
An Intelligent Framework for Natural Language Stems Processing1

Abid Thyab Al Ajeeli2

Received: 14 December 2015 Accepted: 5 January 2016 Published: 15 January 20163

4

Abstract5

This work describes an intelligent framework that enables the derivation of stems from6

inflected words. Word stemming is one of the most important factors affecting the7

performance of many language applications including parsing, syntactic analysis, speech8

recognition, retrieval systems, medical systems, tutoring systems, biological systems,?, and9

translation systems. Computational stemming is essential for dealing with some natural10

language processing such as Arabic Language, since Arabic is a highly inflected language.11

Computational stemming is an urgent necessity for dealing with Arabic natural language12

processing. The framework is based on logic programming that creates a program to enabling13

the computer to reason logically.This framework provides information on semantics of words14

and resolves ambiguity. It determines the position of each addition or bound morpheme and15

identifies whether the inflected word is a subject, object, or something else. Position16

identification (expression) is vital for enhancing understandability mechanisms. The proposed17

framework adapts bi-directional approaches. It can deduce morphemes from inflected words or18

it can build inflected words from stems. The proposed framework handles multi-word19

expressions and identification of names.20

21

Index terms— natural language, knowledge base, morphological analysis, inflected words, logic-based,22
definite-clause, context-free grammar.23

1 I. Introduction24

ord stemming is one of the most important factors affecting the performance of many natural language25
processing applications such information retrieving systems, machine pattern recognition, machine translation,26
speech tagging, and many other systems. The study of natural language processing using computers is as27
old as the introduction of computer software. Advances in this area lead to the improvement of man-machine28
communications. In particular, interfaces to databases and intelligent systems can handle interaction in restricted29
subsets of natural languages.30

Natural language processing is a computer activity in which computers are entailed to analyze, understand,31
alter, or generate natural language objects. This includes the automation of any or all linguistic forms, activities,32
or methods of communication, such as conversation, correspondence, reading, dictation, publishing, translation,33
lip reading, ?, and written composition. Natural language processing is also the name of the branch of computer34
science, artificial intelligence, and linguistics concerned with enabling computers to engage in communication35
using natural language(s) in all forms, including but not limited to speech, print, writing, and signing (Foss36
2004).37

The Arabic language is one of the major natural languages that place a great deal of emphasis on morphology38
and syntax. More than 250 million people speak it. Arabic is a synthetic or in other words, highly inflected39
language. This means that the syntactic relationship between nouns are indicated by case ending and that verbs40
are inflected by means of prefixes, infixes, and suffixes to indicate the various persons, numbers, genders, derived41
forms, moods, and tenses. Traditional Arabic morphology is described in terms of roots and patterns. Roots are42
not words but sequences of three or more consonants.43

In addition, Arabic language has a number of implications for the design of computer systems in general.44
It has also quite distinguishable characteristics that will add new aspects to natural language processing. The45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

1 I. INTRODUCTION

technique used in this work is based on two-level descriptions of Arabic morphology. This approach will make46
affixes (prefixes, infixes, and suffixes) more easily understood and handled. The twolevel descriptions will be47
based on finite-automata and regular expressions. But, first, a review of the basic concepts of finite automata48
and the basic text processing machines will be introduced and adapted to capture Arabic structure concepts49
(Kelley, 1995;Hopcroft & Ullman 1979).50

Formally, a finite automaton is defined by a 5tuple (Q, ?, ?, q 0 , F) where:51
? Q is a finite set of states q 0 , q 1 , ..., q n, ? ? is a finite input alphabet (a set of symbols), ? q 0 ? Q is52

the initial state,53
? F ? Q is the set of final sates, and ? ? is the partial transition function mapping Q × (? + {?}) to zero or54

more elements of Q.55
For example, ?(q, ???) describes the next states, for each state q and input symbol ??? or it is undefined. The56

notion of using finite automata is to model lexical analyzer, syntactic analyzer, and even to associate semantics57
with morphemes.58

In this paper, we describe a software system that has the capability of embodying some parts of expert’s59
facilities. The grammar rules of Arabic language are transformed into first-order predicate logic, using the60
programming language Prolog. The rules are developed to analyze and to extract semantic information from61
Arabic texts. The first-order predicate logic provides three levels of analysis:62

1. Syntax: Which deals with grammatical structure of the underlying natural language. In addition to, the63
opportunity of encoding meaning.64

2. Semantics: Deals with the literal meaning with the opportunity of including rules for wider meaning65
contexts, and 3. Pragmatics: Deals with the real meaning of sentences.66

Stemming is a heuristic process that chops off the ends of words to find the root word and often includes the67
removal of derived affixes. It is used to improve retrieval effectiveness and to reduce the size of indexing files.68
Stemming is a common method for morphological normalization of natural language texts. Modern information69
retrieval systems rely on such normalization techniques for automatic document processing tasks. High quality70
stemming is sometimes difficult in highly inflectional languages, for example, Arabic and Indic languages. Little71
research has been performed on designing algorithms for stemming of texts in those languages ??Sahari N. et al.,72
2013).73

Computational stemming is an urgent problem for Arabic Natural Language Processing, because Arabic is74
a highly inflected language. The existing stemmers have ignored the handling of multi-word expressions and75
identification of Arabic names ??Alhanini & Abo Aziz 2011). For other inflected languages. Jain and Agrawa76
(2015) claimed that they manage to parse, for example, Hindi words to identify root words from inflected words77
using natural language processing (NLP) techniques.78

In order to familiarize readers with the complexities involved in the analysis and construction of Arabic79
sentences, we illustrate briefly some of the funda-mental features of Arabic (Ali 1988; Hamoody 1991; Al-Douri80
1992; Al Daimi 1994).81

? Arabic script is written from right to left.82
? Arabic language is an inflectional language and the derivation in Arabic is based on morphological patterns83

and the verb plays a greater inflectional role. Furthermore, Arabic words are built up from roots representing84
lexical and semantic connecting elements. This is not the case, for example, with English, which employs the stem85
as a basis for word generation. ? Arabic offers the possibility of combining particles and affixed pronouns to words86
and it involves diacritization. ? Arabic is distinguished by its high syntactical flexibility. This flexibility includes:87
the omission of some prepositional phrases associated with verbs; the possibility of using several prepositions with88
the same verb while preserving the meaning; allowing more than one matching case between the verb and verbal89
subject and the adjective and its broken plural qualified and the sharpness of pronominalization phenomena90
where the pronouns usually indicate the original positions of the words before their extra-positioning, fronting91
and omission.92

In other words, Arabic allows a great deal of freedom in the ordering of words in a sentence. Thus, the syntax93
of the sentence can vary according to transformational mechanisms such as extraposition, fronting and omission,94
or according to syntactic replacement such as the use of an agent noun in place of a verb. ? Arabic language95
is distinguished by its high context sensitivity in several directions. On the writing level, the shape of a letter96
depends on the letter that precedes it and the one that follows it. On the syntactic level, the different synthetic97
coherence relations such as case ending, matching, connecting, associating and pro-nominalization represent98
various examples of syntactic context sensitivity. Furthermore, the context sensitivity feature extends to the99
lexicon where a lot of vocables are influenced by their associated words.100

The context sensitivity feature is not only limited to letters, words and sentences but also applied to the101
continuous context consisting of several sentences. Arabic sentences are embedded and normally connected by102
copulative, exceptive and adversative particles. For this reason it is more difficult to identify the end of an Arabic103
sentence than is the case with other languages.104

There are a number of applications that directly borrow models and methods from both information retrieval105
(IR) and natural language processing (NLP). A short presentation of some of these applications is mentioned106
below ??Indurkhya et This paper is organized into a number of sections. The next section provides some107
background on related works. Section 3 provides a brief description of lexical analysis mechanisms. It points out108

2

the relationship between lexical analysis processes and finite automata. Section 4 introduces the concepts of logic109
programming and how it can be applied to natural languages. Definite-clause grammar is explained in section 5.110
The proposed model is discussed in section 6. System implementation is discussed in section 7. Sections 8 and 9111
draw a number of conclusions and suggest new future research directions112

2 II. Related Work113

In linguistic morphology and information retrieval, stemming is the process of reducing inflected (or sometimes114
derived) words to their word stem, base or root form-generally a written word form. The stem need not be115
identical to the morphological root of the word; it is usually sufficient that related words map to the same stem,116
even if this stem is not in itself a valid root. Algorithms for stemming have been studied in computer science117
since the 1960s. Many search engines treat words with the same stem as synonyms as a kind of query expansion,118
a process called conflation. Stemming programs are commonly referred to as stemming algorithms or stemmers.119

A stemmer for English, for example, should identify the string ”cats” (and possibly ”catlike”, ”catty” etc.)120
as based on the root ”cat”, and ”stems”, ”stemmer”, ”stemming”, ”stemmed” as based on ”stem”. A stemming121
algorithm reduces the words ”fishing”, ”fished”, and ”fisher” to the root word, ”fish”. On the other hand, ”argue”,122
”argued”, ”argues”, ”arguing”, and ”argus” reduce to the stem ”argu” (illustrating the case where the stem is123
not itself a word or root) but ”argument” and ”arguments” reduce to the stem ”argument”124

Many areas of natural language syntax and semantics are a fruitful source of inspiration for computer languages125
and systems designers. The complexity of natural language and the high level of abstraction of most linguistic126
and semantic theories have motivated the emergence of highly abstract and transparent programming languages.127
One of the most striking examples is undoubtedly Prolog, initially designed for natural language parsing, via128
Metamorphosis Grammars (Colmerauer 1978).129

For a few years, the Logic Programming paradigm has been augmented with a number of technical and formal130
devices designed to extend its expressive power. New logic programming languages have emerged, several of them131
motivated by natural language processing problems. Among them let us mention: CIL (Mukai 1985) designed132
to express in a direct way concepts of Situation Semantics, MOLOG (Farinas et al. 1985), an extension to133
Prolog designed to specify in a very simple and declarative way the semantics of modal operators and ~, -Prolog134
(Nadathur and Miller 1988), designed to deal with X-expressions and X-reduction.135

3 Volume XVI Issue I Version I136

Year 2016137

4 ()138

The Logic Programming paradigm has been augmented with the concept of constrained logic programming139
(CLP). The basic research done within this area amounts to specifying tools for a more refined control on the140
type of values or terms a variable in a program can stand for. Answers to goals can be intentional: they are141
sets of equations (constraints) rather than mere values. Furthermore, the idea at the operational level, incorrect142
assignments are filtered out as soon as they are encountered when building a proof, making thus proof procedures143
more efficient.144

The first step of any language processing system is necessarily recognizing and identifying individual words in145
the text. The mechanism used to generate individual words must be based on word morphology. Morphology146
systems can be used to decompose words into word stems and word affixes. In addition, such systems can be147
used to specify mood, gender, number, and person.148

Many systems have been designed to address this issue. For example, Hegazi, & El-Sharkawi (1986) developed149
a system that detects the roots of Arabic words. This system is used to detect and correct mistakes in spelling150
and vowelization. Another example is a morphological analysis and generation system that is used to examine151
the input word for different word types and attempts to find all possible analyses ??Saliba, & Al-Danan, 1989,152
Mayfield 2001).153

Haddad (Haddad al et. 2005) claimed that research on computational Arabic is limited compared with English154
and European languages. For the last two decades, Arabic language received extensive focusing in the fields of155
morphological and syntactical with little attention on semantics and on deep analysis of its structures.156

One of the major breakthroughs in the field of morphology was the two-level morphology. It is a general157
computational model for word-form recognition and generation (Koskenniemi, 1983). Lauri Karttunen and158
others produced a LISP implementation of the twolevel morphology and named it KIMMO (Karttunen et al.159
1992). The KIMMO model consists of two components: 1. The rule component; 2. The lexical component160
(lexicon) (Antworth, 1990). This system had a serious deficiency: It could not determine the part of speech of a161
word or its inflectional categories (Antworth 1992;Xu 2002).162

Al-Shalabi and Evens designed a computer system for Arabic morphology that employs a new and fast163
algorithm to find roots and patterns for verb forms and for nouns and adjectives derived from verbs (Al-Shalabi &164
Evens, 1998, Young-Suk 2003). For languages other than Arabic, a morphological syntax interface was proposed165
that separates syntactic function from morphological information in sequence projection architecture for the166

3

8 IV. LOGIC PROGRAMMING AND NATURAL LANGUAGES

French language. This system was designed by Frank and Zaenen (2000). A number of morphological systems,167
based on finite-state analysis, have also been developed by Beesley (1996Beesley (, 1998aBeesley (, 1998b)).168

5 III. Lexical Analysis169

Lexical analysis is the process of converting an input stream of characters into a set of words or tokens. Tokens170
are groups of characters with collective significance. Lexical analysis is the first stage of information gathering171
and natural language understanding.172

The heart of a lexical analyzer generator is its algorithmic approach for producing a finite state machine. The173
algorithm presented in this paper is based on building finite automata with the minimum number of deterministic174
finite states using types of regular expressions adapted for lists of strings. During machine generation, the175
algorithm labels each state with the set of strings the machine would accept if that state were Year 2016176

6 Global Journal of Computer Science and Technology177

Volume XVI Issue I Version I () the initial state. It is easy to examine these state labels to determine:178
? The transition out of each state, ? The target state for each transition, and ? The states that are final.179
To familiarize the reader with state labels, we provide examples that demonstrate the viability of the finite180

automaton mechanisms.181
Case Study 1: Suppose a state is labeled with the set of strings {a, an, any, and, in, into, to, too, many, more,182

most}. This state must have transitions on {a, i, t, and m}. The transition on a must go to states labeled with183
the set { n, nd, ?}, the transition on i goes to states labeled { n, nto } ,..., and the transition on t goes to states184
labeled {o,oo} as in Figure 2 (Frakes & Baeze-Yates 1992).185

Figure 2 shows a typical finite state machine that can be used by a lexical analyzer algorithm where an initial186
states q 0 with an input {a, an, and, any} can produce a new state q i , which could be a final state. In this187
case, the input left is ? {?, n, nd, ny}. Once the traversal reaches q 11 then nothing of the specified input is left,188
i.e. {?}. The input is exhausted in a similar way if one travels along the edge q 0 ? q 6 ? q 10 ? q 11189

In other words, if we start reading the letter t at q 0 then control will be transferred to state q 6 with190
unexhausted input {o, oo}. If an o is read then this takes us to q 10 which is an accepting state with input {?,191
o}. If no more input characters are read then input is terminated. If more input characters are available then we192
traverse the arc labeled {o} to state q 11 which is a final state, i.e., input is terminated. The initial state q 0 ,193
of the finite machine, is labeled with the following set of strings?????ïº?”{? ? ????? ? ??????ïº?”? ? ??????? ?194
?????? ? ?????ïº?”? ?.}.??????195

This set corresponds to {mosque, university, collect, total, sum, group of, summed up}. We want to generate196
all words of the set from the morpheme ????? ” ”. Figure 3 displays this example using a finite automaton197
representation. The morpheme ” ??????? ” , for example, can be constructed by the following arcs from q 0 ? q198
1 ? q 2 ? q 4 ? q 5 ? q 4 ? q 6 . This generation is applicable for the family of morphemes listed below:199

7 Volume XVI Issue I Version I200

?????ïº?”? ? ????? ? ??????ïº?”? ? ??????? ? ?????? ? ?????ïº?”? ? ??????201
If the building blocks of natural language texts are words, then words are important units of information, and202

language-based applications should include some mechanism for registering their structural properties. Finite203
state techniques have long been used to provide such a mechanism because of their computational effectiveness,204
and because of their inevitability. They can both be used to generate morphologically complex forms from205
underlying representations, and parse morphologically complex forms into underlying representations (Indurkhya206
& Damera 2010), Case Study 3:207

This case study demonstrates how a variety of strings can be generated using a simple finite automaton. For208
example, the string ?????”? ”in Figure 4, can be generated by the following arcs (reading from right to left) 0 ?209
1 ? 5 ? 12 ? 16.210

8 IV. Logic Programming and Natural Languages211

The rule-based approach has successfully been used in developing many natural language processing systems.212
Systems that use rule-based transformations are based on a core of solid linguistic knowledge. The linguistic213
knowledge acquired for one natural language processing system may be reused to build knowledge required for a214
similar task in another system.215

The motivations of the rule-based approach over the corpus-based approach a: 1. Less-resourced languages,216
for which large corpora, possibly parallel or bilingual, with representative structures and entities are neither217
available nor easily affordable, and 2. For morphologically rich languages, which even with the availability of218
corpora suffer from data sparseness.219

These have motivated many researchers to fully or partially follow the rule based approach in developing220
their Arabic natural processing tools and systems. In this paper we address our successful efforts that involved221
rule-based approach for different Arabic natural language processing tasks (Shaalan, K., 2010).222

Natural language processing may require a huge amount of storage. This storage may reduce the efficiency of a223
software system. Using Prolog with object-oriented programming convention can address problems of complexity.224

4

Prolog is based on an efficient and simple proof routines (Warren, & Pereira, 1980). It has dynamic memory225
allocation of automatic garbage collection (Roth, 1992). This facility, in addition to relieve the programmers226
from the notions of memory usage, makes it possible for class hierarchies, inheritance, and message passing to be227
generated automatically at run time. That means, Prolog has capabilities for developing oriented programs that228
can be taught about classes or new relationships between existing classes.229

The Prolog approach yields prototyping systems that can provide convenient methods for testing the viability230
of rules effectively. Although Prolog implementation may not produce fast enough systems for actual use, it231
provides developers with sufficient details and opportunities for efficiently designing, implementing, and testing232
systems (Veres and Molnar, 2010).233

Using such an approach in developing software systems that analyzes natural languages can aid in producing234
software code in small sizes compared with conventional high-level languages. In addition, the software can235
be organized so that it can easily be developed, understood, and maintained. Prolog is suitable for designing236
definite-clause grammar by which the grammar rules of the language can be translated and then the underlying237
language becomes executable code in Prolog.238

It is convenient to restrict attention to predicate logic programs written in clausal form. Such programs have239
an especially simple syntax that has the expressive power of the full predicate logic. A sentence is a finite set of240
clauses. A clause is a disjunction L 1 V ?V L n of literals L i which are atomic formulas P(t l , . . . , t m)241
or the negations of atomic formulas P(t l t m), where P is a predicate symbol and t i are terms. Atomic242
formulas are positive literals. Negations of atomic formulas are negative literals. A term is either a variable or an243
expression f(t l t m) where f is a function symbol and t i are terms. Constants are 0-ary function symbols.244
A set of clauses {C 1 , C n } is interpreted as the conjunction, C 1 and.., and C n . A clause C containing245
just the variables x 1 ,..., x m is regarded as universally quantified for all x 1 , . .., x m For every sentence S246
1 predicate logic there exists a sentence S 2 in clausal form which is satisfiable if and only if S 1 is exist. For247
this reason, all questions concerning the validity or satisfiability of sentences m predicate logic can be addressed248
to sentences in clausal form. Methods for transforming sentences into clausal form are described in (Nilsson,249
1971). We have defined that part of the syntax of predicate logic which is concerned with the specification of250
well-formed formulas.251

We know that we can often make ”generateand-test” more efficient by pushing the test closer to the generation.252
How can we do this in the current situation? We do this by letting predicates like noun perform both the253
recognition and the splitting. We do this by letting them accept the front of a list, and return the rest of the list254
(Kautz , 2004)255

9 V. Definite-Clause Grammars256

The fundamental principle of normal language theory is that a language can be described in terms of how its257
sentences are constructed (Colmeraurer, 1975). That is:258

1. A sentence is a string (a sequence) of symbols defined by rules for strings 2. A language is a set of sentences259
defined by rules for sets.260

According to the above definition, we can define a grammar as: a collection of rules for specifying what261
sequences of symbols are acceptable as sentences (statements) of that language.262

Computer scientists have adapted the ideas of formal language theory to the study of natural languages, in263
the form of context-free grammars (CFGs). In CFGs the basic symbols or words of the language that they264
describe are identified by terminal and non-terminal symbols. The terminal symbols are basic constructs of the265
language. The non-terminal symbols can be factorized into terminal and/or nonterminal symbols. Colmeraurer266
and Kowalski describe a method to translate special purpose formalism CFGs into a general one in the form of267
first-order predicate logic ??Colmerauer, 1975;Kowalski, 1974; ??aren & Pereira, 1980). The method is known as268
a Definite Clause Grammar (DCG). According to DCGs, rules of a grammar describe which strings of symbols269
are valid statements of the language.270

Parsing a rule of DCGs, using Prolog, is accomplished by transforming it into a theory and trying to prove271
its validity by applying logical reasoning. The proof either fails or succeeds. Pereira and Warren explain the272
efficiency of DCGs as follows:273

”If a CFG is expressed in definite clauses according to the Colmeraurer-Kowalski method, and executed as274
a Prolog program, the program behaves as a efficient top-down parser for the language that CFG describes.275
This fact becomes particularly significant when coupled with another discovery that the technique for translating276
CFGs into definite clauses has a simple generalization, resulting in a formalism far more powerful than CFGs,277
but equally amenable to execution by Prolog”.278

According to the Colmeraurer-Kowalski claim, the definite-clause grammar mechanism is suitable for building279
a logic-based framework for computational linguistics.280

10 VI. A Logic-Based Framework for281

Inflected Language Words282
There are several types of stemming algorithms with different performance and accuracy. The various283

algorithms are characterized by how certain stemming obstacles are overcome.284

5

10 VI. A LOGIC-BASED FRAMEWORK FOR

A simple stemmer algorithm looks up the inflected form in a lookup table. The advantages, of this algorithm,285
are simple, fast, and easily handle exceptions. The disadvantages are that all inflected forms must be explicitly286
listed in the table: new or unfamiliar words are not handled, even if they are perfectly regular (e.g. iPads ~iPad),287
and the table may be large. For languages with simple morphology, like English, table sizes are modest, but288
highly inflected languages like Arabic may have hundreds of potential inflected forms for each root. A lookup289
approach may use preliminary part-of-speech tagging to avoid over stemming ??Alhanini & Abo Aziz 2011).290

The lookup table used by a stemmer is generally produced semi-automatically. For example, if the word is291
”run”, then the inverted algorithm might automatically generate the forms ”running”, ”runs”, ”runned”, and292
”runly”. The last two forms are valid constructions, but they are unlikely.293

Suffix stripping algorithms do not rely on a lookup table that consists of inflected forms and root form relations.294
Instead, a typically smaller list of ”rules” is stored which provides a path for the algorithm, given an input word295
form, in order to find its root form. Some examples of the rules, from English texts for ease of readability only,296
include:297

? If the word ends in ’ed’, remove the ’ed’, ? If the word ends in ’ing’, remove the ’ing’, ? If the word ends298
in ’ly’, remove the ’ly’. Suffix stripping algorithms enjoy the benefit of being much simpler to maintain than299
brute force algorithms, assuming the maintainer is sufficiently knowledgeable in the challenges of linguistics and300
morphology and be able to encoding suffix stripping rules. Suffix stripping algorithms are sometimes regarded301
as crude given the poor performance when dealing with exceptional relations (like ’ran’ and ’run’).302

The solutions produced by suffix stripping algorithms are limited to those lexical categories which have well303
known suffixes with few exceptions. This, however, is a problem, as not all parts of speech have such a well304
formulated set of rules.305

Suffix stripping algorithms may differ in results for a variety of reasons. One such reason is whether the306
algorithm constrains whether the output word must be a real word in the given language. Some approaches do307
not require the word to actually exist in the language lexicon (the set of all words in the language). Alternatively,308
some suffix stripping approaches maintain a database (a large list) of all known morphological word roots that309
exist as real words. These approaches check the list for the existence of the term prior to making a decision.310
Typically, if the term does not exist, alternate action is taken. This alternate action may involve several other311
criteria. The non-existence of an output term may serve to cause the algorithm to try alternate suffix stripping312
rules.313

It can be the case that two or more suffix stripping rules apply to the same input term, which creates an314
ambiguity as to which rule to apply. The algorithm may assign (by human hand or stochastically) a priority to315
one rule or another. Or the algorithm may reject one rule application because it results in a nonexistent term316
whereas the other overlapping rule does not. For example, given the English term friendlies, the algorithm may317
identify the ies suffix and apply the appropriate rule and achieve the result of friendl. friendl is likely not found318
in the lexicon, and therefore the rule is rejected (Dolamic, et al. 2007).319

One improvement upon basic suffix stripping is the use of suffix substitution. Similar to a stripping rule, a320
substitution rule replaces a suffix with an alternate suffix. For example, there could exist a rule that replaces ies321
with y. How this affects the algorithm varies on the algorithm’s design. To illustrate, the algorithm may identify322
that both the ies suffix stripping rule as well as the suffix substitution rule apply. Since the stripping rule results323
in a non-existent term in the lexicon, but the substitution rule does not, the substitution rule is applied instead.324
In this example, Friendlies becomes friendly instead of friendl.325

An intelligent framework based the above algorithms and on logic programming (logic-based) which enable326
deriving stems from inflected words (inflected words in Arabic language may form a complete meaningful sentence327
such as ” ???????????? ”328

. The word ?”??????????”? is a meaningful sentence which can be factorized into ??? + ??? ??? ??? + ???329
+ ????? + ???? + ??? + ” ” which can be written as: prefix* + stem + postfix* where prefix* and postfix* is330
a regular expression repeated zero or more times. The framework also provides semantics of words and resolves331
ambiguity. It also determines the position for each addition (prefix, infix, or postfix) or bound morpheme and332
whether it is a subject, object or anything else. Position identification or position expression ?)??????(? is a vital333
necessity for enhancing understandability mechanisms. Our system is a bidirectional approach. It can deduce334
morphemes from inflected words or it can build inflected words from stems. The proposed software system is335
based on Definite Clause Grammar where rules are built according to patterns. Table ?? shows a sample of336
inflected morphemes. For example, the inflected morpheme ?????ïº?”? can be identified as a pattern (templates)337
of the form ” ?ï»?”???ïº?”? ” which has two additions: infix and postfix. The infix is ” ??? ” the postfix is ”338
?ïº?”? ” and the stem is ????? according to a pattern of the form ” ” ?ï»?”??? .339

The finite automaton in figure 5 shows how rules can be used to derive morphemes when arcs are traversed in340
either direction. Where suffixes* is a regular expression that can be repeated zero or more times. It could be a341
pronoun and/or any other additives.342

Previous researchers either store all inflected words in a lexicon, which is impractical and unrealistic, or store343
meaningful stems. The proposed approach is based on special patterns (templates). It associates meaning with344
the basic roots in order to deduce morpheme meanings. As a result, when a text file is read, stems, bound345
morphemes, meaning, and positions are deduced. The architecture of the framework is outlined in figure (6).346

6

The architecture of the framework is made up of a number of components. The dialog accepts a text and then347
passes it to the lexical analyzer in order to decompose the text into a list of tokens.348

Morphological facts are usually represented as a set of features expressed as attribute value pairs, for example,349
number is equivalent to singular, tense is equivalent to past participle and so on. Association of morphological350
features has the notion of agreement, where the form of one word depends on the features of another, or elements351
of a certain constituent may share certain features.352

This structure can be used either to generate the appropriate inflected forms from the base forms and their353
feature specifications, or to give an analysis of the character strings in the reverse direction. Although our system354
deals only with the morphology for verbs and nouns derived from verbs or in other words verb sentences, it can355
easily be extended to incorporate other morphemes that are not derived from verbs, which we will address in our356
future work.357

11 VII. System Implementation358

The system has been implemented using PDP Prolog running on an IBM-compatible machine. A number of359
experiments have been conducted and the average has been computed. Table 2 records some findings. The360
beauty of logic implementation is its ability to express output in a format readable by humans and by machines.361
It is possible to write rules that can be fired when outputs are required to be read automatically by computer362
programs.363

The logic rules below provide bi-directional morphological analysis. Below is a small fragment of the Prolog364
program. For example, the first rule run is an abstracted predicate with two arguments. The first one is ”list”365
which is an input argument. The second argument is ”W_rest” which is an output argument returning a word366
or parts of a word that has not been recognized. List is then factorized into five positions; L1, ?,?? , L3, L4, and367
the rest is R. If an ??? ?”???”? is found in the second place and, the word has more than four positions, then368
this predicate will be processed. Otherwise control will backtrack to the next predicate until a match has been369
found or failure has occurred. A sample of predicates in first-order logic that deals with inflected Arabic words370
is outlined below. There are several predicates, each deals with different alternative, as shown below. run (List,371
W_rest):- The sentences accepted by finite automata are regular sentences. In other words, there exists a finite372
automaton FA that accepts S(r) for any regular expression r. The structure of the proposed framework accepts373
S(r) in O (|r|) time and space. Although minimization is not considered, an algorithm can be constructed to374
minimize a deterministic FA with n states in O(|?|n log n). A number of queries is listed in Appendix I.List =375
[L1, ?,”?”? L3, L4 | R], List1 = [L1, ?,”?”? L3, L4], collect(List1, W_rest), chk1(R, Type),!, write(Type376
). run(List, W_rest):- List = [L1, ?,”?”? L3, L4], List1 = [L1, ?,”?”? L3, L4], collect(List1, W_rest). run(377
List, W_rest):- List = [L1, ?,”?”? L3], List1 = [L1, ?,”?”? L3], collect(List1, W_rest). run(List, W_rest):-378
List = [L1, L2, ?”?”? | R], List1 = [L1, L2, ?”?”?], collect(List1, W_rest), chk1(R, Type),!, write(Type).379
run(List, W_rest):- List = [L1, ?,”?”? ?”??”? | R], List1 = [L1, ?”?”? , ?”?”?], collect(380

12 VIII. Future Works381

The intelligent framework is expected to facilitate converting natural language chunks of text into more formal382
representations such as definite-clause grammar structures that are easier for computer programs to manipulate383
trough the logic programming implementation. This facilitation will involve the identification of a specific384
semantic from multiple ones. These identifications can be derived from natural language expressions which385
take the form of organized notations of natural language concepts. The framework may be extended in future386
research so that be able to convert information from computer storage into readable human language form.387

The future research should concentrate on devising methods for inducing transformation rules that map388
natural-language sentences into a formal query or command language. The approach assumes a formal grammar389
for the target representation language and learns transformation rules that exploit the non-terminal symbols390
in this grammar (Kate et al. 2005;Gildea et al. 2002). The learned transformation rules incrementally map a391
natural language sentence or its syntactic parse tree into a parse-tree for the target formal language.392

The future work may include also an intelligent interface within the proposed framework to derive high quality393
items of information through the process of devising patterns and trends using statistical pattern learning.394

13 IX. Conclusions395

The logic programming approach has successfully been used in developing many natural language processing396
systems. Systems that use logic programming transformations are based on a core of solid linguistic knowledge.397
The linguistic knowledge acquired for one natural language processing system may be reused to build knowledge398
required for a similar task in another system. The advantage of the logic programming approach over the399
corpus-based approach is for less-resourced languages, for which large corpora, possibly parallel or bilingual, with400
representative structures and entities are neither available nor easily affordable, and for morphologically rich401
languages, which even with the availability of corpora suffer from data sparseness.402

These have motivated many researchers to fully or partially follow the logic programming approach in403
developing their Arabic natural processing tools and systems. In this paper we address our successful efforts404
that involved rule-based approach for Arabic natural language processing tasks. The proposed system has been405

7

13 IX. CONCLUSIONS

developed for deriving stems from inflected words using the logic programming language Prolog. The suggested406
design was based on: ? Knowledge-based mechanism embodying facts and rules, ? Inference mechanism uses407
the knowledge base, and a query mechanism initiated by users. The intelligent framework is used to facilitate408
the analyses and understanding strings from natural language. The texts are first tokenized in order to identify409
patterns of characters in the stream and to produce a stream of words or tokens. The tokenized text is then410
parsed to recognize syntactic objects according to Arabic language grammar rules.411

The proposed system is a step in the direction of analyzing and understanding natural language texts. It412
is also potentially useful for enhancing automatic translation (Domain Specific). We conclude that there is a413
good case to be made from the adaption of expert systems to be used for natural languages processing. This414
work opens the door for more multilingual stemming research that applies morphological rules of two or more415
languages simultaneously instead of rules for one single language when interpreting a search query. 1 2 3

1

Figure 1: Figure 1
416

1© 2016 Global Journals Inc. (US)Global Journal of Computer Science and Technology
2© 2016 Global Journals Inc. (US) 1
3© 2016 Global Journals Inc. (US)

8

1

Figure 2: Figure 1 :

2

Figure 3: Figure 2 :

9

13 IX. CONCLUSIONS

3

Figure 4: Figure 3 :

4

Figure 5: Figure 4 :

10

5

Figure 6: Figure 5

5

Figure 7: Figure 5 shows

11

13 IX. CONCLUSIONS

l

Inflected Postfix Infix Prefix Stem
morphemes
??????? ????? ?????
???????ïº?”? ?ïº?”? ??? +

?????
?????

?????? ??? ?????
?????? ??? ?????
????? ? ???? ???? ??? ? ????
?????ïº?”? ?ïº?”? ??? ?????
????ï»?”?? ??? ???ï»?”??

[Note: In general, the inflected morphemes are modeled by definite-clause grammar rules as follows:inflected-
morphemes ? prefix + stem | prefix + stem + postfix |stem + infix | stem + infix + postfix | prefix + stem +
infix + postfix]

Figure 8: Table l :

2

1 6554 words extracted from a book 93.25%
2 5466 words extracted from newspaper 93.21%
3 2269 words extracted from Quran 90.73%

Figure 9: Table 2 :

12

.1 Appendix i

.1 Appendix i417

This appendix demonstrates the viability of the framework. Once the program has been executed a message is418
issued to users to enter a term (word) identity or a file name that the system will read from. When a word is419
entered, the framework will analyze words and break them down into their constituents.420

Example 1: Enter a word? ???? ? ????????? ???? When it is translated into English, it means, ”we will let421
them to know”.422

[Lee et al. ()] , Young-Suk Lee , Kishore Papineni , Salim Roukos , Ossama Emam , Hany Hassan . 2003.423

[Haddad and Yaseen (2005)] ‘A Compositional Approach towards Semantic Representation and Construction of424
Arabic’. B Haddad , M Yaseen . the proceedings of the 5 th International Conference, LACL, P Blache, E425
Stabler (ed.) (Bordeaux, France; Berlin Heidelberg) 2005. April 28-30, 2005. Springer-Verlag. p. . (Published426
by)427

[Al-Shalabi and Evens ()] ‘A Computational Morphology System for Arabic’. R Al-Shalabi , M Evens . Compu-428
tational Approaches to Semitic Languages Workshop, COLING 98, (Montreal, Canada) 1998. p. .429

[Chu-Carroll et al. (2002)] ‘A multi-strategy and multi-source approach to question answering’. J Chu-Carroll ,430
J Prager , C Welty , K Czuba , D Ferrucci . Eleventh Text Retrieval Conference, (Gaithersburg, MD) 2002.431
November. NIST Special Publications. 500 p. 251. National Institute of Standards and Technology432

[Mayfield et al. ()] ‘A. JHU/APL at TREC 2001: Experiments in filtering and in Arabic, video, and web433
retrieval’. J Mayfield , P Mcnamee , C Costello , C Piatko , Banerjee . TREC, (Gaithersburg) 2001. 2001.434
2001. NIST.435

[Hammouri ()] ‘An Arabic Lexical Database to Support Natural Language Processing’. A Hammouri . Unpub-436
lished Ph.D. dissertation 1994.437

[Nadathur and Miller ()] An overview of 2.-Prolog, G Nadathur , D Miller . MS-CIS-88-40. 1988. University of438
Pennsylvania (Technical report)439

[Beesley ()] ‘Arabic Finite-State morphological analysis and penetration’. K Beesley . the 16 th International440
Conference on Computational Linguistics, 1996. 1 p. . (COLLING’96)441

[Beesley ()] ‘Arabic morphological analysis on Internet’. K Beesley . ICEMCO-98, Proceedings of the 6 th442
International Conference and Exhibition on Multilingual Computing, 1998a. (3.1.1)443

[Beesley ()] ‘Arabic morphology using only finite-state operation’. K Beesley . Proceedings of the workshop,444
Michael Rosner (ed.) (the workshop) 1998b. p. . (computational approaches to Semitic languages)445

[Kelley ()] Automata and Formal Languages, D Kelley . 1995. Englewood Cliffs, NJ: Prentice-Hall.446

[Gildea and Jurafsky ()] ‘Automated labeling of semantic roles’. D Gildea , D Jurafsky . Computational447
Linguistics 2002. 28 (3) p. .448

[Saliba and Al-Dannan (1989)] ‘Automatic Morphological Analysis of Arabic: A study of content word analysis’.449
B Saliba , A Al-Dannan . Proceeding of the first Kuwait Computer Conference, (eeding of the first Kuwait450
Computer ConferenceKuwait) 1989. Mar. p. .451

[Chen and Sharp ()] Content-rich biological network constructed by mining Pub Med abstracts, H Chen , B M452
Sharp . 2004. p. . (BMC Bioinformatics5)453

[Veres and Molnar ()] ‘Documents for Intelligent Agents in English’. S M Veres , L Molnar . Proc. AIA2010,454
(AIA2010) 2010. p. 10.455

[Xu et al. ()] Empirical studies in strategies for Arabic retrieval, J Xu , A Fraser , R Weischedel . 2002. 2002.456
2002. Tampere, Finland: ACM.457

[Frakes and Baeza-Yates ()] W Frakes , R Baeza-Yates . Information Retrieval: Data Structures & Algorithms,458
1992. Prentice-Hall.459

[Foss (ed.) ()] Framing the Study of Visual Rhetoric: Toward a Transformation of Rhetorical Theory, S Foss .460
Defining Visual Rhetorics. Ed. Charles A. Hill and Marguerite Helmers (ed.) 2004. Mahwah, New Jersey:461
Lawrence Erlbaum. p. .462

[Frank and Zaenen ()] A Frank , A Zaenen . Tense in LFG: Syntax and Morphology. To appear in Hans Kamp463
and Uwe Reyle: ”Tense and Aspect Now, 2000.464

[Antworth ()] ‘Glossing Text with the PC-Kimmo Morphological Parser’. E L Antworth . Computers &465
Humanities 1992. 26 (6) p. .466

[Doms and Schroeder ()] GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Research33, A467
Doms , M Schroeder . 2005. p. .468

[Hegazi and El-Sharkawi ()] N Hegazi , A El-Sharkawi . Natural Arabic Language Processing, Proceeding of the469
9 th National, Computer Conference and Exhibition, (Riyadh, Saudi Arabia) 1986. p. .470

[Indurkhya ()] N Indurkhya , F . Handbook of Natural Language Processing, Francis Taylor, Group, Ll (ed.) 2010.471
(2 nd edition)472

13

13 IX. CONCLUSIONS

[Can et al. ()] ‘Information retrieval on Turkish texts’. F Can , S Kocberber , E Balcik , C Kaynak , H C Ocalan473
. Journal of the American Society for Information Science and Technology 2008. 59 p. .474

[Hopcroft and Ullman ()] Introduction to Automata Theory, J Hopcroft , J Ullman . 1979. Reading Mass:475
Addison-Wesley.476

[Language Model Based Arabic Word Segmentation, for Computational Linguistics Proceedings of the 41st Annual Meeting of the Association (2003)]477
‘Language Model Based Arabic Word Segmentation, for Computational Linguistics’. Proceedings of the 41st478
Annual Meeting of the Association, (the 41st Annual Meeting of the Association) July 2003. p. .479

[Kate et al. (2005)] ‘Learning to Transform Natural to Formal Languages’. R J Kate , Y W Wong , R J Mooney480
. Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), (the Twentieth481
National Conference on Artificial Intelligence (AAAI-05)Pittsburgh, PA) 2005. July 2005. p. .482

[Colmeraurer ()] Les Grammaires de Metamorphose, A Colmeraurer . 1975. Groupe d’Intelligence Artificielle,483
University’ de marseille-Luminy484

[Colmerauer ()] Metamorphosis Grammars, in: Natural Language Understanding by Computer, Lecture notes in485
Computer Science, A Colmerauer . 1978. 1978. Springer-Verlag. L. Bole Edt486

[Del Cerro and Arthaud ()] Molog: Programming in Modal Logic, Fifth Generation Computing journal, Farinas487
Del Cerro , L Arthaud , A . 1985. 1985.488

[Kautz (2004)] Natural Language Understanding, H Kautz . https://courses.cs.washington.edu/489
courses/csep573/04au/lectures/nlp-all.pdf 2004. July 2016.490

[Antworth ()] PC-KIMMO: A two-level processor for morphological analysis. Number 16 in occasional publications491
in academic computing, E L Antworth . 1990. Dallas. Summer Institute of Linguistics492

[Kowalski ()] ‘Predicate Logic as Programming Language’. R Kowalski . Proc. IFIP 74, (IFIP 74Stockholm) 1974.493

[Nilsson ()] Problem Solving Methods m Artificial intelligence, N J Nilsson . 1971. New York: McGraw-Hill.494

[Bouma et al. ()] ‘Question answering with joost at CLEF’. G Bouma , J Mur , G Van Noord , L Plas , J495
Tiedemann . Workshop of Cross-Language Evaluation Forum (CLEF2008), (Aarhus, Denmark) 2008. 2008.496

[Roth ()] A Roth . Prolog a Better Bet Than C++? Program Now, 1992. p. .497

[Shaalan (2010)] ‘Rule-based Approach in Arabic Natural Language Processing’. K Shaalan . International498
Journal on Information and Communication Technologies 2010. June 2010. 3 (3) .499

[Saharia et al. ()] N Saharia , K M Konwar , U Sharma , J K Kalita . An Improved Stemming Approach Using500
HMM for a Highly Inflectional Language, Computational Linguistics and Intelligent Text Processing, the501
series Lecture Notes in Computer Science 2013. 7816 p. .502

[Dolamic and Savoy ()] Stemming Approaches for East European Languages, Ljiljana ; Dolamic , Jacques Savoy503
. 2007. 2007.504

[Jain and Agrawa ()] ‘Text independent root word identification in Hindi language using natural language505
processing’. L Jain , P Agrawa . International Journal of Advanced Intelligence Paradigms 2015.506

[Alhanini and Aziz ()] ‘The Enhancement of Arabic Stemming by Using Light Stemming and Dictionary-Based507
Stemming’. Y Alhanini , Ab Aziz , MJ . Journal of Software Engineering and Applications 2011. 2011. 4 p. .508

[Van Emden and Kowalski (2016)] The Semantics of Predicate Logic as a Programming Language, M H Van509
Emden , R A Kowalski . http://www.doc.ic.ac.uk/~rak/papers/kowalski-van_emden.pdf 2016.510
July 2016.511

[Daimi and Abdel-Amir ()] ‘The Syntactic Analysis of Arabic by Machine’. Al Daimi , K Abdel-Amir , MA .512
Computers and Humanities 1994. 28 p. .513

[Karttunen and Kaplan ()] ‘Two-level Morphology with composition’. L Karttunen , R Kaplan , ZaenenA .514
Proceedings of the 14 th International Conference on Computational Linguistics COLLING-92, (the 14 th515
International Conference on Computational Linguistics COLLING-92Nantes, France) 1992. I p. .516

[Koskenniemi ()] Two-level Morphology: a general computational model for word-form recognition and production,517
K Koskenniemi . 1983. University of Helsinki (department of General Linguistics)518

[Bornat ()] Understanding & Writing Compilers, R Bornat . 1985. Macmillan Publishers Ltd.519

[Mukai ()] ‘Unification over Complex Indeterminate’. K Mukai . Fifth Generation Computer Journal 1985.520

14

https://courses.cs.washington.edu/courses/csep573/04au/lectures/nlp-all.pdf
https://courses.cs.washington.edu/courses/csep573/04au/lectures/nlp-all.pdf
https://courses.cs.washington.edu/courses/csep573/04au/lectures/nlp-all.pdf
http://www.doc.ic.ac.uk/~rak/papers/kowalski-van_emden.pdf

	1 I. Introduction
	2 II. Related Work
	3 Volume XVI Issue I Version I
	4 ()
	5 III. Lexical Analysis
	6 Global Journal of Computer Science and Technology
	7 Volume XVI Issue I Version I
	8 IV. Logic Programming and Natural Languages
	9 V. Definite-Clause Grammars
	10 VI. A Logic-Based Framework for
	11 VII. System Implementation
	12 VIII. Future Works
	13 IX. Conclusions
	.1 Appendix i

