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Abstract - Volumetric changes in the active drilling fluid system during drilling operation are 
commonly termed borehole ballooning or breathing. One of the borehole ballooning contributors is 
the elastic deformation of an open borehole wall. When the elastic deformation of the open borehole 
wall occurs, it causes a volumetric change in the active drilling fluid volume in the system; the change 
in volume will be variable depending on the well in question and occurs frequently. Prediction of the 
volumetric change is highly complex, simply because huge number of complicated equations 
involved. Therefore, the use of the computer is necessary to reduce the process time and improve 
the prediction accuracy. Hence, Standalone software has been developed (built on Matlab) in order 
to estimate and quantify the volumetric change of the active drilling fluid system. 
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   Abstract-

  

Volumetric changes in the active drilling fluid system 
during drilling operation are commonly termed borehole 
ballooning or breathing. One of the borehole ballooning 
contributors is the elastic deformation of an open borehole 
wall. When the elastic deformation of the open borehole wall
occurs, it causes a volumetric change in the active drilling fluid 
volume in the system; the change in volume will be variable 
depending on the well in question and occurs frequently.
Prediction of the volumetric change is highly complex, simply 
because huge number of complicated equations involved. 
Therefore, the use of the computer is necessary to reduce the 
process time and improve the prediction accuracy. Hence,
Standalone software has been developed (built on Matlab) in 
order to estimate and quantify the volumetric change of the 
active drilling fluid system. The main objective of the presented 
Standalone software is to utilize the existing in situ principal 
stresses gradients, pore pressure gradient and rock geo-
mechanical properties in order to compute the change in 
borehole volume for different flow rates. Moreover, it indicates
any possible changes might occur to the equivalent circulating 
density within the referred system. The core of the presented 
Standalone software are two analytical formulas, which initially 
are used to estimate the radial elastic displacement for any 
point along the open borehole wall, which in turn will be 
utilized to quantify the volumetric change of the drilling fluid 
system for the entire open borehole section. The complete 
governing equations of the developed software are provided 
and described in detail. In order to examine the functionality of 
the software, two case studies have been performed using the 
developed software, several scenarios were assumed for both 
cases. The base scenario was defined to use the actual well 
data without any changes, whereas the changes have been 

applied for the other scenarios. The main finding of these 
studies was that the volumetric change of the open borehole 
section, due to the elastic deformation of the open borehole 
wall, is not significant and mainly controlled by the pump flow 
rate, drilling fluid weight and temperature. 

I. Introduction

ertainly, three processes can cause volumetric 
changes to the active drilling system, these 
process are:

− Kick: A flow of formation fluids into the wellbore 
during drilling operations.

− Loss: The leakage of the liquid phase of a drilling 
fluid, slurry or treatment fluid containing solid 
particles into the formation matrix.

− Borehole breathing (Ballooning).

Borehole ballooning sometimes referred as 
breathing is an expression used to describe the small 
volumetric change of the active drilling fluid system, 
which might occur during drilling operations. The 
phenomenon of borehole ballooning is caused mainly 
by following mechanisms [[1],[2]]:

• Thermal expansion and contraction of the drilling 
fluid.

• Compressibility of the drilling fluid.
• Elastic deformation of the borehole and the cased 

hole.
• The opening and closing of induced fractures at the 

near wellbore region.
• The opening and closing of natural fractures 

intersected during drilling.
By estimating the change in volume of the 

wellbore caused by one of above mentioned processes, 
we can avoid confusion with conventional losses or 
formation kick, consequently nonproductive time (NPT) 
is reduced.

C

According to the studies which has been 
performed by Bjørkevoll et al (1994) and Aadnøy (1996), 
the volumetric change of an active mud system caused 
by the elastic deformation of the borehole and the cased 
hole does not excess 10% of the total volume 
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sensitivity study using syntactic data in order to 
investigate the effects of different parameters on 
volumetric deformation of the open borehole, the 
outcome of the study clearly shows that the volume 
variation is insignificant and controlled by the drilling 
fluid weight and temperature[5].

This paper presents standalone software (built 
on Matlab) to predict and quantify the volumetric 
change of the active drilling fluid system due to elastic 
deformation of the open borehole wall, which will assist 
the drilling engineers to a certain extent to avoid mixing 
ballooning with other formation flow incidents such as 
kick or loss. The developed software was designed to 
fully utilize the existing Geotechnical Mode land rock 
geo-mechanical properties for any depth interval in 
order to execute the main objectives of the tool. The 

the elastic deformation of an open borehole wall, the 
equations have been validated numerically; this paper 
presents the recent work of Elmgerbi et al, which is 
exemplified in standalone software. Generally, the 
software has multiple features and it is capable to 
estimate the volumetric change of an open borehole 
section for different conditions and multi layers by using 
the Geotechnical Model data such as in situ principal 
stresses gradients and pore pressure gradient in 
addition to geo-mechanical properties of the rock like, 
Poisson’s ratio, Young’s modulus. The graphical user 
interface of the software (GUI) has been designed in a 
manner that allows the user to execute the entire 
process easily within a short time. The working 
sequence of the tool consists of five phases, data 
uploading, data inputting, model selection, final 
execution and result displaying. Since the graphical 
analysis is always preferable hence the software 
generates multiple figures, these figures collectively are 
comprehensive and readable that leads to valuable 
analysis. Figure 1depicts the process roadmap of the 
developed software.

III. Processing Steps

a) Data Uploading 
Three different data sources are combined in 

one file (Master file), Geotechnical Model, geo-
mechanical properties of the rocks and subsurface data. 
Therefore it is assumed that the Geotechnical Model 
and rock properties of the interested field have been 

[6].Table 1 shows the essential data categories and 
sources.

already obtained. Building a Geotechnical model can be 
derived by gathering and analyzing, wire line logs data, 
down hole measurements data, and drilling 

experiences, whereas the rock properties can be 
determined by combing logs data with laboratory tests 

Recently Elmgerbi et al [5]introduced new 
analytical equations which are used primarily to predict 

variation[3].  Helstrup et al (2001) stated that change in 
borehole volume due to elastic deformation can be 
significant and it is mainly driven by wellbore radius, well 
pressure and Poisson’s ratio. Their results show that the 
change in volume can be as high as 1 bbl for 100 meter 
depth interval[4].On 2016 Asad et al performed 

Figure 1: Process Roadmap of the Developed Software.

II. Background



 

Table 1:  Data Categories and Sources   

Category Parameter Sources 

G
eo

te
ch

ni
ca

l M
od

el
 

Vertical Principal Stress.  Density and Soniclogs, Cuttings.  

Intermediate Principal Stress.  Image and caliper logs, failure 
analysis.  

Least Principal Stress.  Leak-off tests, extended leak-off 
tests, Sonic logs.  

Pore Pressure.  Sonic, resistivity and density logs, 
seismic data.  

R
oc

k 
P

ro
pe

rti
es

 

Young’s Modulus.  Bulk density log, laboratory core 
tests, cavings.  

Poisson Ratio.  Bulk density log, laboratory core 
tests, cavings.  

Biot Constant.  Laboratory core tests.  

Thermal Expansion Coefficient.
 Laboratory core tests.  

Cohesive Strength.  Laboratory core tests.  

Friction Angle.  Bulk density log, laboratory core  

tests.  

Tensile Strength.  Laboratory core tests.  

W
el

l D
at

a
 

Measured Depth.  Rig Data.  

Hole Inclination.  Measuring while drilling.  

Hole Azimuth.  Measuring while drilling.  

Expected Mud Temperature.  Logs.  

The Master file, which
 
is recognized by the tool, 

is a structured text file containing fifteen channels and 
header information. The header information is located at 
the beginning of the file and followed by data arrays.

 

b)
 

Data Entry 
 

In the data entry phase the users is allowed to 
add more information in order to allow effective and 
successful processing and ensure the integrity of the 
results. The required data here is particularly related to 
well, which is under the study.  

 

IV.
 

Mathematical Models and Methods
 

The tool allows the user to choose the desirable 
hydraulic model and the appropriate failure criteria for 
both compressive and tensile conditions. Therefore 
several equations have been integrated with tool. In the 
next section the utilized equations will be presented.

 

a)
 

Hydraulic Models
 

The three known hydraulic models, Bingham, 
Power law and Herschel Bulkley have been integrated 
with the software in order to make it independent. The 
main role of the hydraulic model here is to predict the 
annular pressure loss for the open and cased sections. 
The table below shows the pressure loss equations 

used by the software.
 
Full mathematical derivations of 

the entire equations can be found in reference 
 
[8].
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Table 2:  Hydraulic Models Equations used by the Developed Software  

Model Flow 
Regime 

Pressure Loss  

Bingham 

Laminar P𝑙𝑙 =
PV ∗ υ

1000 ∗ (D2 − D1)2 +
Yp

200 ∗ (D2 − D1)                                                  (1) 

Turbulent P𝑙𝑙 =
ρ0.75 ∗ υ1.75 ∗ PV0.25

1396 ∗ (D2 − D1)1.25                                                                                   (2) 

Power 
law

 

Laminar Pl = �
144 ∗ υ
D2 − D1

∗
2 ∗ n + 1

3 ∗ n �
n

∗
0.00208 ∗ k

300 ∗ (D2 − D1)                                            (3) 

Turbulent
 

Pl =
f ∗ ρ ∗ υ2

21.1 ∗ (D2 − D1)                                                                                          
(4)

 

Herschel 
Bulkley

 

Laminar
 

Pl = � 0.09984∗k
14400∗(D2−D1)� ∗ �

Yp

0.00208∗k
+ �� 192∗(2∗n+1)

n∗Ca∗(D2−D1)� ∗ �
0.1016∗Q
(D2

2−D1
2)��

n
�           (5)

 

 

Turbulent
 

P𝑙𝑙 =
7.48 ∗ f ∗ (0.002217 ∗ Q)2 ∗ ρ

0.005712 ∗ (D2 − D1) ∗ (D2
2 − D1

2)2
                                                      

(6)
 

 b)

 
Fracture Initiation Pressure and Collapse Pressure 
Methods 

 In case the Geotechnical Model does not 
include fracture initiation pressure and collapse 

pressure, the software offers several methods, which 
can be used to predict upper and lower bounds of the 
safe mud pressure window. 

 

Table 3

 

:

 

Fracture Initiation Pressure Equations

 

used by the Developed Software

 per Boundary [Fracture Initiation Pressure] Methods

 
[9]

 
[10], 

 
[11], 

 
[12]

 Method

 

Fracture Initiation Pressure

 Hubbert & Willis

 

𝑃𝑃𝑓𝑓 =
�1 − 𝑆𝑆𝑆𝑆𝑆𝑆(ɸ)�
�1 + 𝑆𝑆𝑆𝑆𝑆𝑆(ɸ)�

�𝜎𝜎𝑣𝑣 − �α ∗ Pp�� + �α ∗ Pp�
                                                               

(7)

 
Eaton

 

𝑃𝑃𝑓𝑓 =
𝜐𝜐

(1 − 𝜐𝜐) �𝜎𝜎𝑣𝑣 − �α ∗ Pp�� + �α ∗ Pp�
                                                                          

(8)

 Minimum Stress

 

𝑃𝑃𝑓𝑓 = σh

                                                                                                                        

(9)

 
Bellotti &Giacca

 

𝑃𝑃𝑓𝑓 =
2 ∗ 𝜐𝜐

(1 − 𝜐𝜐) �𝜎𝜎𝑣𝑣 − �α ∗ Pp�� + �α ∗ Pp�

 

(10)

 

Hoop Stress Method

 

Pf = 3𝜎𝜎ℎ − 𝜎𝜎𝐻𝐻 − �α ∗ Pp� + σt
∆t + T

                                                                  

(11)

 
 

 

 

 

 

 

 

 

Table 4: Collapse Pressure Equations used by the Developed Software

Lower Boundary [Collapse Pressure] Methods[13], [14]
Mohr Coulomb

C
as

e#
1

pwc =
�3σH − σh + σt

∆t� ∗ �1 − SIN(ɸ)�
2 − So ∗ COS(ɸ) + �α ∗ Pp� ∗ SIN(ɸ) (12)

C
as

e#
2 pwc =

1
�1 + SIN(ɸ)�

∗ �(σv + σt
∆t + 2 ∗ υ(σH − σh)) ∗ �1 − SIN(ɸ)� − 2 ∗ So ∗ COS(ɸ) + �α ∗ Pp� ∗ SIN(ɸ)� (13)

Modified Lade

I3 =
I1

3

(27 + η) (14)
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The detailed steps for deriving the equations can be found in Appendix



 

  

   
 

 

                                                   
 

  
    

 

 

 
                                                                                                                                                                                

 

 

c)

 

Stress Transformation Equations

 

In case the borehole is horizontal or inclined, 
the stress transformation equations are triggered in 
order to transform the stresses to a new Cartesian 

coordinate system, where two stresses are 
perpendicular to the borehole whereas the third stress is 
parallel to the axes of the borehole

 

[15].

 

Table 5

 

:

 

Stress Transformation Equations

 

Used by the Developed Software

 

Stress Transformation Equations

 

σH
° = �σH ∗ �COS(ω)�2 + σh ∗ �SIN(ω)�2� ∗ �COS(δ)�2 + σv ∗ �SIN(δ)�2

                                                                 

(15)

 

 

σh
° = �σH ∗ �SIN(ω)�2 + σh ∗ �COS(ω)�2�

                                                                                                                          

(16)

 

 

σv
° = �σH ∗ �COS(ω)�2 + σh ∗ �SIN(ω)�2� ∗ �SIN(δ)�2 + σv ∗ �COS(δ)�2 (17)

 

τxy
° =

1
2

(σH − σh ) ∗ �SIN(2ω)� ∗ �COS(δ)�

 

(18)

 

 

τxz
° =

1
2 �σH ∗ �COS(ω)�2 + σh ∗ �SIN(ω)�2 − σv� ∗ �SIN(2δ)�

 

(19)

 

 

d)

 

True Vertical Depth Determination Method

 

There are several known methods of computing 
true vertical depth, one of these methods is the       

minimum curvature, it is theoretically the most accurate 
and most commonly used, hence it was integrated with 
software

 

[16].

 

Table 6

 

:

 

Minimum Curvature Method Equations Used by the Developed Software

 

Minimum Curvature Method

 

DL = COS−1 ∗ [SIN(δ1) ∗ SIN(δ2) ∗ COS(ω2 −ω1) + COS(δ1) ∗ COS(δ2)](20)

 
 

RF = TAN�
DL
2
� ∗

180
π

∗
2

DL
(21)

 

 

∆TVD = [COS(δ1) + COS(δ2)] ∗ �
RF ∗ ∆MD

2
� (22)
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e) Solution Methods 
Two solution methods are available, one is for 

impermeable borehole wall whereas the second for 
permeable. Practically, the impermeable proposed 
solution is valid once the rock formation is exposed to 

[Initial condition], whereas the permeable solution is 
effective only when a stable mud cake is built [Steady 
stat condition].Only the final formula of the two methods 
will be mentioned here. Therefore for more details refer 
to reference [5].

the drilling fluid and last as long as no filtration occurs 

Table 7 : Radial Elastic Displacement Equations Used by the Developed Software

Radial Elastic Displacement

P
er

m
ea

bl
e 

u = r ∗
1
E �Pw ∗ (1 + υ) − (α ∗ Pw ) ∗ (2υ − 1) − (1 − υ) ∗ �σt

∆t + 2η �Pw − �α ∗ Pp���

− (υ2 − 1) ∗ �2(σH − σh) COS(2θ) + 4 ∗ τxy ∗ SIN(2θ)� − σH − σh + υ ∗ σv� (23)

Im
p e

rm
ea

bl
e 

u = r ∗
(1 + υ)

E �Pw −
(2υ − 1)
(1 + υ) ∗ �α ∗ Pp� −

(1 − υ)
(1 + υ) ∗ σt

∆t −
1

(1 + υ)
∗ (σH + σh − υ ∗ σv )

− 2 ∗ (υ − 1) ∗ �(σH − σh) COS(2θ) + 2 ∗ τxy ∗ SIN(2θ)�� (24)

H



 

  

   
 

   

 

 

  

 

 

 

   

 

V.

 

Deliverables of the Software

 

Several figures are generated, which would 
assist to improve individual analysis quality and provide 
a simple visual way of analyzing. The following points 
show the main figures that displayed by the developed 
software:

 

•

 

Well profile.

 

•

 

Safe mud pressure window. 

 

•

 

Volumetric change of the open borehole section.

 

•

 

Change in the Equivalent Circulating Density (ECD).

 

•

 

Open borehole section condition. 

 

VI.

 

Internal Workflow Description

 

Sequential steps are performed at the back 
ground of the

 

software

 

in order to achieve the main 
objectives of the software.

 

Figure 2below depicts these 
steps. As it is illustrated in Figure 2, the process starts 
by computing the annular pressure loss between the 
casing and drill string, here the given casing depth and 
drill string geometry are used. Then the software starts 
fetching the data point from the master file, one by one, 
each time several steps are performed, the steps are 
repeated for each single data point till the last data 
point. Eventually the cumulative volumetric change of 
the open borehole section and the change in Equivalent 
Circulating Density (ECD) are computed and graphically 
displayed for different flow rates.

 

The change in (ECD) 
referred to here is the difference between the theoretical 
(ECD) [Calculated based on the original shape of the 
open borehole section] and predicted (ECD) 
[Calculated based on deformed shape of the open 
borehole section].
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Figure 2 : Internal Workflow of the Developed Software

VII. Case Study

Necessary analysis for the presented case study 
performed using historical data belonging to two wells. 
The main objectives of the study were to measure the 
effects of different controllable and uncontrollable 
parameters on the volumetric changes of the open 
borehole section and to evaluate any expected changes 
which would occur to ECD saccordingly. The initial well 
condition for the example mentioned can be seen in 
Table 8.

Earl
y V

iew



 

Table 8:  Well Characteristics and the Relevant Data used for the Study  

 Well A Well B 
Last Casing Size and Depth [ft]  95⁄8” -12600 7 5/8”- 16500 
Well Typ e  Vertical Slightly Deviated 
Total Measured Depth [ft]  13400 19050 
Open Hole Section Thickness [ft] and Size [in]  800 -  8 1/2” 2550 - 6 1/2” 
Mud Weight [ppg]  10 11.5 
Hydraulic Model  Used  Bingham Herschel Bulkley 
Fracture Initiation Pressure Method Used  Eaton Bellotti &Giacca 
Collapse Pressure Method Used  Modified Lade Mohr Coulomb 
Drill Pipe length [ft] and Size [in]  12800 -  4 1/2” 17500 -  3 1/2” 
Heavy Weight Drill Pipe length [ft] and Size [in]  200 -  5” 800 -  3 ½” 
Drill Collar length [ft] and Size [in]  400 -  5 1/2” 750 -  4 3/4” 
Initial Flow Rate  [gpm]  500 700 
Viscometer Reading [600-300-6-3] [1/sec-1]  26-20-8-6 38-26-6-5 
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Well A Well B

Figure 3 :  Wellbore Schematic

Three different scenarios have been studied as 
following:

• In first scenario, the initial well condition was applied 
(Table 8).

• In the second scenario, the effect of the mud weight 
was investigated.

• In the third scenario, the influence of drilling fluid 
temperature was studied.

In each scenario the pump flow rate was 
gradually increased from the initial rate to maximum 
allowable rate.



 

 

Well A

 
 

Well B

 

Figure 4

 

:

 

Safe Mud Pressure Window

 

a)

 

Well A

 

As it is clearly indicated in Figure 4, this well can 
be characterized as the one with narrower safe mud 
pressure window

 

consequently the maximum 
permissible pump flow rate was limited to1000 gpm.

 

Figure 5depicts the results of the studied scenarios.

 

In 
general, the volumetric change of the open borehole 
section and change in ECD increase with increasing the 
pump flow rate. However the changes are not significant 
and they can be ignored. Although in second scenario 
the mud weight was higher, it did not make remarkable 
changes, the reason for that mainly related to the 
contraction and expansion of the open borehole,

 

in all

 

scenarios, the borehole was always in contraction status 
even with higher flow rate [Figure 6].
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[The red bar shows the borehole condition 
under static status [pump off], whereas the green bar 
illustrates the borehole condition under dynamic status 
[pump on]. the negative number indicates that the 
borehole is under contraction condition]

 

b)

 

Well B

 

This well has wider safe mud pressure window, 
which makes it a good example to study the impact of 
the borehole condition in term of contraction and 
expansion on volumetric change of the open borehole 

and change in ECD.

 

Three important observations can 
be extracted from the 3 scenarios are;

 

•

 

The volumetric change of the open borehole and 
change in ECD increase constantly with pump flow 
rate.

 

•

 

In the second scenario, the borehole condition 
changes from contraction status to expansion 
status, consequently the volumetric change is 
higher and the change in ECD is lower comparing to 
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Figure 5 : Expected Change in Open Borehole Volume and ECD for Different Pump Flow Rate [Well A]

[In the second scenario the mud weight was 
increased to 10.5 ppg instead of 10 ppg, while in third 
scenario, the drilling fluid temperature is assumed to be 
127⁰C for the entire open hole section and 0. 925 
[⁰C/100ft] used as thermal gradient]

The results show another important observation 
that the change in ECD in second scenario is always 
less comparing to the other scenarios, again the main 
reason of that is the borehole condition. Increasing mud 
weight would intend to change the borehole from 
contraction condition to expansion condition, hence the 
average radius of the deformation borehole increases 
and the cumulative annular pressure loss at the bottom 

of the borehole decreases accordingly. Comparing the 
third scenario with first scenario, slight increase in the 
volumetric change of the open borehole section can be 
noted, it is caused mainly by the thermal stress. The 
existence of the thermal stress will cause the drill-
induced stresses to increase, consequently the open 
borehole shrinks and the annular pressure loss 
increases. Therefore, higher dynamic wellbore pressure 
is expected, it cause the open borehole section to 
expand, due to this expansion, the difference in 
deformation volume between the pump on and off is 
higher.

Figure 6 : Cumulative Deformation Volume of the Open borehole section for Different Pump Flow Rate [Well A]

the first scenario. The change in ECD in this case is 
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Figure 7: Expected Change in Open Borehole Volume and ECD for Different Pump Flow Rate [Well B]

[In the second scenario the mud weight was 
increased to 13.5 ppg instead of 11.5 ppg, while in third 
scenario, the drilling fluid temperature is assumed to be 

177⁰C for the entire open hole section and 0. 925 
[⁰C/100ft] used as thermal gradient]

Figure 8: Cumulative Deformation Volume of the Open Borehole Section for Different Pump Flow Rate [Well B]

[It is obvious that the open borehole is under 
contraction status in first and third scenario, in contrast it 
is under expansion status in the second scenario.]

VIII. Conclusion

The main conclusion of the presented work can 
be summarized in the following points:

• For the purpose of accurately quantifying the 
volumetric change of an open borehole section and 
its impact on the hydraulic system, Standalone 
software has been developed, it has multiple 
features and it is able to estimate the volumetric 
change of an open borehole section and to predict 
any possible change might occur to the ECD for any 

given well by utilizing the Geotechnical Model data, 
geo-mechanical properties of the rocks and 
subsurface data.

• Detailed description for all the equations and 
models of the developed software have been 
provided.

• Since the graphical analysis is always preferable 
hence the developed software generates multiple 
charts, these charts collectively are comprehensive 
and readable that leads to valuable analysis.

• The findings of  two case studies can  be concluded 
as following:

o The elastic deformation of an open borehole 
section wall certainly occurs and its severity 

• The slight increase in volumetric change and the 
change in ECD in the third scenario are due to the 
thermal stress effect.

negative, in other words, the predicted ECD at the 
bottom of the hole is less than the theoretical ECD.



 

in situ principal stresses and the drilling fluid 
weight.

 

o

 

The changing magnitude of ECD depends 
mainly on the open borehole static [Pump off] 
condition, if the borehole is under contraction 
status when the pump is off, two cases could 
exist once the pump is started:

 



 

The borehole could continue to be under 
contraction status; in this case the

 

change 
in ECD will be positive [the predicted ECD 
will be higher than the theoretical ECD].

 



 

The second possible situation occurs if the 
open borehole condition changes from 
contraction to expansion, in this casethe 
predicted ECD will be less than the 
theoretical ECD and consequently the 
change in ECD will be negative.

 

References Références Referencias

 

1.

 

Lavrov, A. and Tronvoll, J. 2005. Mechanics of 
Borehole Ballooning in Naturally-Fractured Forma- 
tions. Presented at the SPE Middle East Oil & Gas 
Show and Conference, Bahrain, 12-15 March 2005.

 

SPE-93747-MS.http://dx.doi.org/10.2118/93747-MS.

 

2.

 

Eirik, K. and Aadnøy, S. Temperature Model Provi- 
des Information for Well Control. Oil & Gas Journal,

 

September1998.http://www.ogj.com/articles/print/  
volume-96/issue-37/in-this-issue/drilling/tempera  
ture- 

3.

 

Aadnøy, S. and Brent, S. 2010. Evaluation of 
ballooning in deep wells. In Modern Well Design, 
second edition, Appendix B, 294. London, Uk: 
Taylor & Francis Group.

 

4.

 

Helstrup, A. Rahman, M.K. Hossain, M.M. and 
Rahman, S. 2001. A Practical Method for Evaluating 
Effects of Fracture Charging and/or Ballooning 
When Drilling High Pressure, High Temperature 
(HPHT) Wells. Presented at SPE/IADC Drilling 
Conference, Netherlands, Amsterdam, 27 February-
1 March 2001.SPE-67780-MS.http://dx.doi.org/10.2

 

118  /67780-MS.

 

5.

 

Elmgerbi, A. Thonhauser, G. Prohaska, M. et al. 
General Analytical Solution for Estimating the Elastic 

Deformation of an Open Borehole Wall. International 
Journal of Scientific & Engineering Research, 
Volume 7, Issue 1, 13 pages, January 2016. http://

 

www.ijser.org/onlineResearchPaperViewer.aspx?Ge
neral-Analytical-Solution-for-Estimating-the-Elastic-
Deformation-of-an-Open-Borehole-Wall.pdf.

 

6.

 

Al-Maamori, H. El Naggar, M, and Micic, S. A 
Compilation of the Geo-Mechanical Properties of 
Rocks in Southern Ontario and the Neighbouring 
Regions. Open Journal of Geology, Volume 4, 19 pa

 

ges, April 2014. dx.doi.org/10.4236/ojg.2014.

 

45017.

 

7.

 

Akbar Ali, A. Brown, T. Delgado, R. et al. Watching 
Rocks Change—Mechanical Earth Modeling. 
Oilfield Review, 2013. https://www.slb.com/~/med 
ia/Files/resources/oilfield.../p22_39.pdf

8.

 

Guo, B. and Liu, G. 2011. Mud Hydraulic 
Fundamentals. In Applied Drilling Circulation 
System, first edition, Chapter2, 19-57: Gulf

 

Profe- 
ssional Publishing is an imprint of Elsevier.

 

.

 

9.

 

Hubbert, M. K. and Willis, D. G., Mechanics of 
Hydraulic Fracturing. AIME Petroleum Transactions, 
Vol.210,

 

1957,

 

pp.

 

153-168. https://www.depts.ttu. 
edu/.../ Hubbert%20and%20 Willis,%201972%20me. 

10.

 

Ben A, E.. Fracture Gradient Prediction and Its 
Application in Oilfield Operations. Journal of 
Petroleum Technology, Volume 21, Issue 10, 8 
pages, October 1969.  

 

http://dx.doi.org/10.2118/ 21 
63-PA. 

11.

 

Peng, S. and Zhang, J. 2007. Wellbore/borehole 
stability. In Engineering Geology for underground 
Rocks, first edition, Chapter7, 177. Berlin, Germany: 
Springer Science and Business Media.

 

12.

 

Bellotti, P. and Giacca, D. Pressure evaluation 
improves drilling performance. Oil and Gas Journal, 
Sept. 11, 1978.

 

13.

 

Bernt, S. and Aadnøy, U. Bounds on In-Situ Stress 
Magnitudes Improve Wellbore Stability Analyses. 
Journal of Petroleum Technology, Volume 10, Issue 
2, 6 pages, June 2005. http://dx.doi.org/10.2118/ 
87223-PA. 

14.

 

Ewy, R. Wellbore-Stability Predictions by Use of a 
Modified Lade Criterion. Journal of Petroleum 
Technology, Volume 14, Issue 2, 7 pages, June 
1999. http://dx.doi.org/10.2118/56862-PA. 

15.

 

Aadnøy, S. and Looyeh, R. 2011. Stresses Around A 
Wellbore. In Petroleum Rock Mechanics Drilling 
Operations And Well Design, first edition, 
Chapter10, 157: Gulf Professional Publishing is an 
imprint of Elsevier.

 

16.

 

Sawaryn, S and Thorogood, J. 2003. A 
Compendium of Directional Calculations Based on 
the Minimum Curvature Method. Presented at the 
SPE Annual Technical Conference and Exhibition, 
Denver, Colorado, U.S.A., 5 – 8 October 2003. SPE-
84246.  http://dx.doi.org/10.2118/84246-MS. 

 
 
 
 
 
 
 
 
 
 
 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
I 
Is
su

e 
III

 V
er
sio

n 
I 

  
  
 

  

26

Ye
ar

20
16

  
 (

)

© 2016   Global Journals Inc.  (US)1

            
Application of Computer Programming to Estimate Volumetric Change of an Active Drilling Fluid System 

Cause by Elastic Deformation of an Open Borehole Section Wall
H

o The static condition [pump off] of an open 
borehole section in terms of contraction and 
expansion is mainly driven by the status of the 

depends on geotechnical properties of 
encountered formation, magnitude of the in situ 
principle stresses, induced stresses, well 
geometry, well profile and the operational 
margin between dynamic and the hydrostatic 
pressure.

o The volumetric change of the open borehole 
section and change in ECD increase with 
increasing the pump flow rate.
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Nomenclature 
Pl Pressure Loss [Psi/ft, Pa/m] 
ρ Density [ppg] 

PV Plastic viscosity [cP] 
υ Mean velocity [Ft/second] 
Yp  Yield point [Ib/100ft²] 
D1 Drill string outer diameter [in, m ] 
D2 Casing inner diameter, open hole diameter  [in, m] 
n Behavior Index [Dimensionless] 
k Consistency Index [EqcP] 
f Friction Factor [Dimensionless] 

Ca  Herschel Bulkley variable  [Dimensionless] 
Q Flow rate [gpm, m3/second] 
𝑃𝑃𝑓𝑓  Fracture initiation pressure [Psi,Pa] 
ɸ Rock frication angle [⁰] 
𝜎𝜎𝑣𝑣 Vertical principle stress [Psi,Pa] 
α Biot’s elastic constant [Dimensionless] 
Pp  Formation pore pressure [Psi,Pa] 
𝜐𝜐 Poisson ratio [Dimensionless] 
σh  Minimum horizontal principle stress [Psi,Pa] 
𝜎𝜎𝐻𝐻 Maximum horizontal principle stress [Psi,Pa] 
σt
∆t Thermal stress [Psi,Pa] 
T Rock tensile strength [Psi,Pa] 

p𝑤𝑤𝑤𝑤  Collapse pressure [Psi,Pa] 
So  Rock cohesive strength  [Psi,Pa] 
I1 First stress invariant  [Psi,Pa] 
I3 Third stress invariant [Psi3,Pa3] 
η Material parameter related to friction [Dimensionless] 
𝜎𝜎11 Major effective principal stress [Psi,Pa] 
𝜎𝜎22 Intermediate effective principal stress [Psi,Pa] 
𝜎𝜎33 Minor effective principal stress [Psi,Pa] 
σrr  Effective radial stress 
σθθ  Effective tangential stress 
σzz  Effective stress along the borehole axis 
𝜃𝜃 Angle around the borehole measured anticlockwise from the azimuth of𝜎𝜎𝐻𝐻 
τθz  Shear stresse in [𝜃𝜃,z] plane [Psi,Pa] 
τxz  Shear stresses in [x,z] plane [Psi,Pa] 
τxy  Shear stresses in [x,y] plane [Psi,Pa] 
τyz  Shear stresses in [y,z] plane [Psi,Pa] 
S1 Material parameter [Psi,Pa] 
u Radial elastic displacement for the borehole  [in, m ] 
r Wellbore radius [in, m ] 
E Young’s modulus  [Psi,Pa] 
η Poroelastic stress coefficient [Dimensionless] 

Pw  Borehole Pressure [Psi,Pa] 
σH

°  Transformed maximum horizontal stress [Psi,Pa] 
σh

°  Transformed minimum horizontal stress [Psi,Pa] 
σv

°  Transformed vertical stress [Psi,Pa] 
τxy

°  Transformed shear stresses in [x,y] plane [Psi,Pa] 
τxz

°  Transformed shear stresses in [x,z] plane [Psi,Pa] 
ω Borehole azimuth [⁰] 
δ Borehole inclination  [⁰] 

DL Dogleg severity [⁰] 
RF Ratio factor  [Dimensionless] 

∆TVD Change in true vertical depth [ft,m] 
∆MD Change in measured depth [ft,m] 
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Appendix 
Mohr Coulomb 
General failure Equation is; 

𝜎𝜎11 − 𝜎𝜎33 = 2 ∗ 𝑆𝑆𝑜𝑜 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶(ɸ) + (𝜎𝜎11 + 𝜎𝜎33) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆(ɸ)(A1) 
Well bore collapse is expected to occur at the azimuth of σh , in other word at 𝜃𝜃=90⁰ , hence the induced 

stresses  can be calculated using the following equations; 

σrr = Pwc − �α ∗ Pp                                                                                                                                                                              (A2) 

σθθ = 3𝜎𝜎𝐻𝐻 − 𝜎𝜎ℎ − Pwc − �α ∗ Pp� + σt
∆                                                                                                                                           (A3) 

σzz = σv − �α ∗ Pp� + σt
∆t + 2 ∗ υ(σH − σh)                                                                                                             (A4) 

τθz = 2 ∗ (−τxz                                                                                                                                                                                     (A5) 
Since Pwc is unknown for comparison it is assumed thatPwc =Pp  

𝜎𝜎𝑟𝑟𝑟𝑟 ≤ 𝜎𝜎𝑧𝑧𝑧𝑧 ≤ 𝜎𝜎𝜃𝜃𝜃𝜃  Therefore 
In Equation A1 

Case#1 

𝜎𝜎11 = 𝜎𝜎𝜃𝜃𝜃𝜃and𝜎𝜎33 = 𝜎𝜎𝑟𝑟𝑟𝑟  
Insert EqA2 and A3 into Eq A1, after few mathematical steps and arrangements we end up with the following 

Equation for collapse pressure: 

pwc =
�3σH − σh + σt

∆t� ∗ �1 − SIN(ɸ)�
2

− So ∗ COS(ɸ) + �α ∗ Pp� ∗ SIN(ɸ                                                                       (A6) 

Case#2 
In case two the following condition is assumed  

𝜎𝜎𝑟𝑟𝑟𝑟 ≤ 𝜎𝜎𝜃𝜃𝜃𝜃 ≤ 𝜎𝜎𝑧𝑧𝑧𝑧  
Therefore in  Eq A1 

𝜎𝜎11 = 𝜎𝜎𝑧𝑧𝑧𝑧and𝜎𝜎33 = 𝜎𝜎𝑟𝑟𝑟𝑟  
Now by inserting  A2 and A4 into Eq A1 collapse pressure for the second case can be derived: 
pwc = 

1
�1 + SIN(ɸ)�

∗ �(σv + σt
∆t + 2 ∗ υ(σH − σh)) ∗ �1 − SIN(ɸ)� − 2 ∗ So ∗ COS(ɸ) + �α ∗ Pp� ∗ SIN(ɸ)                        (A7) 

Modified Lade 

I1
3

I3
= 27 +                                                                                                                                                                                                  (A8) 

I1 = (σ11 + S1) + (σ22 + S1) + (σ33 + S1)                                                                   
       

(A9)
 

I3 = (σ11 + S1) ∗ (σ22 + S1) ∗ (σ33 + S1) + 2 ∗ τxy ∗ τxz ∗ τyz − (σ11 + S1)τyz
2 − (σ22 + S1)τzx

2

− (σ33 + S1)τxy                                                                                                                                                                                         (A10) 

S1 =
So

TAN(ɸ)
                                                                                                                                                                                            (A11) 

η =
4 ∗ �TAN(ɸ)�2 ∗ (9 − 7 ∗ SIN(ɸ))

(1 − SIN(ɸ
                                                                                                                                            (A12) 

Because the collapse occurs at 𝜃𝜃=90⁰, Eq A9 and A10 for cylindrical coordinate will have the following 
forum: 
I1 = (σrr + S1) + (σθθ + S1) + (σzz + S1           (A13) 

I3 = (σrr + S1) ∗ (σθθ + S1) ∗ (σzz + S1) − (σrr + S1)τθz                                                                                                             (A14) 

By substituting σrr , σθθ , σzz  and τθz  in Eq A13 and A14 with Eq A2, A3, A4  and A5 respectively 

I1 = σv − 3 ∗ �α ∗ Pp� + 2 ∗ σt
∆t + 3 ∗ S1 + σH ∗ (2υ + 3) − σh ∗ (2υ + 1                                                                             (A15) 
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I3 = �Pwc−�α ∗ Pp� + S1� ∗ �3σH − σh − Pwc − �α ∗ Pp� + σt
∆t + S1� ∗ �σv − �α ∗ Pp� + σt

∆t + 2υ(σH − σh) + S1�
− �Pwc−�α ∗ Pp� + S1� ∗ (4 ∗ τxz

2 )                                                                                                                                          (A16) 

Now back to Eq A8 rearrange it  

I3 =
I1

3

(27 + η)
 

Finally replace𝐼𝐼1, 𝐼𝐼3, 𝑆𝑆1
 
and 

 
𝜂𝜂

 
with Eq A15,A16,A11 and A12 respectively in Eq A8, the right side of Eq A8 is 

independent of Pwc
 
, while the left side is a quadratic expression in Pwc

 
. Therefor by solving Eq A8 the collapse 

pressure Pwc
 
can be obtained. Since two solutions are expected, the collapse pressure equals the lesser one. 
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