
© 2016. Abid Thyab Al Ajeeli. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/ licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

An Intelligent Framework for Natural Language Stems Processing
 By Abid Thyab Al Ajeeli

Abstract- This work describes an intelligent framework that enables the derivation of stems from
inflected words. Word stemming is one of the most important factors affecting the performance
of many language applications including parsing, syntactic analysis, speech recognition, retrieval
systems, medical systems, tutoring systems, biological systems,…, and translation systems.
Computational stemming is essential for dealing with some natural language processing such as
Arabic Language, since Arabic is a highly inflected language. Computational stemming is an
urgent necessity for dealing with Arabic natural language processing. The framework is based on
logic programming that creates a program to enabling the computer to reason logically.

This framework provides information on semantics of words and resolves ambiguity. It
determines the position of each addition or bound morpheme and identifies whether the inflected
word is a subject, object, or something else. Position identification (expression) is vital for
enhancing understandability mechanisms. The proposed framework adapts bi-directional
approaches. It can deduce morphemes from inflected words or it can build inflected words from
stems. The proposed framework handles multi-word expressions and identification of names.

Keywords: natural language, knowledge base, morphological analysis, inflected words, logic-
based, definite-clause, context-free grammar.

GJCST-G Classification : D.3.3, H.2.3

AnIntelligentFrameworkforNaturalLanguageStemsProcessing

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 16 Issue 1 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Intelligent Framework for Natural Language
Stems Processing

Abid Thyab Al Ajeeli

Abstract- This work describes an intelligent framework that
enables the derivation of stems from inflected words. Word
stemming is one of the most important factors affecting the
performance of many language applications including parsing,
syntactic analysis, speech recognition, retrieval systems,
medical systems, tutoring systems, biological systems,…, and
translation systems. Computational stemming is essential for
dealing with some natural language processing such as
Arabic Language, since Arabic is a highly inflected language.
Computational stemming is an urgent necessity for dealing
with Arabic natural language processing. The framework is
based on logic programming that creates a program to
enabling the computer to reason logically.

This framework provides information on semantics of
words and resolves ambiguity. It determines the position of
each addition or bound morpheme and identifies whether the
inflected word is a subject, object, or something else. Position
identification (expression) is vital for enhancing
understandability mechanisms. The proposed framework
adapts bi-directional approaches. It can deduce morphemes
from inflected words or it can build inflected words from stems.
The proposed framework handles multi-word expressions and
identification of names. The framework is based on definite-
clause grammar where rules are built according to Arabic
patterns (templates) using programming language prolog as
predicates in first-order logic.

This framework is based on using predicates in first-
order logic with object-oriented programming convention
which can address problems of complexity. This complexity of
natural language processing comes from the huge amount of
storage required. This storage reduces the efficiency of the
software system. In order to deal with this complexity, the
research uses Prolog as it is based on efficient and simple
proof routines. It has dynamic memory allocation of automatic
garbage collection. This facility, in addition to relieve the
programmers from the notions of memory usage, makes it
possible for class hierarchies, inheritance, and message
passing to be generated automatically at run time. That means
the logic programming language has capabilities for
developing oriented mechanisms that can be taught about
classes or new relationships between existing classes.
Keywords: natural language, knowledge base,
morphological analysis, inflected words, logic-based,
definite-clause, context-free grammar.

I. Introduction

ord stemming is one of the most important
factors affecting the performance of many
natural language processing applications such

information retrieving systems, machine pattern

Author: Higher Education Committee, C. O. R.
e-mail: abidtj@yahoo.com

recognition, machine translation, speech tagging, and
many other systems. The study of natural language
processing using computers is as old as the introduction
of computer software. Advances in this area lead to the
improvement of man-machine communications. In
particular, interfaces to databases and intelligent
systems can handle interaction in restricted subsets of
natural languages.

Natural language processing is a computer
activity in which computers are entailed to analyze,
understand, alter, or generate natural language objects.
This includes the automation of any or all linguistic
forms, activities, or methods of communication, such as
conversation, correspondence, reading, dictation,
publishing, translation, lip reading, …, and written
composition. Natural language processing is also the
name of the branch of computer science, artificial
intelligence, and linguistics concerned with enabling
computers to engage in communication using natural
language(s) in all forms, including but not limited to
speech, print, writing, and signing (Foss 2004).

The Arabic language is one of the major natural
languages that place a great deal of emphasis on
morphology and syntax. More than 250 million people
speak it. Arabic is a synthetic or in other words, highly
inflected language. This means that the syntactic
relationship between nouns are indicated by case
ending and that verbs are inflected by means of prefixes,
infixes, and suffixes to indicate the various persons,
numbers, genders, derived forms, moods, and tenses.
Traditional Arabic morphology is described in terms of
roots and patterns. Roots are not words but sequences
of three or more consonants.

In addition, Arabic language has a number of
implications for the design of computer systems in
general. It has also quite distinguishable characteristics
that will add new aspects to natural language
processing. The technique used in this work is based on
two-level

descriptions of Arabic morphology. This

approach will make affixes (prefixes, infixes, and
suffixes) more easily understood and handled. The two-
level descriptions will be based on finite-automata and
regular expressions. But, first, a review of the basic
concepts of finite automata and the basic text
processing machines will be introduced and adapted to
capture Arabic structure concepts (Kelley, 1995;
Hopcroft & Ullman 1979).

W

23

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

Formally, a finite automaton is defined by a 5-
tuple (Q, Σ, δ, q0, F) where:
• Q is a finite set of states q0, q1, ..., qn,
• Σ is a finite input alphabet (a set of symbols),
• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final sates, and
• δ is the partial transition function mapping Q × (Σ

+ {ε}) to zero or more elements of Q.

For example, δ(q, أ) describes the next states,
for each state q and input symbol أ or it is undefined.
The notion of using finite automata is to model lexical
analyzer, syntactic analyzer, and even to associate
semantics with morphemes.

In this paper, we describe a software system
that has the capability of embodying some parts of
expert's facilities. The grammar rules of Arabic language
are transformed into first-order predicate logic, using the
programming language Prolog. The rules are developed
to analyze and to extract semantic information from
Arabic texts. The first-order predicate logic provides
three levels of analysis:
1. Syntax: Which deals with grammatical structure of

the underlying natural language. In addition to, the
opportunity of encoding meaning.

2. Semantics: Deals with the literal meaning with the
opportunity of including rules for wider meaning
contexts, and

3. Pragmatics: Deals with the real meaning of
sentences.

Stemming is a heuristic process that chops off
the ends of words to find the root word and often
includes the removal of derived affixes. It is used to
improve retrieval effectiveness and to reduce the size of
indexing files. Stemming is a common method for
morphological normalization of natural language texts.
Modern information retrieval systems rely on such
normalization techniques for automatic document
processing tasks. High quality stemming is sometimes
difficult in highly inflectional languages, for example,
Arabic and Indic languages. Little research has been
performed on designing algorithms for stemming of
texts in those languages (Sahari N. et al., 2013).

Computational stemming is an urgent problem
for Arabic Natural Language Processing, because
Arabic is a highly inflected language. The existing
stemmers have ignored the handling of multi-word
expressions and identification of Arabic names (Alhanini
& Abo Aziz 2011). For other inflected languages. Jain
and Agrawa (2015) claimed that they manage to parse,
for example, Hindi words to identify root words from
inflected words using natural language processing
(NLP) techniques.

In order to familiarize readers with the
complexities involved in the analysis and construction of
Arabic sentences, we illustrate briefly some of the funda-

mental features of Arabic (Ali 1988; Hamoody 1991; Al-
Douri 1992; Al Daimi 1994).

• Arabic script is written from right to left.
• Arabic language is an inflectional language and the

derivation in Arabic is based on morphological
patterns and the verb plays a greater inflectional
role. Furthermore, Arabic words are built up from
roots representing lexical and semantic connecting
elements. This is not the case, for example, with
English, which employs the stem as a basis for word
generation.

• Arabic offers the possibility of combining particles
and affixed pronouns to words and it involves
diacritization.

• Arabic is distinguished by its high syntactical
flexibility. This flexibility includes: the omission of
some prepositional phrases associated with verbs;
the possibility of using several prepositions with the
same verb while preserving the meaning; allowing
more than one matching case between the verb and
verbal subject and the adjective and its broken
plural qualified and the sharpness of pro-
nominalization phenomena where the pronouns
usually indicate the original positions of the words
before their extra-positioning, fronting and omission.
In other words, Arabic allows a great deal of
freedom in the ordering of words in a sentence.
Thus, the syntax of the sentence can vary according
to transformational mechanisms such as extra-
position, fronting and omission, or according to
syntactic replacement such as the use of an agent
noun in place of a verb.

• Arabic language is distinguished by its high context
sensitivity in several directions. On the writing level,
the shape of a letter depends on the letter that
precedes it and the one that follows it. On the
syntactic level, the different synthetic coherence
relations such as case ending, matching,
connecting, associating and pro-nominalization
represent various examples of syntactic context
sensitivity. Furthermore, the context sensitivity
feature extends to the lexicon where a lot of
vocables are influenced by their associated words.
The context sensitivity feature is not only limited to
letters, words and sentences but also applied to the
continuous context consisting of several sentences.
Arabic sentences are embedded and normally
connected by copulative, exceptive and adversative
particles. For this reason it is more difficult to identify
the end of an Arabic sentence than is the case with
other languages.

There are a number of applications that directly
borrow models and methods from both information
retrieval (IR) and natural language processing (NLP). A
short presentation of some of these applications is
mentioned below (Indurkhya et al., 2010):

24

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

1. Text categorization is a good example of an
application where research has been conducted in
the two communities, IR and NLP, in addition to, the
Machine Learning and Data Mining ones. Text
categorization aims at automatically assigning new
documents to existing categories. Most approaches
are currently based on machine learning, where
classified documents are used to automatically learn
a decision function. The way documents are
represented directly derives from the vector-space
model and the deferent weighting schemes (Can et
al., 2008).

2. A second application where methods from both IR
and NLP are used in document summarization,
which aims at providing a summary, in a few
sentences, of a document or a document collection.
Current approaches focus on extracting key
sentences or parts of sentences, from the document
or document collection and displaying them in an
appropriate way.

3. A third application is Biological NLP, which focuses
on the processing of text documents in the
biological domain. As for the medical domain, there
exist several knowledge bases in the biological
domain, which can be used to get a more accurate
representation of documents. The kind of
information searched for by biologists is complex,
and one needs to deploy a whole range of
technologies to be able to match the needs of
biologists (Doms and Schroeder, 2005). For terms
results in which a high proportion do not describe
any relationship between the proteins. More precise
queries, which include verbs describing interactions,
such as ‘interact’ and ‘regulate,’ are of term used to
significantly reduce the search space. Unfortunately
the information loss is unknown and the retrieved
abstracts still document other relationships, for
example, a tight coupling between the indexing
engine, the search engine, and the natural language
processing engine is required. Interested readers
are referred to (Chen and Sharp, 2004) for a detailed
presentation of the models and methods deployed
in this domain.

4. The fourth application is Question/Answering, which
aims at providing precise answers, as opposed to
whole documents or paragraphs as is traditionally
the case in IR, to questions. Most
Question/Answering systems rely on a tightly
coupled combination of IR and NLP techniques,
leading to systems that integrate many of the
existing technologies of those two domains (Bouma
at el., 2008; Chu-Carroll et al., 2002).

This paper is organized into a number of
sections. The next section provides some background
on related works. Section 3 provides a brief description
of lexical analysis mechanisms. It points out the

relationship between lexical analysis processes and
finite automata. Section 4 introduces the concepts of
logic programming and how it can be applied to natural
languages. Definite-clause grammar is explained in
section 5. The proposed model is discussed in section
6. System implementation is discussed in section 7.
Sections 8 and 9 draw a number of conclusions and
suggest new future research directions

II. Related Work

In linguistic morphology and information
retrieval, stemming is the process of reducing inflected
(or sometimes derived) words to their word stem, base
or root form—generally a written word form. The stem
need not be identical to the morphological root of the
word; it is usually sufficient that related words map to the
same stem, even if this stem is not in itself a valid root.
Algorithms for stemming have been studied in computer
science since the 1960s. Many search engines treat
words with the same stem as synonyms as a kind of
query expansion, a process called conflation. Stemming
programs are commonly referred to as stemming
algorithms or stemmers.

A stemmer for English, for example, should
identify the string "cats" (and possibly "catlike", "catty"
etc.) as based on the root "cat", and "stems", "stemmer",
"stemming", "stemmed" as based on "stem". A stemming
algorithm reduces the words "fishing", "fished", and
"fisher" to the root word, "fish". On the other hand,
"argue", "argued", "argues", "arguing", and "argus" reduce
to the stem "argu" (illustrating the case where the stem is
not itself a word or root) but "argument" and "arguments"
reduce to the stem "argument"

Many areas of natural language syntax and
semantics are a fruitful source of inspiration for
computer languages and systems designers. The
complexity of natural language and the high level of
abstraction of most linguistic and semantic theories
have motivated the emergence of highly abstract and
transparent programming languages. One of the most
striking examples is undoubtedly Prolog, initially
designed for natural language parsing, via
Metamorphosis Grammars (Colmerauer 1978).

For a few years, the Logic Programming
paradigm has been augmented with a number of
technical and formal devices designed to extend its
expressive power. New logic programming languages
have emerged, several of them motivated by natural
language processing problems. Among them let us
mention: CIL (Mukai 1985) designed to express in a
direct way concepts of Situation Semantics, MOLOG
(Farinas et al. 1985), an extension to Prolog designed to
specify in a very simple and declarative way the
semantics of modal operators and ~, -Prolog (Nadathur
and Miller 1988), designed to deal with X-expressions
and X-reduction.

25

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

https://en.wikipedia.org/wiki/String_literal�

The Logic Programming paradigm has been
augmented with the concept of constrained logic
programming (CLP). The basic research done within this
area amounts to specifying tools for a more refined
control on the type of values or terms a variable in a
program can stand for. Answers to goals can be
intentional: they are sets of equations (constraints) rather
than mere values. Furthermore, the idea at the
operational level, incorrect assignments are filtered out
as soon as they are encountered when building a proof,
making thus proof procedures more efficient.

The first step of any language processing
system is necessarily recognizing and identifying
individual words in the text. The mechanism used to
generate individual words must be based on word
morphology. Morphology systems can be used to
decompose words into word stems and word affixes. In
addition, such systems can be used to specify mood,
gender, number, and person.

Many systems have been designed to address
this issue. For example, Hegazi, & El-Sharkawi (1986)
developed a system that detects the roots of Arabic
words. This system is used to detect and correct

mistakes in spelling and vowelization. Another example
is a morphological analysis and generation system that
is used to examine the input word for different word
types and attempts to find all possible analyses (Saliba,
& Al-Danan, 1989, Mayfield 2001).

Haddad (Haddad al et. 2005) claimed that
research on computational Arabic is limited compared
with English and European languages. For the last two
decades, Arabic language received extensive focusing
in the fields of morphological and syntactical with little
attention on semantics and on deep analysis of its
structures.

One of the major breakthroughs in the field of
morphology was the two-level morphology. It is a
general computational model for word-form recognition
and generation (Koskenniemi, 1983). Lauri Karttunen
and others produced a LISP implementation of the two-
level morphology and named it KIMMO (Karttunen et al.
1992).
The KIMMO model consists of two components:
1. The rule component;
2. The lexical component (lexicon)

Figure 1 outlines the structure of the KIMMO model.

Figure 1

:

The KIMMO model structure

In 1990, the Summer Institute of Linguistics
produced PC-KIMMO version 1, an implementation of
the two-level model written in C. This implementation
was called PC-KIMMO (Antworth, 1990). This system
had a serious deficiency: It could not determine the part
of speech of a word or its inflectional categories
(Antworth 1992; Xu 2002).

Al-Shalabi and Evens designed a computer
system for Arabic morphology that employs a new and
fast algorithm to find roots and patterns for verb forms
and for nouns and adjectives derived from verbs (Al-
Shalabi & Evens, 1998, Young-Suk 2003). For languages
other than Arabic, a morphological syntax interface was
proposed that separates syntactic function from
morphological information

in sequence projection

architecture for the French language. This system was
designed by Frank and Zaenen

(2000). A number of

morphological systems, based on finite-state analysis,

have also been developed by Beesley (1996, 1998a,
1998b).

III.

Lexical Analysis

Lexical analysis is the process of converting an
input stream of characters into a set of words or tokens.
Tokens are groups of characters with collective
significance. Lexical analysis is the first stage of
information gathering and natural language
understanding.

The heart of a lexical analyzer generator is its
algorithmic approach for producing a finite state
machine. The algorithm presented in this paper is based
on building finite automata with the minimum number of
deterministic finite states using

types of regular

expressions adapted for lists of strings. During machine
generation, the algorithm labels each state with the set
of strings the machine would accept if that state were

26

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

the initial state. It is easy to examine these state labels to
determine:

• The transition out of each state,
• The target state for each transition, and
• The states that are final.

To familiarize the reader with state labels, we
provide examples that demonstrate the viability of the
finite automaton mechanisms.
Case Study 1:

Suppose a state is labeled with the set of strings
{a, an, any, and, in, into, to, too, many, more, most}.
This state must have transitions on {a, i, t, and m}. The
transition on a must go to states labeled with the set { n,
nd, ε}, the transition on i goes to states labeled { n, nto
} ,..., and the transition on t goes to states labeled
{o,oo} as in Figure 2 (Frakes & Baeze-Yates 1992).

Figure 2 shows a typical finite state machine
that can be used by a lexical analyzer algorithm where
an initial states q0 with an input {a, an, and, any} can
produce a new state qi, which could be a final state. In
this case, the input left is ∈ {ε, n, nd, ny}. Once the
traversal reaches q11 then nothing of the specified input

is left, i.e. {ε}. The input is exhausted in a similar way if
one travels along the edge q0 → q6 → q10 → q11

In other words, if we start reading the letter t at
q0 then control will be transferred to state q6 with
unexhausted input {o, oo}. If an o is read then this takes
us to q10 which is an accepting state with input {ε, o}. If
no more input characters are read then input is
terminated. If more input characters are available then
we traverse the arc labeled {o} to state q11 which is a
final state, i.e., input is terminated.

 Figure 2 : Lexical analysis based on a finite automaton

Case Study 2:
This case study deals with strings from Arabic

language. For the sake of readers unfamiliar with the
Arabic Language words, we will first define the Arabic
alphabet. The Arabic alphabet is an ordered set of 28
consonant letters:

ي، و، هـ، ن، م، ل، ك، ق، ف، غ، ع، ظ، ط، ض، ص، ش، س، ز، ر، ذ، }
 .{ د، خ، ح، ج، ث، ت، ب، أ

The initial state q0, of the finite machine, is
labeled with the following set of strings

.{.جامع، جامعة ، يجمع ، مجموع ، مجموعة ، جمع ، جماعة}

This set corresponds to {mosque, university,
collect, total, sum, group of, summed up}. We want to

generate all words of the set from the morpheme جمع" ".
Figure 3 displays this example using a finite automaton
representation.

27

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

28

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

Figure 3 : Arabic Lexical Analyzer Based on Finite automaton

The morpheme " مجموع " , for example, can be
constructed by the following arcs from q0 → q1 → q2 →
q4 → q5 → q4 → q6. This generation is applicable for the
family of morphemes listed below:

جامع ، جامعة ، يجمع ، مجموع ، مجموعة ، جمع ، جماعة
If the building blocks of natural language texts

are words, then words are important units of information,
and language-based applications should include some
mechanism for registering their structural properties.
Finite state techniques have long been used to provide
such a mechanism because of their computational

effectiveness, and because of their inevitability. They can
both be used to generate morphologically complex
forms from underlying representations, and parse
morphologically complex forms into underlying
representations (Indurkhya & Damera 2010),
Case Study 3:

This case study demonstrates how a variety of
strings can be generated using a simple finite
automaton. For example, the string “قمنا “in Figure 4, can
be generated by the following arcs (reading from right to
left) 0 1 5 12 16.

Figure 4 : Lexical Analyzer for Variety Sets of Strings

We believe that a lexical analyzer based on finite
automata provides efficient mechanisms of converting
strings of characters into useful tokens. It also provides
efficient methods for developing Arabic spelling
checkers.

IV. Logic Programming and Natural
Languages

The rule-based approach has successfully been
used in developing many natural language processing
systems. Systems that use rule-based transformations
are based on a core of solid linguistic knowledge. The
linguistic knowledge acquired for one natural language

processing system may be reused to build knowledge
required for a similar task in another system.

The motivations of the rule-based approach
over the corpus-based approach a:
1. Less-resourced languages, for which large corpora,

possibly parallel or bilingual, with representative
structures and entities are neither available nor
easily affordable, and

2. For morphologically rich languages, which even with
the availability of corpora suffer from data
sparseness.

These have motivated many researchers to fully
or partially follow the rule based approach in developing

their Arabic natural processing tools and systems. In this
paper we address our successful efforts that involved
rule-based approach for different Arabic natural
language processing tasks (Shaalan, K., 2010).

Natural language processing may require a
huge amount of storage. This storage may reduce the
efficiency of a software system. Using Prolog with
object-oriented programming convention can address
problems of complexity. Prolog is based on an efficient
and simple proof routines (Warren, & Pereira, 1980). It
has dynamic memory allocation of automatic garbage
collection (Roth, 1992). This facility, in addition to relieve
the programmers from the notions of memory usage,
makes it possible for class hierarchies, inheritance, and
message passing to be generated automatically at run
time. That means, Prolog has capabilities for developing
oriented programs that can be taught about classes or
new relationships between existing classes.

The Prolog approach yields prototyping
systems that can provide convenient methods for testing
the viability of rules effectively. Although Prolog
implementation may not produce fast enough systems
for actual use, it provides developers with sufficient
details and opportunities for efficiently designing,
implementing, and testing systems (Veres and Molnar,
2010).

Using such an approach in developing software
systems that analyzes natural languages can aid in
producing software code in small sizes compared with
conventional high-level languages. In addition, the
software can be organized so that it can easily be
developed, understood, and maintained. Prolog is
suitable for designing definite-clause grammar by which
the grammar rules of the language can be translated
and then the underlying language becomes executable
code in Prolog.

It is convenient to restrict attention to predicate
logic programs written in clausal form. Such programs
have an especially simple syntax that has the expressive
power of the full predicate logic. A sentence is a finite
set of clauses. A clause is a disjunction L1 V …V Ln of
literals Li which are atomic formulas P(tl, . . . , tm) or the
negations of atomic formulas P(tl tm), where P is a
predicate symbol and ti are terms. Atomic formulas are
positive literals. Negations of atomic formulas are
negative literals. A term is either a variable or an
expression f(tl tm) where f is a function symbol and ti

are terms. Constants are 0-ary function symbols. A set of
clauses {C1 , Cn} is interpreted as the conjunction, C1
and.., and Cn. A clause C containing just the variables
x1,..., xm is regarded as universally quantified for all x1, .
.., xm

For every sentence S1 predicate logic there
exists a sentence S2 in clausal form which is satisfiable if
and only if S1 is exist. For this reason, all questions
concerning the validity or satisfiability of sentences m
predicate logic can be addressed to sentences in

clausal form. Methods for transforming sentences into
clausal form are described in (Nilsson, 1971). We have
defined that part of the syntax of predicate logic which is
concerned with the specification of well-formed
formulas.

We know that we can often make “generate-
and-test” more efficient by pushing the test closer to the
generation. How can we do this in the current situation?
We do this by letting predicates like noun perform both
the recognition and the splitting. We do this by letting
them accept the front of a list, and return the rest of the
list (Kautz , 2004).

sentence(Tokens, Rest) :- nounphrase(Tokens, More),

 verbphrase(More, Rest).

nounphrase(Tokens, Rest) :- det(Tokens, More),

noun(More, Rest).

verbphrase(Tokens, Rest) :- verb(Tokens, Rest).

verbphrase(Tokens, Rest) :- verb(Tokens, More),

nounphrase(More, Rest).

noun([man | Rest], Rest).

noun([apple | Rest], Rest).

verb([eats | Rest], Rest).
 verb([sings | Rest], Rest).

det([the | Rest], Rest).

Queries can be issued as follows:

sentence([the, woman, eats, the, banana], Rest)

No.1 : Rest = [the, banana]

No.2 : Rest = [].

V. Definite-Clause Grammars

The fundamental principle of normal language
theory is that a language can be described in terms of
how its sentences are constructed (Colmeraurer, 1975).
That is:

1.

A

sentence is a string (a sequence) of symbols
defined by rules for strings

2.

A

language is a set of sentences defined by rules for

sets.

According to the above definition, we can define
a grammar as: a collection of rules for specifying what
sequences of symbols are acceptable as sentences
(statements) of that language.

Computer scientists have adapted the ideas of
formal language theory to the study of natural
languages, in the form of context-free grammars
(CFGs). In CFGs the basic symbols or words of the
language that they describe are identified by terminal
and non-terminal symbols. The terminal symbols are
basic constructs of the language. The non-terminal
symbols can be factorized into terminal and/or non-
terminal symbols. Colmeraurer and Kowalski describe a

29

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

method to translate special purpose formalism CFGs
into a general one in the form of first-order predicate
logic (Colmerauer, 1975; Kowalski, 1974; Waren &
Pereira, 1980). The method is known as a Definite
Clause Grammar (DCG). According to DCGs, rules of a
grammar describe which strings of symbols are valid
statements of the language.

Parsing a rule of DCGs, using Prolog, is
accomplished by transforming it into a theory and trying
to prove its validity by applying logical reasoning. The
proof either fails or succeeds. Pereira and Warren
explain the efficiency of DCGs as follows:

"If a CFG is expressed in definite clauses according to
the Colmeraurer-Kowalski method, and executed as a
Prolog program, the program behaves as a efficient
top-down parser for the language that CFG describes.
This fact becomes particularly significant when
coupled with another discovery that the technique for
translating CFGs into definite clauses has a simple
generalization, resulting in a formalism far more
powerful than CFGs, but equally amenable to
execution by Prolog".

According to the Colmeraurer-Kowalski claim,
the definite-clause grammar mechanism is suitable for
building a logic-based framework for computational
linguistics.

VI. A Logic-Based Framework for
Inflected Language Words

There are several types of stemming algorithms
with different performance and accuracy. The various
algorithms are characterized by how certain stemming
obstacles are overcome.

A simple stemmer algorithm looks up the
inflected form in a lookup table. The advantages, of this
algorithm, are simple, fast, and easily handle exceptions.
The disadvantages are that all inflected forms must be
explicitly listed in the table: new or unfamiliar words are
not handled, even if they are perfectly regular (e.g. iPads
~ iPad), and the table may be large. For languages with
simple morphology, like English, table sizes are modest,
but highly inflected languages like Arabic may have
hundreds of potential inflected forms for each root. A
lookup approach may use preliminary part-of-speech
tagging to avoid over stemming (Alhanini & Abo Aziz
2011).

The lookup table used by a stemmer is
generally produced semi-automatically. For example, if
the word is "run", then the inverted algorithm might
automatically generate the forms "running", "runs",
"runned", and "runly". The last two forms are valid
constructions, but they are unlikely.

Suffix stripping algorithms do not rely on a
lookup table that consists of inflected forms and root
form relations. Instead, a typically smaller list of "rules" is
stored which provides a path for the algorithm, given an

input word form, in order to find its root form. Some
examples of the rules, from English texts for ease of
readability only, include:

• If the word ends in 'ed', remove the 'ed',
• If the word ends in 'ing', remove the 'ing',
• If the word ends in 'ly', remove the 'ly'.

Suffix stripping algorithms enjoy the benefit of
being much simpler to maintain than brute force
algorithms, assuming the maintainer is sufficiently
knowledgeable in the challenges of linguistics and
morphology and be able to encoding suffix stripping
rules. Suffix stripping algorithms are sometimes
regarded as crude given the poor performance when
dealing with exceptional relations (like 'ran' and 'run').

The solutions produced by suffix stripping
algorithms are limited to those lexical categories which
have well known suffixes with few exceptions. This,
however, is a problem, as not all parts of speech have
such a well formulated set of rules.

Suffix stripping algorithms may differ in results
for a variety of reasons. One such reason is whether the
algorithm constrains whether the output word must be a
real word in the given language. Some approaches do
not require the word to actually exist in the language
lexicon (the set of all words in the language).
Alternatively, some suffix stripping approaches maintain
a database (a large list) of all known morphological word
roots that exist as real words. These approaches check
the list for the existence of the term prior to making a
decision. Typically, if the term does not exist, alternate
action is taken. This alternate action may involve several
other criteria. The non-existence of an output term may
serve to cause the algorithm to try alternate suffix
stripping rules.

It can be the case that two or more suffix
stripping rules apply to the same input term, which
creates an ambiguity as to which rule to apply. The
algorithm may assign (by human hand or stochastically)
a priority to one rule or another. Or the algorithm may
reject one rule application because it results in a non-
existent term whereas the other overlapping rule does
not. For example, given the English term friendlies, the
algorithm may identify the ies suffix and apply the
appropriate rule and achieve the result of friendl. friendl
is likely not found in the lexicon, and therefore the rule is
rejected (Dolamic, et al. 2007).

One improvement upon basic suffix stripping is
the use of suffix substitution. Similar to a stripping rule, a
substitution rule replaces a suffix with an alternate suffix.
For example, there could exist a rule that
replaces ies with y. How this affects the algorithm varies
on the algorithm's design. To illustrate, the algorithm
may identify that both the ies suffix stripping rule as well
as the suffix substitution rule apply. Since the stripping
rule results in a non-existent term in the lexicon, but the
substitution rule does not, the substitution rule is applied

30

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

https://en.wikipedia.org/wiki/Lookup_table�
https://en.wikipedia.org/wiki/Lexical_category�

instead. In this example, Friendlies becomes friendly
instead of friendl.

An intelligent framework based the above
algorithms and on logic programming (logic-based)
which enable deriving stems from inflected words
(inflected words in Arabic language may form a
complete meaningful sentence such as "أنلزمكموها" . The
word "انلزمكموها" is a meaningful sentence which can be
factorized into و + كم + لزم + ن + أـ ه +ا +" " which can
be written as: prefix* + stem + postfix* where prefix*
and postfix* is a regular expression repeated zero or
more times. The framework also provides semantics of

words and resolves ambiguity. It also determines the
position for each addition (prefix, infix, or postfix) or
bound morpheme and whether it is a subject, object or
anything else. Position identification or position
expression (الإعراب) is a vital necessity for enhancing
understandability mechanisms. Our system is a bi-
directional approach. It can deduce morphemes from
inflected words or it can build inflected words from
stems. The proposed software system is based on
Definite Clause Grammar where rules are built according
to patterns. Table 1 shows a sample of inflected
morphemes.

Table l : Inflected Morphemes

Inflected
morphemes

Postfix Infix Prefix Stem

 درس الـ الدرس
 غسل الـ + م ة المغسلة
 كبر أ أكبر

 أكل و أكول
 علمّ هم علمّهم

 سهل و ة سهولة
 سافر م مسافر

 In general, the inflected morphemes are modeled by definite-clause grammar rules as follows:

 inflected-morphemes → prefix + stem | prefix + stem + postfix |stem + infix |
 stem + infix + postfix | prefix + stem + infix + postfix

For example, the inflected morpheme سهولة can
be identified as a pattern (templates) of the form " فعولة "
which has two additions: infix and postfix. The infix is " و

" the postfix is " according to a سهل and the stem is " ة
pattern of the form " فعل" .

The finite automaton in figure 5 shows how rules
can be used to derive morphemes when arcs are
traversed in either direction.

Figure 5 : Derivation Rules

Arabic language distinguishes between
feminine and masculine morphemes. It also
distinguishes between single, dual, feminine safe plural
and/or masculine safe plural morphemes. Figure 5

shows how those can be generated. For example, dual
masculine, dual feminine, masculine safe plural and
feminine safe plural morphemes can respectively be
modeled as follows:

dual-masculine → stem + " ين " | stem + " ان "

dual-masculine-derivation dual-masculine + suffixes*

dual- feminine → stem + " تين " | stem + " تان "

dual-masculine-derivation dual- feminine + suffixes*

masculine-safe-plural → stem + " ون " | stem + " ين "

masculine-safe-plural-derivation masculine-safe-plural + suffixes*

31

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

feminine-safe-plural → stem + " ات "
feminine-safe-plural-derivation feminine-safe-plural + suffixes*

Where suffixes* is a regular expression that can
be repeated zero or more times. It could be a pronoun
and/or any other additives.

Previous researchers either store all inflected
words in a lexicon, which is impractical and unrealistic,
or store meaningful stems. The proposed approach is

based on special patterns (templates). It associates
meaning with the basic roots in order to deduce
morpheme meanings. As a result, when a text file is
read, stems, bound morphemes, meaning, and
positions are deduced. The architecture of the
framework is outlined in figure (6).

Figure (6) : Architecture of the Proposed Framework

The architecture of the framework is made up of
a number of components. The dialog accepts a text and
then passes it to the lexical analyzer in order to
decompose the text into a list of tokens.

Morphological facts are usually represented as
a set of features expressed as attribute value pairs, for
example, number is equivalent to singular, tense is
equivalent to past participle and so on. Association of
morphological features has the notion of agreement,
where the form of one word depends on the features of
another, or elements of a certain constituent may share
certain features.

This structure can be used either to generate
the appropriate inflected forms from the base forms and

their feature specifications, or to give an analysis of the
character strings in the reverse direction. Although our
system deals only with the morphology for verbs and
nouns derived from verbs or in other words verb
sentences, it can easily be extended to incorporate other
morphemes that are not derived from verbs, which we
will address in our future work.

VII.

System Implementation

The system has been implemented using PDP
Prolog running on an IBM-compatible machine. A
number of experiments have been conducted and the
average has been computed. Table 2 records some
findings.

Table 2 : Performance Results

Experiment Number of words analyzed (sentences) Average percentage of successfully analyzed sentences

1 6554 words extracted from a book 93.25%

2 5466 words extracted from newspaper 93.21%

3 2269 words extracted from Quran 90.73%

32

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

The beauty of logic implementation is its ability
to express output in a format readable by humans and
by machines. It is possible to write rules that can be fired
when outputs are required to be read automatically by
computer programs.

The logic rules below provide bi-directional
morphological analysis. Below is a small fragment of the
Prolog program. For example, the first rule run is an
abstracted predicate with two arguments. The first one is
“list” which is an input argument. The second argument
is “W_rest” which is an output argument returning a
word or parts of a word that has not been recognized.
List is then factorized into five positions; L1, أ, , L3, L4,
and the rest is R. If an آلف" أ" is found in the second
place and, the word has more than four positions, then
this predicate will be processed. Otherwise control will
backtrack to the next predicate until a match has been
found or failure has occurred. A sample of predicates in
first-order logic that deals with inflected Arabic words is
outlined below. There are several predicates, each deals
with different alternative, as shown below.
run (List, W_rest):-
 List = [L1, "ا", L3, L4 | R],
 List1 = [L1, "ا", L3, L4],
 collect(List1, W_rest),
 chk1(R, Type),!,
 write(Type).
run(List, W_rest):-
 List = [L1, "ا", L3, L4],
 List1 = [L1, "ا", L3, L4],
 collect(List1, W_rest).
run(List, W_rest):-
 List = [L1, "ي", L3],
 List1 = [L1, "ا", L3],
 collect(List1, W_rest).
run(List, W_rest):-
 List = [L1, L2, "ؤ" | R],
 List1 = [L1, L2, "ء"],
 collect(List1, W_rest),
 chk1(R, Type),!,
 write(Type).
run(List, W_rest):-
 List = [L1, "ئـ" ,"ي" | R],
 List1 = [L1, "ء" , "ا"],
 collect(List1, W_rest),
 chk1(R, Type),!,
 write(Type).
run(List, W_rest):-
 List = [L1, "ي", L3| R],
 List1 = [L1, "ا", L3],
 collect(List1, W_rest),
 chk1(R, Type),!,
 write(Type).
run(List, W_rest):-
 collect(List, W_rest),

 str_len(W_rest, 3),!,
 write(W_rest),nl.
run(List, Verb):-
 List = [Ch1,Ch2,Ch3|R],
 collect([Ch1, Ch2, Ch3], Verb),
 chk1(R, Type),!,
 write(Type).
run(List, Verb):-
 List = [Ch1,Ch2,Ch3, Ch4|R],
 Ch1 = "س" , Ch2 <> "ا" ,
 collect(["ا", Ch1, Ch2, Ch3, Ch4], Verb),
 chk1(R, Type),!,
 nl, write(Type).
run(List, Verb):-
 List = [Ch1,Ch2,Ch3, Ch4|R],
 collect([Ch1, Ch2, Ch3, Ch4], Verb),
 chk1(R, Type),!,
 nl, write(Type).
run(List, Verb):-
 List = [Ch1,Ch2,Ch3, Ch4, Ch5 |R],
 Ch1 = "س" ,
 collect(["ا", Ch1, Ch2, Ch3, Ch4, Ch5], Verb),
 chk1(R, Type),!,
 nl, write(Type).

The sentences accepted by finite automata are
regular sentences. In other words, there exists a finite
automaton FA that accepts S(r) for any regular
expression r. The structure of the proposed framework
accepts S(r) in O (|r|) time and space. Although
minimization is not considered, an algorithm can be
constructed to minimize a deterministic FA with n states
in O(|Σ|n log n). A number of queries is listed in
Appendix I.

VIII. Future Works

The intelligent framework is expected to facilitate
converting natural language chunks of text into more
formal representations such as definite-clause grammar
structures that are easier for computer programs to
manipulate trough the logic programming
implementation. This facilitation will involve the
identification of a specific semantic from multiple ones.
These identifications can be derived from natural
language expressions which take the form of organized
notations of natural language concepts. The framework
may be extended in future research so that be able to
convert information from computer storage into readable
human language form.

The future research should concentrate on
devising methods for inducing transformation rules that
map natural-language sentences into a formal query or
command language. The approach assumes a formal
grammar for the target representation language and
learns transformation rules that exploit the non-terminal
symbols in this grammar (Kate et al. 2005; Gildea et al.

33

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

https://en.wikipedia.org/wiki/Computer�

2002). The learned transformation rules incrementally
map a natural language sentence or its syntactic parse
tree into a parse-tree for the target formal language.

The future work may include also an intelligent
interface within the proposed framework to derive high
quality items of information through the process of
devising patterns and trends using statistical pattern
learning.

IX. Conclusions

The logic programming approach has
successfully been used in developing many natural
language processing systems. Systems that use logic
programming transformations are based on a core of
solid linguistic knowledge. The linguistic knowledge
acquired for one natural language processing system
may be reused to build knowledge required for a similar
task in another system. The advantage of the logic
programming approach over the corpus-based
approach is for less-resourced languages, for which
large corpora, possibly parallel or bilingual, with
representative structures and entities are neither
available nor easily affordable, and for morphologically
rich languages, which even with the availability of
corpora suffer from data sparseness.

These have motivated many researchers to fully
or partially follow the logic programming approach in
developing their Arabic natural processing tools and
systems. In this paper we address our successful efforts
that involved rule-based approach for Arabic natural
language processing tasks. The proposed system has
been developed for deriving stems from inflected words
using the logic programming language Prolog. The
suggested design was based on:
− Knowledge-based mechanism embodying facts and

rules,
− Inference mechanism uses the knowledge base,

and a query mechanism initiated by users.
The intelligent framework is used to facilitate the

analyses and understanding strings from natural
language. The texts are first tokenized in order to identify
patterns of characters in the stream and to produce a
stream of words or tokens. The tokenized text is then
parsed to recognize syntactic objects according to
Arabic language grammar rules.

The proposed system is a step in the direction
of analyzing and understanding natural language texts. It
is also potentially useful for enhancing automatic
translation (Domain Specific). We conclude that there is
a good case to be made from the adaption of expert
systems to be used for natural languages processing.
This work opens the door for more multilingual
stemming research that applies morphological rules of
two or more languages simultaneously instead of rules
for one single language when interpreting a search
query.

References Références Referencias

1. Al Daimi, K. and Abdel-Amir, M. A., (1994). The
Syntactic Analysis of Arabic by Machine, Computers
and Humanities, 28, pp. 29-37.

2. Alhanini, Y and Ab Aziz, M. J., (2011). The
Enhancement of Arabic Stemming by Using Light
Stemming and Dictionary-Based Stemming, Journal
of Software Engineering and Applications, 2011, 4,
522-526.

3. Al-Shalabi, R. & Evens, M. (1998). A Computational
Morphology System for Arabic, Computational
Approaches to Semitic Languages Workshop,
COLING 98, Montreal, Canada, pp. 66-72.

4. Antworth, E. L., (1990). PC-KIMMO: A two-level
processor for morphological analysis. Number 16 in
occasional publications in academic computing.
Summer Institute of Linguistics, Dallas.

5. Antworth, E. L., (1992). Glossing Text with the PC-
Kimmo Morphological Parser. Computers &
Humanities. Vol. 26, Nos. 5-6, pp. 389-398.

6. Beesley, K., (1996). Arabic Finite-State
morphological analysis and penetration", in
COLLING'96, Vol. 1, pp.89-94, the 16th International
Conference on Computational Linguistics.

7. Beesley, K., (1998a). Arabic morphological analysis
on Internet, In ICEMCO-98, Proceedings of the 6th

International Conference and Exhibition on
Multilingual Computing, 3.1.1.

8. Beesley, K., (1998b). Arabic morphology using only
finite-state operation, in Michael Rosner, editor,
computational approaches to Semitic languages,
Proceedings of the workshop, pp. 50-57.

9.

Bornat, R. (1985) Understanding & Writing
Compilers, Macmillan Publishers Ltd.

10.

Bouma,

G.,

J.

Mur,

G.

van

Noord,

L.

vander

Plas,

and

J.

Tiedemann

(2008). Question answering with

joost at CLEF

2008.

Workshop of Cross-Language

Evaluation Forum

(CLEF2008),

Aarhus, Denmark.

11.

Can, F., Kocberber, S., Balcik, E., Kaynak, C.,
Ocalan, H.C., (2008). Information retrieval on Turkish
texts. Journal

of

the

American

Society

for

Information

Science

and

Technology,

59, pp.
407–421.

12.

Chen, H. and B. M. Sharp (2004). Content-rich
biological network constructed by mining Pub

Med

abstracts. BMC Bioinformatics5, pp. 1471–2105.

13.

Chu-Carroll, J., J. Prager, C. Welty, K. Czuba, and D.

Ferrucci (2002, November). A multi-strategy and
multi-source approach

to

question answering

.Eleventh Text Retrieval Conference, Volume 500-
251 of NIST Special Publications, Gaithersburg, MD.
National Institute of Standards and Technology.

14.

Colmeraurer, A.,

(1975). Les Grammaires de

Metamorphose, Groupe d'Intelligence Artificielle,
University' de marseille-Luminy.

34

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

15. Colmerauer, A., (1978). Metamorphosis Grammars,
in: Natural Language Understanding by Computer,
Lecture notes in Computer Science, L. Bole Edt.,
Springer-Verlag, 1978.

16. Dolamic, Ljiljana; and Savoy, Jacques. (2007).
 Stemming Approaches for East European
Languages (CLEF 2007).

17. Doms, A. and Schroeder M., (2005). GoPubMed:
exploring PubMed with the Gene Ontology. Nucleic
Acids Research33, pp. 783–786.

18. Farinas del Cerro, L., Arthaud, A., (1985). Molog:
Programming in Modal Logic, Fifth Generation
Computing journal, 1985.

19. Frakes, W., & Baeza-Yates, R. (1992), Editors.
Information Retrieval: Data Structures & Algorithms,
Prentice-Hall,.

20. Frank, A., & Zaenen A., (2000).Tense in LFG: Syntax
and Morphology. To appear in Hans Kamp and Uwe
Reyle: "Tense and Aspect Now".

21. Foss, S., (2004). "Framing the Study of Visual
Rhetoric: Toward a Transformation of Rhetorical
Theory." In Defining Visual Rhetorics. Ed. Charles A.
Hill and Marguerite Helmers. Mahwah, New Jersey:
Lawrence Erlbaum, PP. 303-313.

22. Gildea D. and Jurafsky D., (2002). Automated
labeling of semantic roles, Computational
Linguistics Vol. 28, No. 3, pp. 245–288.

23. Haddad B. and Yaseen M. (2005). A Compositional
Approach towards Semantic Representation and
Construction of Arabic, pp. 147-161, in the
proceedings of the 5th International Conference,
LACL, Bordeaux, France, April 28-30, 2005, Edited
by Blache P., Stabler E., Busquets J. & Moot R.,
Published by Springer-Verlag Berlin Heidelberg.

24. Hammouri, A., (1994). An Arabic Lexical Database
to Support Natural Language Processing"
Unpublished Ph.D. dissertation, IL, Illinois Institute of
Technology.

25. Hegazi, N. and El-Sharkawi, A., (1986). Natural
Arabic Language Processing, Proceeding of the 9th
National, Computer Conference and Exhibition,
Riyadh, Saudi Arabia, pp. 10-5-3.

26. Hopcroft, J., & Ullman, J., (1979). Introduction to
Automata Theory, Reading Mass, Addison-Wesley.

27. Indurkhya, N. and F. J. Damera Editors, (2010).
Handbook of Natural Language Processing, 2nd
edition, by Taylor and Francis Group, LL.

28. Karttunen, L., Kaplan R., and Zaenen A., (1992).
Two-level Morphology with composition,
Proceedings of the 14th International Conference on
Computational Linguistics COLLING-92, Volume I,
pp. 141-148, Nantes, France.

29. Jain, L., Agrawa P., (2015). Text independent root
word identification in Hindi language using natural
language processing, International Journal of
Advanced Intelligence Paradigms.

30. Kate R. J., Wong Y. W., Mooney R. J., (2005).
Learning to Transform Natural to Formal Languages,
Proceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI-05), pp. 1062--1068,
Pittsburgh, PA, July 2005.

31. Kautz, H., (2004). Natural Language Understanding,
Retrieved from https://courses.cs.washington.edu/
courses/csep573/04au/lectures/nlp-all.pdf, July
2016.

32. Kelley, D., (1995). Automata and Formal Languages,
Prentice-Hall, Englewood Cliffs, NJ.

33. Koskenniemi, K., (1983). Two-level Morphology: a
general computational model for word-form
recognition and production, University of Helsinki,
department of General Linguistics, publications No
11.

34. Kowalski, R., (1974). Predicate Logic as
Programming Language, Proc. IFIP 74, Stockholm.

35. Nadathur, G., Miller, D., (1988). An overview of 2.-
Prolog, Technical report MS-CIS-88-40, University of
Pennsylvania.

36. Nilsson, N. J., (1971). Problem Solving Methods m
Artificial intelligence, McGraw-Hill, New York.

37. Mayfield, J., McNamee, P., Costello, C., Piatko, C.,
and Banerjee, (2001). A. JHU/APL at TREC 2001:
Experiments in filtering and in Arabic, video, and
web retrieval. In TREC 2001. Gaithersburg: NIST,
2001.

38. Mukai, K.., (1985). Unification over Complex
Indeterminate, Fifth Generation Computer Journal.

39. Roth, A., (1992). Prolog a Better Bet Than C++?
Program Now, pp. 51-53.

40. Saharia, N., K. M. Konwar, U. Sharma, J. K. Kalita,
(2013), An Improved Stemming Approach Using
HMM for a Highly Inflectional Language,
Computational Linguistics and Intelligent Text
Processing, Volume 7816 of the series Lecture
Notes in Computer Science, pp. 164-173

41. Saliba, B., & Al-Dannan, A. (1989). Automatic
Morphological Analysis of Arabic: A study of content
word analysis" Proceeding of the first Kuwait
Computer Conference, Kuwait, Mar, pp. 3-5.

42. Shaalan, K., (2010). Rule-based Approach in Arabic

Natural Language Processing, International Journal
on Information and Communication Technologies,
Vol. 3, No. 3, June 2010.

43. Xu, J., Fraser, A., and Weischedel, R. (2002).
Empirical studies in strategies for Arabic retrieval. In
Sigir 2002. Tampere, Finland: ACM, 2002.

44. Young-Suk Lee, Kishore Papineni, Salim Roukos,
Ossama Emam, and Hany Hassan. (2003).
Language Model Based Arabic Word Segmentation,
for Computational Linguistics, July 2003, pp. 399-
406. Proceedings of the 41st Annual Meeting of the
Association.

35

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

http://clef.isti.cnr.it/2007/working_notes/DolamicCLEF2007.pdf�
http://clef.isti.cnr.it/2007/working_notes/DolamicCLEF2007.pdf�
http://clef.isti.cnr.it/2007/working_notes/DolamicCLEF2007.pdf�
http://www.inderscienceonline.com/author/Jain%2C+Leena�
http://www.inderscienceonline.com/author/Agrawal%2C+Prateek�

45. Van Emden, M. H. and Kowalski R. A., (2016). The
Semantics of Predicate Logic as a Programming
Language, Retrieved from http://www.doc.ic.ac.uk/
~rak/papers/kowalski-van_emden.pdf, July 2016.

46. Veres S. M., and Molnar L., (2010). Documents for
Intelligent Agents in English. by. Proc. AIA2010, 10th

Appendix i

This appendix demonstrates the viability of the framework. Once the program has been executed a message
is issued to users to enter a term (word) identity or a file name that the system will read from. When a word is
entered, the framework will analyze words and break them down into their constituents.

Example 1: Enter a word? سيعُلمونهُما

When it is translated into English, it means, "we will let them to know". It is decomposed into:

Future

س :

Indicates present verb : ي
Subject : و

One of the five known verbs : ن

Object

هم :

Indicate plural objects : ا

Stem

علم :

Example 2: Enter a word? سكتبانه

This word has been written incorrectly, the framework identifies it and issues a message to users to make
sure that the word is a proper one.

Example 3:

Enter a word? فسيعلمونهما

When it is translated into English, it means, "and we will let them to know ". It is decomposed into:

Conjunction

ف :

Future

س :

Indicates present verb : ي

Subject

و :

One of the five known verbs : ن

Object

هم :

Indicates plural objects : ا

Stem

علم :

Example 4: Enter a word? َّلِتعُلمّونَهُن

When it is translated into English, it means, " So that you will know them ". It is decomposed into:

Reasoning letter : ل

Indicates present verb : ت

Subject : و

One of the five known verbs : ن

Object : هن

Stem : علم

Example 5: Enter a word? قمُت

When it is translated into English, it means, "I stood ". It is decomposed into:

Verb : قم

Subject : ت

Stem : قام

Example 6: Enter a word? استرعى

When it is translated into English, it means, "To get attention ". It is decomposed into:

Indicates present verb : ا

36

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

IASTED Conference on Artificial Intelligence and
Applications, 15-17 Feb 2010, Innsbruck, Austria.

47. Warren, D. and Pereira, F., (1980). Definite Clause
Grammars for Language Analysis A Survey of the
Formalism & a Comparison with Augmented
Transition Networks. Artificial Intelligence Vol. 13,
pp. 231-278.

Continuous letters for request : س، ت
Verb : رعى

Stem : رعى

Example 7: Enter a word? أنسانيه
When it is translated into English, it means, "He makes me forget it ". It is decomposed into:

Indicates present verb : أ
Verb : نسي
Letter N to indicate protection : ن
First object : ي
Second object : ه
Stem : نسى
Example 8: Enter a word? يجيئون
When it is translated into English, it means, "They are coming ". It is decomposed into:

Indicates present verb : ي
Subject : و
One of the 5 known verbs : ن
Verb : جاء

Stem : جاء

Example 9: Enter a word? يتطهرن
When it is translated into English, it means, "To get cleaned ". It is decomposed into:

Indicates present verb : ي
Letter T indicate Transitive verb : ت
Verb : طهر
Letter N indicate of the feminine : ن

Stem : طهر

Example 10: Enter a word? أسلم
When it is translated into English, it means, "To get in Islam faith ". It is decomposed into:

Indicates present verb : أ
Verb : سلم

Stem : سلم

Example 11: Enter a word? لأمؤتن

When it is translated into English, it means, "To die ". It is decomposed into:

Reasoning letter : ل
Indicates present verb : أ
Verification letter : ن
Verb : مات

Stem : مات

Example 12: Enter a word? قامت
When it is translated into English, it means, "She stood ". It is decomposed into:

Verb : قام
Letter T indicates of the feminine : ت

Stem : قام
Example 13: Enter a word? ستواجه

When it is translated into English, it means, "You will face ". It is decomposed into:

Future : س
Indicates present verb :ت
Verb : واجه

37

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

Y
e
a
r

20
16

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

Stem : واجه

Example 14: Enter a word? جاءهم

When it is translated into English, it means, "They are coming ". It is decomposed into:

Verb : جاء
Object : هم

Stem : جاء

Example 15: Enter a word? أتاهم

When it is translated into English, it means, "He comes to them ". It is decomposed into:

Verb : أتى
Object : هم

Stem : أتى

38

© 2016 Global Journals Inc. (US)1

Y
e
a
r

20
16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
 I

V
er
sio

n
I

 (

)
G

An Intelligent Framework for Natural Language Stems Processing

	An Intelligent Framework for Natural Language Stems Processing
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Lexical Analysis
	IV. Logic Programming and Natural Languages
	V. Definite-Clause Grammars
	VI. A Logic-Based Framework for Inflected Language Words
	VII. System Implementation
	VIII. Future Works
	IX. Conclusions
	References Références Referencias

