sigmoidal activation 
function , a= f(wp+b) 

 

start
 

Initialize weights and bias
 

zij=Voj+∑xivij
 
i=1 to n

 

Zj=f(zij)
 

yik=Wok+∑Zjwjk
 

Yk=f(yik)
 

Desired output Oj(k)
 

Error 
Calculation

 Error?
 

Modify the 
weights

 

yes
 

no
 

Stop
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a) Learning Vector Quantization (LVQ) 
Learning Vector Quantization (LVQ) algorithm is 

the prototype based supervised classification algorithm. 
It is a particular case of artificial neural network, which 
implements “winner-take-all” principle[2]. Winner-take-all 
is the computational principle applied by which neurons 
in layer compete with each other for activation. The 
neuron with highest activation stays active while other 
neurons shut down. LVQ is trained to classify the inputs 
according to the given targets. Training in LVQ occurs 
by performing the competition between the neurons. 
LVQ uses Euclidean distance to perform the competition 
between neurons. LVQ performs the classification for 
every target output unit by considering its input pattern 
i.e, it uses supervised learning technique.   

LVQ defines the class boundaries based upon 
its prototypes. The prototypes are determined during the 
training procedure using a labeled dataset (the dataset 
that we take for training).LVQ system is represented by 
protocols which are defined in future of observed data. 
The class boundaries are not depends not only on 
prototypes but also on nearest neighbor rule and 
winner-takes-it-all. Weight vector for an output unit in a 
network is known as the “codebook vectors (CV)” or 
“reference”. The architecture of the LVQ algorithm is as 
shown fig:2.3, fig:2.4 : 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3 : LVQ architecture 
 
 
 
 
 
 
 

Fig. 2.4 :  Inner working of neurons 

To express in terms of neural networks, LVQ is a 
feed-forward neural network. Codebook vector is 
describe as weight vector(values of weights) of the 
interconnected weights between all the input layer 
neurons and hidden neurons. Learning method used in 
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this LVQ algorithm is modifying the weights according to 
the rules specified and changing the position of code 
vector (CV) in the input space. Changing the position of 
CV is nothing but implementing the winner-takes-it-all 
principle by moving the winner closely if it correctly 
analyzes the data point or by moving the winner away if 
it analyzes the data point incorrectly. The working of 
LVQ is stated diagrammatically in the Fig:2.4 

As from the above diagram the net input to the 
hidden layer is :
n1

i = ||iW1-p|| where iW1 represents training vector i.e,, 
inputs given to the input layer p represents Weight 
vector for the units in next layer it is also called as the 
codebook vector.

Finally the net output of this input layer is 
passed to the activation function, where we use the 
competitive activation function for this LVQ algorithm. 
Competitive Activation Function which represents the 
input/output relation that purely derives by using the 
Euclidian rule in which 

a1= compet(n1)
a1=  1 neuron which wins the competition

=0 for all neurons.
Therefore the neuron whose weight vector is 

nearest to the input vector will gives output as 1, and the 
remaining neurons will gives the output as 0 as shown 
above. This states that the LVQ network purely 
competitve network . As initially stated that the neurons 
in input layer are considered as the same class, after 
this net output generation to the hidden layer the 
winning neuron represents a subclass. There may be 
different neurons that may win the competition, they all 
belongs to the same sub class.

The hidden layer of the LVQ (learning vector 
quantization) network combines all subclasses into a 
single class. As shown in the above figure W2 done the 
whole process of combining all the sub classes. W2 is 
represented in matrix, in which columns represent the 
subclasses and the rows represents the classes.

Note: W2 matrix has a value of 1 in each 
column, eith the other values set to zero (0).The 
subclass of a particular class is denoted by the value of 
1 in the row. Ex:  W2

ij=1 means j sub class is a part of ith 
class.

The input vector X is selected at random from 
the inputs given. If the class labels of the input vector x
and a codebook vector (weight vector) W agree, the 
codebook vector W is moved in the direction of the input 

p
W2

W1 C
n1

n2a1
a2

Input Competitive layer
n1

i = ||iW1-p||
      a1=compet(n1)

Activation function
a2= W2 a1
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vector X. If the class labels of the input vector X and the 
codebook vector w is disagreed, the codebook vector W 
is moved away from the input vector X. 

I. Ex: Let {Wi}1
i=1 stand for the set of weighted vectors 

(codebook vectors), and the  {Xi}N
i=1 stand for the 

set of input vectors. Suppose, that the codebook 
vector Wc is the nearest to the input vector Xi . Let 
Kwc denote the class associated with the codebook 
vector Wc and Kxi denote the class label of the input 
vector Xi. The values of Kwc and Kxi are obtained 
from the W2 . The codebook vector Wc is regulated 
as follows: 
If Kwc = Kxi ,then Wc(New) = Wc(Old) + αn[Xi – 
Wc(Old)] where 0< αn<1. 
If Kwc ≠ Kxi ,then Wc(New) = Wc(Old) - αn[Xi - Wc(n)] 
,where 0< αn<1. 

II. Remaining codebook Vectors are not modified. 
The learning rate (α) is decreased. This whole 

LVQ process continues until the stopping condition fails. 
Learning Vector Quantization Algorithm[2]: 
Step-1: Initialize weights vectors (codebook vectors) and 
learning rate. 
Step-2: Check for the stopping condition. If the condition 
is false, then perform the steps from 3 to 7. 
Step-3: For every training input vector p, do the steps 
from 4-5  
Step 4: Figure out J using Squared Euclidean distance 
      E(j) = ∑ (jW1-Xi)   where Xi is  input present in the 
input vector. 
Find j when E(j)is minimum 
Step 5: The value of Wj is updated as follows 
If Kwc = Kxi ,then Wj(New) = Wj(Old) + αn[Xi – Wj(Old)] 
where 0< αn<1. 
If Kwc ≠ Kxi ,then Wj(New) = Wj(Old) - αn[Xi – Wj(n)] where 
0< αn<1. 
Step 6: Reduce the learning rate. 
Step 7: Test for the stopping condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. COMPARISION BETWEEN BACKPROPAGATION                

AND LVQ 

The practical implementation of back-
propagation involves factors like choice of network 
architecture, momentum factor.  While implementing 
these factors backpropagation algorithm associated 
with few problems like local minima. A local minimum is 

the problem that occurs frequently, used to change the 
weights frequently to minimize the error. As in this local 
minima, in some cases the error might have to rise part 
of more general fall. If this is the situation the algorithm 
will struck and the error will not be decreased further. 

So, for this drawback LVQ gives best results. In this 
paper we are comparing the efficiencies obtained for 
testing the heart disease dataset with both 
backpropagation and LVQ for the two different ranges      
(-1,1) and (0,1). The following are the results obtained 
while comparing the both algorithms. The programming 
is written for 100 instances of a heart diseases dataset 
from Cleveland with 14 attributes (13 +class attribute). 

a) BackPropagation  

In our paper we practice backpropagation 
algorithm with different learning rates and finally 
conclude, how the efficiency changed based upon the 
value of  alpha (learning rate) . To allow fair comparison 

between backpropagation and LVQ a wide variety of 
parameter values are tested for each algorithm. 

 

Fig: 3.1
 
:
 
Input to backpropagation algorithm

 

 

Fig. 3.2
 
:
 
Output generated

 
for fig:3.1

 

Compute J using Squared Euclidean distance 
      E(j) = ∑ (jW1-xi)   where xi is  input present in the input vector. 

 

Update Wj as follows 
If Kwc = Kxi ,then wj(new) = wj(old) + αn[xi – wj(old)] where 0< αn<1. 
If Kwc ≠ Kxi ,then wj(new) = wj(old) - αn[xi – wj(n)] where 0< αn<1. 
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The backpropagation network is trained on our 
dataset for different alpha values for different ranges 
and the observed results are mentioned in the below 
tables as follows: 
When i)α=0.9 (learning rate) 

Table. 3.1 : Efficiency obtained for backpropagation 
(digital) α=0.9 

Sl.No Training(%) Testing(%) Time(in 
minutes) 

Efficiency(i
n%) 

1 20 80 2.2 45 
2 40 60 0.35 55 
3 60 40 0.007 77.5 
4 80 20 0.009 75 

ii) α=0.8 (learning rate) 

Table. 3.2 : Efficiency obtained for backpropagation 
(digital) α=0.8 

Sl.No Training(%) Testing(%) Time(in 
minutes) 

Efficiency  
(%) 

1 20 80 0.003 28.75 

2 40 60 0.005 23.333 

3 60 40 0.005259 50 

4 80 20 0.008362 50 

Table. 3.3 : Efficiency obtained for backpropagation 
(analog) α=0.1

 

Sl.No
 

Training(%)
 

Testing(%)
 

Time(min)
 

Efficiency
 

(%) 

1
 

20
 

80
 

0.0032099
 

38.75
 

2
 

40
 

60
 

0.006441
 

43.333
 

3
 

60
 

40
 

0.075057
 

40
 

4
 

80
 

20
 

0.010575
 

60
 

Table. 3.3
 
:
 
Efficiency obtained for backpropagation 

(digital) α=0.1
 

Sl.No
 

Training(%)
 

Testing(%)
 

Time(min)
 

Efficiency(%)
 

1
 

20
 

80
 

0.0032
 

62.5
 

2
 

40
 

60
 

0.00503
 

63.333
 

3
 

60
 

40
 

0.0066
 

60
 

4
 

80
 

20
 

0.00888
 

79
 

b)
 

Learning Vector Quantization
 

 

Fig.3.3
 
:
 
Input to LVQ algorithm

 

 

Fig.3.4 : Output generated for fig:3.3 

 Varying the learning rate alpha from 0.1 to 0.9, 
it was found that the maximum efficiency is obtained at 
alpha α=0.1. The results that obtained for various alpha 
values are shown in the following tables. 

Table. 3.4 : Efficiency variations in LVQ analog for α=0.9  

Sl.N
o 

Training(%
) 

Testing(
%) 

Time(min) Efficiency 
(%) 

1 20 80 23.7953 54 
2 40 60 25.186 57 
3 60 40 10.7664 60 
4 80 20 10.164 70 

Table. 3.5 : Efficiency variations in LVQ analog for α=0.1 

Sl.N
o 

Training(%) Testin
g(%) 

Time(min) Efficienc
y 

1 20 80 6.5829 64 
2 40 60 6.2778 70 
3 60 40 8.4187 70 
4 80 20 7.175 85 

Our paper also attempts to check the efficiency 
for different ranges i,e for analog (0,1) and bipolar (-1,1). 
Table:3.3 and Table:3.4 are the results obtained for 
analog, where  the bipolar results are shown in 
Table:3.5. 

Table. 3.6 : Efficiency variation in LVQ bipolar α=0.1 

Sl.No Training(
%) 

Testing 
(%) 

Time(inmi
n) 

Efficiency(
%) 

1 20 80 8.7658 70 
2 40 60 9.0779 62 
3 60 40 12.1897 80 
4 80 20 97.8381 70 

The better classification efficiency can be 
achieved by varying the learning rate. As from the above 
results , we found that the digital gave better efficiency 
than analog in vector quantization method. It is also 
found that maximum efficiency was obtained for alpha 
value 0.1. 

IV. Conclusion 

In this paper we present a supervised learning 
based approach to data-mining classification rules for a 
dataset. The classification is carried out using 
backpropagation and LVQ. We conclude that LVQ 
algorithm is one of the best in classification when 



compared to backpropagation. As from the results 
obtained for classifying our dataset, we can obtain 
better classification efficiency by varying the learning 
rate and it was found that maximum efficiency was 
obtained for alpha value 0.1 in both algorithms. 
Comparing the digital results (-1,1) with the analog 
results, it is found that the digital data gave better 
efficiency than analog in both back-propagation and 
LVQ algorithms. Overall comparison between the two 
algorithms states that the maximum efficiency is 
obtained in LVQ with high processing time. 
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