Global Journals ETEX JournalKaleidoscope ${ }^{\mathrm{TM}}$

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

The Generalized Estimating Equations for the Unknown Correlation Structure of the Data

Md. Soyebur Rahman ${ }^{1}$
1
Received: 6 December 2015 Accepted: 3 January 2016 Published: 15 January 2016

Abstract

In many study the data are taken different period of time and the information about them is gathered relating to an event of concern at different time periods. The data are taken different time period are correlated. Regression analysis based on the Generalized Estimating Equation (GEE) is an increasing important method of such data. The Generalized Estimating Equation is an important and widely used approach in such analysis. Since the true correlation is unknown GEE offers to take a working correlation for analysis. In our study we consider four common correlation structure namely, independent, exchangeable, pair wise, autoregressive.In the study the data are taken from the Dhaka stock exchange (DSE) this data are highly correlated. At first we apply different methods of estimating parameter the we apply GEE for estimating the parameters. Finally we get the GEE gives better estimate than any other method.

Index terms - generalized estimating equation, GEE, OLS, GLM.

1 I. Introduction

he term Generalized Estimating Equations indicates that an estimating equation is not the result of a likelihoodbased derivation, but that it is obtained by generalizing other estimating equation. Liang and Zeger (1986), Zeger and Liang (1986) and prentice (1988) developed a most recent method of estimating the parameters of the marginal model. They present a class of estimating equations that take the correlation into account to increase the efficiency. This class of estimating equations is called Generalized Estimating Equations (GEE) and the correlation matrix is called working correlation matrix. The name working is used in the sense that it is an approximate correlation matrix of i Y's (the response variable). The estimates of ? obtained by GEE are consistent and in addition consistent variance estimates can be obtained under the weak assumption the weighted average of the estimated correlation matrices converge to a fixed matrix.

2 II. Data Analysis

The stock exchange data are highly correlated from one company to other company.
In our study, we have used stock exchange data because, we want to compare the different method of estimation. We have taken six company and their closing price and the general index in 2009 of DSE. In our calculation we have taken general index as an explanatory variable and the different company closing price as a independent variable. We want to estimate the following model $0113366 \ldots$ y X X X ? ? ? ? $=++++(1)$ where,

3 III. Summary and Conclusion

Selection of correlation structure is an important issue in Generalized Estimating Equation (GEE). We have earlier stated that there are four correlation structure namely, independent, exchangeable, autoregressive and pair wise. One needs to select under which correlation structure is unknown GEE works well or provides efficient estimate in several situation.

We have concentrated on standard error as a measure of accuracy for an estimator of the parameter. So in this case, we look only on the standard error under different correlation structure of different methods of estimation procedure.

In this study we consider stock exchange data, this data are highly correlated.
In the previous situation, we see that the standard error of the parameters of the GEE method is lowest than any other method. From this study we may conclude that from different method of estimation the GEE parameters are gives the efficient estimate and best approach. ${ }^{1}$

[^0]Using the GLM procedure
The GLM Procedure
Standard
Error t Value
244.4865048
$\mathrm{x} 1 \quad-27.79733308$
7.7704859

X2 $\quad-7.88169809$
1.0654488

X3 2.29819026 0.3979271
$\mathrm{X} 4 \quad 13.56079439$
$\mathrm{X} 5 \quad 3.20755189$
$\mathrm{X} 6 \quad 1.63484104$

Analysis of Initial Parameter Estimates
Standard Wald 95\% Confidence Chi-

Intercept Calculation of the model (1) in the different methods as follows: Coefficients Standard Error t Sta X Vari-
able 1
X Vari-
able 2
X Vari-
able 3
Param-
eter T
Inter-
cept
x1 X2
X3 X4
X5 X6
Scale

X Vari-	13.603066	1.598677955	8.508947	$2.16 \mathrm{E}-$
able 4				

[Note: $y=$ DSE general index $20091 X=$ Aims first guaranteed mutual fund $2 X=A C I$ pharmaceuticals Limited $3 X=$ Glasco Smith-kline Bangladesh Limited $4 X=$ Beximco Pharmaceuticals Limited 5 X =Al-Arafah Islami Bank Limited 6 X = Bata Shoe Company (Bangladesh) Limited. G Author ?: Jahangirnagar University, Savar, Dhaka. e-mail: soyebur.rahman@gmail.com Author ? : Lecturer, Department of Statistics, Mawlana Bhashani Science and Technology University. Author ?: AssistanBProfessor, Department of Statistics, Mawlana Bhashani Science and Technology University.]
[Biometrika], Biometrika 73 p. .
[Mc Cullagh and Nelder ()], P Mc Cullagh, J A Nelder . 1989. London: Chapman and Hall. (Generalized Linear Models, 2 nd edition)
[Neter et al. ()], J ; W Neter , M H Wasserman, Kutner . 1990.
[Hardin and Hilbe (ed.) ()] Generalized Estimating Equations, J W Hardin, J M Hilbe . U.S.A.: Chapman and Hall/CRC (ed.) 2003.
[Liao ()] Interpreting Probability Models Logit, probit, and other Generalized Linear Models, T Liao , F . 1994. New Delhi: Sage publication. (inc)
[Liang and Zeger ()] K-Y Liang, S L Zeger . Longitudinal Data Analysis Using Generalized Linear Models, 1986.
[Chang ()] 'Residual analysis of the Generalized Linear Models for Longitudinal Data'. Yue-Cune Chang . Statistics in medicine 2000. 19 p. .

[^0]: ${ }^{1}$ © 2016 Global Journals Inc. (US)

