
Strategy Design Pattern1

Mrs. Renu Bala12

1 CDLU SIRSA3

Received: 16 December 2013 Accepted: 3 January 2014 Published: 15 January 20144

5

Abstract6

Design patterns usually describe abstract systems of interaction between classes, objects, and7

communication flows. So, a description of a set of interacting classes that provide a generalized8

solution framework to a generalized/specific design problem in a specific context can be said as9

a design pattern. There are many design patterns that can be used to solve real-life problems,10

but it remains very difficult to design, implement and reuse software for complex applications.11

Examples of these include enterprise system, real-time market data monitoring and analysis12

system. Design patterns provide an efficient way to create more flexible, elegant and13

ultimately reusable object-oriented software. Each pattern describes a problem which occurs14

over and over again in our environment, and then describes the core of the solution to that15

problem, in such a way that you can use this solution a million times over, without ever doing16

it the same way twice?. The solutions of the given problems are expressed in terms of objects17

and interfaces. Among 23 design patterns, Strategy pattern defines an interface common to all18

supported algorithms. Context uses this interface to call the algorithm defined by a Concrete19

Strategy. In accounting framework one thing is mostly needed that is tax calculation. To solve20

this problem author in the current study has chosen the strategy pattern.21

22

Index terms— design pattern, context, strategy, object, concretestrategy.23

1 Introduction24

design pattern is a generic solution that has been observed in multiple instances to help resolve a particular25
problem within a known context. Design patterns provide an efficient way to create more flexible, elegant and26
ultimately reusable object-oriented software. Design methods are supposed to promote good design, to teach27
new designers how to design well and to standardize the way designs are developed. Typically, a design method28
comprises a set of syntactic notations usually graphical and a set of rules that govern how and when to use each29
notation. It will also describe problems that occur in a design, how to fix them, and how to evaluate a design.30
Each pattern describes a problem which occurs over and over again in our environment, and then describes the31
core of the solution to that problem, in such a way that you can use this solution a million times over, without32
ever doing it the same way twice ??1]. The solutions of the given problems are expressed in terms of objects and33
interfaces. Design patterns are being increasingly used in software design. Design patterns are a good means for34
recording design experience as they systematically name, explain and evaluate important and recurrent designs35
in software systems. They describe problems that occur repeatedly, and describe the core of the solution to that36
problem, in such a way that this solution can be used many times in different contexts and applications. A good37
design is a good solution regardless of the technology. And no matter how good the technology may be, it is38
only as good as its design, and specifically the implementation of that design. In fact, a great design with older39
technology may still be good, but a bad design with new technology is usually just bad. A design pattern is40
a form of design information and the design that worked well in past will be used in future in any application41
similar to existing application which uses these designs. These design information can help both the experienced42
and the novice designer to recognize situations in which these designs can be reused. There are three categories43
of design patterns: Creational, structural and Behavioral.44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



8 VI. SIMULATION STRATEGY DESIGN PATTERN

2 II.45

3 Net Framework46

A .net is a new software platform for the desktop and the Web. The .NET Framework is an integral Windows47
component that supports building and running the next generation of applications. The .NET Framework has48
two main components: the common language runtime and the .NET Framework class library. The common49
language runtime is the foundation of the .NET Framework [2]. The .NET Framework is designed to fulfill the50
following objectives: ? To build all communication on industry standards to ensure that code based on the .NET51
Framework can integrate with any other code [2].52

III.53

4 Strategy Pattern54

Strategydefines an interface common to all supported algorithms. Context uses this interface to call the algorithm55
defined by a ConcreteStrategy.56

ConcreteStrategyeach concrete strategy implements an algorithm.57

5 Context58

? contains a reference to a strategy object.59
? may define an interface that lets strategy accessing its data.60
The Context objects contains a reference to the ConcreteStrategy that should be used. When an operation61

is required then the algorithm is run from the strategy object. The Context is not aware of the strategy62
implementation. If necessary, addition objects can be defined to pass data from context object to strategy.63

The context object receives requests from the client and delegates them to the strategy object. Usually64
the ConcreteStrategy is created by the client and passed to the context. From this point the clients interact65
only with the context. In other words, it defines a family of algorithms, encapsulate each one and make them66
interchangeable. In computer programming, the strategy pattern also known as the policy pattern is a software67
design pattern that enables an algorithm’s behavior to be selected at runtime. The strategy pattern68

6 Related Work69

There are various design patterns that can be used to solve any of the industrial application. Here in this paper70
work, strategy pattern is used to build a framework. In accounting framework, one thing is mostly needed that71
is tax calculation. To solve this problem author in the current study has chosen the strategy pattern. Using72
these patterns, design solution of the industrial problem will be described. The father of the pattern concept,73
proposed a description template stating nine essential pattern elements. These patterns element describes the74
design patterns effectively; also describe how these patterns are useful to solve the problem. Industrial applications75
typically require different kinds of interfaces to the data they store and the logic they implement are data loaders,76
user interface and integration gateways and others. Instead of using for different purpose, these interfaces often77
need common interactions with the application to access and manipulate its data and invoke its business logic.78
These interactions may be complex, involving transaction across multiple resources and the coordination of several79
responses to an action. These interfaces decide the interaction between different layers of the application; how80
user interacts with middleware layer and the database layer. The framework is implemented in .Net. As we are81
using the design patterns to build this framework hence the developer can use this framework to build any kind of82
industrial application and can implement it in any other programming language using object-oriented concepts.83
Using the concept of design patterns. There are various classes with their methods and properties [5].84

7 V. Analyze Strategy Pattern by Example85

Strategy pattern is used when we have multiple algorithm for a specific task and client decides the actual86
implementation to be used at runtime.87

Strategy pattern is also known as Policy Pattern. We defines multiple algorithms and let client application88
pass the algorithm to be used as a parameter. One of the best example of this pattern is Collections.sort()89
method that takes Comparator parameter. Based on the different implementations of Comparator interfaces, the90
Objects are getting sorted in different ways [8].91

8 VI. Simulation Strategy Design Pattern92

One common usage of the strategy pattern is to define custom sorting strategies e.g. to sort a list of strings by93
length in Java, passing an anonymous inner class (an implementation of the strategy interface) [7]:94

List<String> names = Arrays.asList(”Anne”, ”Joe”, ”Harry”); Collections.sort(names, new Compara-95
tor<String>() { public int compare(String o1, String o2) { return o1.length() -o2.length(); } }); As-96
sert.assertEquals(Arrays.asList(”Joe”, ”Anne”, ”Harry”), names); VII.97

2



9 Conclusion98

Although the belief of utilizing design patterns to create better quality software is fairly widespread, there is99
relatively little research objectively indicating that their usage is indeed beneficial. In this paper we try to100
reveal the connection between design patterns and software maintainability. It is very hard to understand better101
what the patterns are and how they relate to each other. At this point there is a fundamental picture as102
reacting to an event to produce accounting entries. We used our probabilistic quality model for estimating the103
maintainability. We found that every introduced pattern instance caused an improvement in the different quality104
attributes. Moreover, the average design pattern line density showed a very high, 0.89 Pearson correlations105
with the estimated maintainability values. Design patterns are outstanding communication tool and help to106
make the design process faster. This allows solution providers to take the time to concentrate on the business107
implementation. Patterns help the design to make it reusable. Reusability not just applies to the component,108
but also the stages of the design that must go from a problem to final solution. The ability to apply a pattern109
that provides a repeatable solution is worth the little time spent learning formal patterns. There are some110
promising results showing that applying design patterns improve the different quality attributes according to our111
maintainability model. In addition, the ratio of the source code lines taking part in some design patterns in the112
system has a very high correlation with the maintainability. However, these results are only a small step towards113
the empirical analysis of design patterns and software quality [4].Design patterns shall support reuse of a software114
architecture in different application domains as well as reuse of flexible components [6].115

10 References Références Referencias116

Figure 1: A

Figure 2: ?

1 2117

1© 2014 Global Journals Inc. (US)
2© 2014 Global Journals Inc. (US) Strategy Design Pattern

3



10 REFERENCES RÉFÉRENCES REFERENCIAS

4



[Heged?us and B´an] , P´eter Heged?us , D´enes B´an . p. 6720. Rudolf Ferenc, and Tibor Gyim´othy University118
of Szeged, Department of Software Engineering ´Arp´ad t´er 2. H-119

[Szeged and Inf] , Hungary Szeged , -@ Inf . u-szeged.hu120

[Meyer] ‘Componentization: The Visitor Example’. Bertrand Meyer . IEEE computer (IEEE) 39 (7) p. .121

[Meyer and Arnout ()] Componentization: The Visitor Example, Bertrand Meyer , Karine Arnout . 2006. IEEE.122
(to appear in Computer)123

[Dorn and Naz] Institute of Information Sysytems 184/2 Technicla University Vienna ,Favoritenstrabe 9-11,124
Vienna A-1040, Jurgen Dorn , Tabbasum Naz . Austria\{dorn/naz\}@dbai.tuwien.ac.at125

5

u-szeged.hu
Austria\{dorn/naz\}@dbai.tuwien.ac.at

	1 Introduction
	2 II.
	3 Net Framework
	4 Strategy Pattern
	5 Context
	6 Related Work
	7 V. Analyze Strategy Pattern by Example
	8 VI. Simulation Strategy Design Pattern
	9 Conclusion
	10 References Références Referencias

