
Automock: Automated Mock Backend Generation for Javascript1

based Applications2

Neha Singhal1 and Harshit Jain23

1 Adobe Systems Incorporated4

Received: 12 December 2015 Accepted: 31 December 2015 Published: 15 January 20165

6

Abstract7

Modern web development is an intensely collaborative process. Frontend Developers, Backend8

Developers and Quality Assurance Engineers are integral cogs of a development machine.9

Frontend developers constantly juggle developing new features, fixing bugs and writing good10

unit test cases. Achieving this is sometimes difficult as frontend developers are not able to11

utilize their time completely. They have to wait for the backend to be ready and wait for12

pages to load during iterations. This paper proposes an approach that enables frontend13

developers to quickly generate a mock backend that behaves exactly like their actual backend.14

This generated mock backend minimizes the dependency between frontend developers and15

backend developers, since both the teams can now utilize the entire sprint duration efficiently.16

The approach also aids the frontend developer to perform quicker iterations and modifications17

to his or her code.18

19

Index terms— javascript development; xml http request; javascript testing; web development; automated20
mock server.21

1 I. Introduction22

he modern development process is increasingly moving towards an Agile Workflow. It is a process followed by23
teams both large and small. There has been a paradigm shift from long, slow development cycles to quick24
iterations. Agile processes have also been documented in multiple research papers ??4; 5; 9].25

A typical development sprint is comprised of three major phases. First is the assignment of features to the26
frontend team and the corresponding backend team. Post the assignment phase, the sprint moves to the feature27
implementation stage. At this stage, Backend developers work on implementing the server features. The frontend28
developers have to generally wait for the backend to be ready. Once the backend is ready, the frontend developers29
implement the user interface.30

The backend developers are mostly idle during this time. One of the major challenges faced during development31
is that the non-production environments of integrated third-party services are unstable and not accessible at times,32
blocking developers from interacting with these services.33

The final stage is the User interface (UI) unit testing stage. Post feature implementation, the developer has34
to write test cases for his or her module. There are some frequent issues usually faced at this point. Firstly, UI35
test cases for asynchronous network calls are messy and time consuming to write. Secondly, UI test cases that36
make network calls consume a lot of time in execution. Thirdly, UI test cases generally require consistent data37
based on real-world data. Finally, UI test cases must not add any test data to the database.38

2 II. Proposed Model39

Our approach resolves some of these issues faced by frontend developers. It has an intuitive interface and can40
easily be integrated into most JavaScript based applications with a single line of code.41

The key features of our approach are:42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

5 D) FLEXIBILITY TO SUPPORT AS MANY API CALLS AS REQUIRED

? A fully-functional mock server ? Very lightweight; comprises just a single JavaScript file ? Flexibility to43
support as many API calls as required The Agile approach is also followed for web application development44
(including development of Single Page Applications). A modern web application generally comprises two integral45
components-the frontend (or the UI) and the backend server. Both run in tandem and are heavily dependent on46
each other. The frontend depends on the backend for data and the backend relies on the frontend to display the47
content to the end user. Our approach is best suited for any medium to large-sized JavaScript web application48
including applications working with third-party components. It also designed for JavaScript unit testing. It is49
especially suited for interdependent teams working on the same web application in parallel.50

As of now, the only limitation with our approach is that it only supports web development projects which use51
JavaScript. Detailed description of our approach:52

3 a) Fully functional mock server53

A backend server comprises of a mapping between API calls and the corresponding responses for those calls.54
The frontend of a web application usually uses the AJAX (Asynchronous JavaScript and XML) protocol [6] to55
query the backend server. Though this allows the application to provide a user with a rich and interactive user56
experience, it also imposes certain challenges. The XML Http Request Spec [15] on which AJAX is based is57
browser implemented and hard for an application to control directly. To make a network call, the JavaScript58
code in the application calls the XML Http Request Object of the browser the application is running in directly.59
The interaction between the application and the XML Http Request Object is done through a series of callbacks.60
Once the network call is made, the server returns the appropriate response to the caller (based on the API request61
made). The browser then passes this information along to the application (through the aforementioned callback).62

The XML Http Request Object according to the specification is meant to be immutable. Applications are63
not allowed to edit it directly without also manually implementing the overridden functionality. Our approach64
achieves the same functionality as a normal XML Http Request Object without the application realizing that65
the XML Http Request Object is being intercepted. Our approach achieves this in the following way. First,66
our approach intercepts some properties of the global XML Http Request object. This ensures that all AJAX67
network calls pass through Automock. On intercepting an AJAX network call, Automock checks if the response68
for the particular call is stored in its data file. Automock then checks if there are possible alternate responses.69
Based on configuration settings, Automock decides which response to return. If no specific configuration is set,70
Automock returns the default response. If a stored response is found, Automock returns the updated response.71
To achieve this, it replaces some properties of the original XML Http Request Object. The following properties72
of the XML Http Request Object are immutable: response Text, ready State, response, status and status Text.73
Because these properties cannot be modified, Automock has to delete and replace them with the desired values in74
the XML Http Request Object. This XML Http Request object is then returned to the calling function. Since,75
the object is identical to the original XML Http Request Object, it works as expected and the application thinks76
that it made an actual asynchronous network call. In case there is no response present in the data file, Automock77
passes the call to the original XML Http Request object and makes the actual network call.78

These steps ensure that the developer does not need to modify their code at all, while still achieving the79
functionality required. The mocked response is exactly identical to an actual response, enabling us to make80
AJAX calls in any preferred way; for example, through the j Query library, directly through an XML Http81
Request object, or even through any framework dependent-call, such as ”fetch” in Backbone.js.82

4 b) Very lightweight83

Our approach comprises of just a single JavaScript file which basically comprises of the process outlined above84
and a socket communication library to interact with the User Interface and the data in real time. It requires no85
installation and has a very small memory footprint. All the saved AJAX responses are stored in a single flat file86
which is also minified and serialized. Since an actual server does not need to be run, it also does not consume87
much CPU memory. c) Ease of integration Unlike a traditional server which generally requires an application to88
be installed and run on one of the ports of the computer, Automock can be included in any web application that89
uses JavaScript with just a single line of code. As we intercept the native XML Http Request Object, we do not90
have to deal with issues such as port conflicts. It also does not require any build processes or any other external91
library to load itself into the system.92

5 d) Flexibility to support as many API calls as required93

A developer can mock as many API calls as required. If a mocked API call is not present, Automock forwards94
the request to the actual backend for resolution. This approach covers a vast variety of use cases wherein the95
developer can use Automock for only a small module or scale it up and use it for the entire application. This96
approach also allows the library to be integrated into the project at any stage of the development process. In97
addition to the above, since we modify the native XML Http Request Object, a user can use any popular library98
to make network requests such as j Query, Backbone.js, Angular’s $http etc.99

2

6 e) Automatic capture and mocking of existing API calls100

Our approach provides the functionality to capture and mock any existing API calls within the application. It101
captures all outgoing AJAX requests and maps them to their corresponding incoming AJAX replies. First, it102
sets up a watch on all AJAX network calls. If any request is noticed by the watcher, it intercepts each returning103
AJAX network call and stores the response. This stored value is then mapped as the response to the URL for104
which the AJAX network call was made. Once it has the responses, it extracts each response and transforms105
the data into a format that the mock server can read. All such transformed responses are combined with our106
implementation of the mock server and stored in the JSON format. It records the URL, the response, the request107
type (Such as GET, PUT etc.) and some configuration options. This is serialized and converted into a file that108
is saved on the developer’s system.109

The developer can then simply mock all future calls to the same APIs. Thus, the developer can work without110
having to constantly query the server, speeding up development since no expensive network calls are necessary. f)111
Significant performance boost to unit test case execution Frontend (and JavaScript) testing is a complex subject112
with lots of research taking place. Regardless of the desired approach which may be either tool based (Such as113
Webmate [3] or ATUSA [10]) or automated [2], testing of asynchronous code and especially network requests is114
challenging.115

Developers usually write multiple JavaScript unit test cases to test their modules. Running an entire suite of116
tests is usually very slow, because a large number of AJAX calls are made repeatedly. In our experience, the117
bottleneck while running a large number of test cases is the time taken by the network requests. By using our118
approach, the responses are instantaneous. During our testing, we have experienced a significant performance119
boost in our unit test cases.120

7 g) No interaction with the database121

An important requirement during the developpment phase is to avoid adding unnecessary data into the database.122
To combat this issue, developer teams either use local databases or setup a stage database. Both of these options123
are time consuming and possibly expensive as well. Since our approach does not make real API calls to the124
server, it solves this problem without the hassles of setting up a separate database125

8 h) Supports alternate error responses for any API call126

A developer must handle error responses during development. It is generally tricky to get error responses out127
of any good backend in a simple way. Our approach supports returning an error response for an API with128
some simple configuration settings. A developer can quickly and easily change API responses by either directly129
modifying the flat file or through the accompanying UI. This approach also helps ensure that a developer has130
handled all possible cases on the client facing UI.131

9 i) Supports multiple responses for the same API call132

Modern web applications now increasingly show different users different data based on the context. For example,133
when fetching the news feed for a user or fetching list of items for a particular category on an ecommerce site.134
Automock can be configured to return different responses for the same API call to simulate various situations.135

10 III. Case Study136

A version 2.0 prerelease web application was taken up for this case study. The project used an agile methodology137
and a timeline of about 6-8 weeks. The developers comprised two teams that worked in parallel. One team138
handled the backend and the other team handled the frontend of the web application. Each sprint was broken139
down into multiple stories/features being implemented. Here are the various phases we went through during our140
sprint where we made use of Automock: a) Step 1: New feature implementation At this point, both the frontend141
and the backend developers started development on the new feature. We used Automock quite effectively to142
make this process much more efficient. The backend developer would create the API stub (The name of the API143
and what parameters it takes) and use the Automock UI to set the typical response for the API. The frontend144
developer would then just run the fake server and implement their feature. When the actual API was ready, no145
more code changes were required for the frontend developer and they could just switch out the mock server for146
the real server. Since no developer was blocked, both the teams could pick up more features and utilize the entire147
sprint duration, thus requiring fewer sprints for the same set of features.148

11 b) Step 2: Handling edge cases149

Once the frontend developer had finished implementing a feature, they could work on handling edge cases and on150
handling error cases appropriately. To achieve this, they no longer needed hacks or workarounds. They could just151
modify the existing mock server response for that API with an error response and continue their development.152
Since this approach accurately simulates an API call, there is a much better end user experience when things go153
wrong at runtime.154

3

16 F) STEP 6: CONTEXT BASED RESPONSES

12 Table 1: Comparison of time taken while developing for edge155

cases156

Notes:157
? Time taken without Automock is calculated as: Time taken to modify backend code (~60 sec) + Time taken158

to build the .war file (76 sec) + Time taken to deploy the .war file (57 sec) = Total Time (193 sec) ? Time159
taken with Automock is calculated as: Time taken to modify frontend code; that is, changing the configuration160
variable (~8 sec) = Total Time (8 sec). The time taken to build and deploy the .war file is not required here as161
no backend changes are needed.162

? All times are measured on a typical developer system.163

13 c)164

Step 3: Adding functionality to pre-existing features Some pre-existing areas of our code had to be modified165
to add new functionality. This is where we used one of Automock’s best features -Automock can automatically166
capture and generate mock responses for all existing API calls. We captured all outgoing requests and stored the167
incoming responses. Since the application now no longer made time-consuming API calls, code edits and unit168
testing in these areas took much less time. Results:169

14 d) Step 4: Third-party services170

Our application has dependencies on various third party services. We use these services for authentication,171
community forums, bug tracking etc. We encountered frequent outages from these third party services, especially172
on the stage environments. Using Automock, we were able to mock all the related network calls and responses.173
Once this was done, we were no longer dependent on the availability of the third party service. This helped us174
mitigate any delays in development caused by the outages.175

15 e) Step 5: Unit Testing176

Once the frontend developer has finished implementing a feature, they can then write the unit test cases for177
it. Generally, test cases that make network requests take a long time to complete. Such test cases are also178
time-consuming to write, since asynchronous logic is hard to implement in most testing frameworks. We have179
observed that most of the execution time of test cases is taken up by network requests.180

Automock helped us solve this problem in a very elegant manner. Since mocked API calls return181
instantaneously, there was no need to handle asynchronous logic in the test cases. Also, since no expensive182
network calls were made, the test suite ran significantly faster. This gave us the double benefit of faster test case183
execution (with no messy workarounds for handling asynchronous calls) and faster test case creation. It also184
helped us write test cases with realworld data that was static and repeatable. Using Automock, we also avoided185
polluting the database with junk test data.186

16 f) Step 6: Context based responses187

Modern web applications are moving towards context sensitive responses. The same API call can return different188
responses based on multiple parameters. For example, our website returns different responses based on the189
credentials of a user. Using Automock, we were easily able to run the application as a different user. We set190
configuration parameters/flags and ran the application with different contexts. This allowed us to thoroughly191
handle all the cases that an end user might face, making our application much more robust and user friendly.192
Year 2016 () For example, we see that on setting config. user as User1, we get ”Response Type 1” as the mocked193
response. However, on setting config. user as User2, we get ”Response Type 2” as the mocked response. We194
could, similarly, set as many alternate responses as we required using configuration options. JavaScript application195
testing is a comparatively recent field due to the increasing size and complexity of modern web applications. More196
recently, there has been extensive research in the areas of automated testing ??12; 13].However, this will still197
require having to either make the actual network call or write stubbing or mocking logic for the network call.198
Our approach helps us handle this problem easily and efficiently by mocking the API automatically. Since, the199
API calls are mocked using our approach, the actual network calls do not have to be made and no extra stubbing200
logic is required.201

Along with research, there are existing libraries and tools to aid web development. Since it is an area of intense202
activity, there are some libraries already present in this space. In order to adequately put into context the related203
work in the field, it will be helpful to list down the minimum set of features that we required.204

Any framework or library that we use should have a certain baseline of requirements. It should be independent205
of the development phase (Support use during both testing and development). It should mock network calls206
without requiring a change in code. It should automatically capture existing network calls as well as allow for207
the creation of mocks for new network calls. It should support polymorphic responses to network calls. Lastly, it208
should be lightweight to include and should have zero interaction with the database. Some of the libraries under209
consideration by us were: a) SinonJS [14] b) Jasmine-AJAX [7] c) Api-mock [1] d) Mockjax [8] a) SinonJS210

4

SinonJS is one of the most popular mocking/stubbing frameworks around. It is great at stubbing and mocking211
API calls. However, it is limited in its scope as it is a purely testing focused library. Though powerful as a test212
tool, it requires a great deal of setup and teardown to use in tests. However, SinonJS does not work at all during213
the development phase.214

17 b) Jasmine-AJAX215

Jasmine-AJAX solved one of the most pressing problems with SinonJS -easily mocking API calls. Jasmine-AJAX216
provides an easily customizable framework to modify the response to a network call. However, it also has a major217
limitation of only working with the Jasmine testing framework. Similar to SinonJS, this is also a testing focused218
library and does not work during the development phase.219

18 c) API-Mock220

API-Mock is an excellent tool to generate a mock server (running on Express) based on API blueprints. API-221
mock lets you document your API in the API blueprint format, generates mocks for your routes and sends222
the responses defined in the API spec. Since API-Mock generates a mock server, it can be used during both223
development and testing phases. However, it has the caveat of not working well with the existing server. Code224
changes are required to accommodate the generated API-mock server configuration. Due to this, it was not a225
good fit for our requirements.226

19 d) Mockjax227

Mockjax provides the easiest way of mocking API calls as compared to the other libraries listed above. One228
drawback of this library is that it is a manual process. The typical workflow for using Mockjax is to integrate229
the backend code and make the AJAX network call. Then a developer needs to copy the response for each call230
manually. Then they must transform the response into a Mockjax supported format. Finally, the developer must231
paste this formatted response into a file and integrate the library.232

Though the process seems simple, the time taken to manually add calls using this workflow takes a large233
amount of time and effort. For a medium to large scaled project, this problem is compounded since a very large234
number of AJAX calls must be integrated into the application.235

A combination of the factors above led to the development of Automock. As we have demonstrated through this236
paper and through the data provided in the tables, our approach realizes tangible and measurable benefits during237
development of a web application. It is most effective when interdependent teams are working together. Here are238
the key benefits: There has been some research where the XML Http Request Object is either monitored [16] or239
encapsulated [11]. To the best of our knowledge, Automock is the only original research paper that overrides a240
part of the native XML Http Request Object for automating the mocking of network calls. This not only aids in241
testing but also in development and achieves the goal of removing the dependency between frontend and backend242
team during agile sprints.243

20 V. Conclusion and Advantages244

? Helps manage third-party service outages 1245

1© 2016 Global Journals Inc. (US)

5

20 V. CONCLUSION AND ADVANTAGES

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

6

3

Figure 3: Figure 3 :

2

Time Taken (sec) Without AUTOMOCK With AUTOMOCK
Module 1 14.11 0.31
Module 2 18.13 2.90
Module 3 31.63 0.21
Module 4 49.07 0.20

[Note: Notes:? Modules in this table refer to a section/page of our application, each of which loads a different
number of asynchronous AJAX calls. ? All times are measured on a typical developer system.]

Figure 4: Table 2 :

7

20 V. CONCLUSION AND ADVANTAGES

3

Time Taken (sec) Without
AU-
TO-
MOCK

With
AU-
TO-
MOCK

User: User1 108.56 3.51
User: User2 112.94 3.51
User: User3 121.27 3.51
Notes:
? Our application has user-specific data. Hence, the
time taken without Automock varies for different
users.
? The time taken mentioned in this table was the
aggregate time taken to load all the four modules
mentioned in table 2.
? All times were measured on a typical developer
system.
IV. Related Work
JavaScript and Web Development in general
are exciting fields for research and development. Our
work is focused on easing the experience of web
development and testing.

Figure 5: Table 3 :

4

SinonJSJasmine-
AJAX

Api-
Mock

MockjaxAutomock

Support testing and development ? ? ?
Mock without code changes ? ? ? ?
Support polymorphic responses ? ? ? ? ?
Automatic network call capture ?
Support creation of new network requests ? ?

Figure 6: Table 4 :

Figure 7:

8

[Api-Mock and Api-Mock ()] , Api-Mock , Api-Mock . https://github.com/localmed/api-mock 2016.246

[Jasmine-Ajax ()] , Jasmine-Ajax . https://github.com/jasmine/jasmine-ajax 2016.247

[Mockjax and Jquery-Mockjax ()] , Mockjax , Jquery-Mockjax . https://github.com/jakerella/248
jquery-mockjax 2016.249

[Sinon and Sinonjs ()] , Sinon , Sinonjs . http://sinonjs.org/ 2016.250

[Xhr and Xml Http Request ()] , Xhr , Xml Http Request . https://xhr.spec.whatwg.Org/ 2016.251

[Ganis et al.] ‘A brief report on working smarter with Agile software develop ment’. M Ganis , E M Maximilien252
, T Rivera . IBM Journal of Research and Development 54 (4) p. .253

[Artzi et al.] ‘A framework for automated testing of javascript web applications’. S Artzi , J Dolby , S H Jensen254
, A Moller , F Tip . Proceedings of the 33rd International Conference on Software Engineering, (the 33rd255
International Conference on Software EngineeringNew York) ACM. p. .256

[Dinakar] ‘Agile development: overcoming a shortterm focus in implementing best practices’. K Dinakar .257
Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented programming systems258
languages and applications, (the 24th ACM SIGPLAN conference companion on Object oriented programming259
systems languages and applicationsNew York) ACM. p. .260

[Garrett ()] Ajax: A new approach to Web applications, J Garrett . http://adaptivepath.org/ideas/261
ajax-new-approach-web-applications/ 2005. 2016.262

[Negara and Stroulia] ‘Automated Acceptance Testing of JavaScript Web Applications’. N Negara , E Stroulia .263
19th Working Conference on Reverse Engineering, p. .264

[Mirshokraie et al.] ‘Automated Javascript Unit Test Generation’. S Mirshokraie , A Mesbah , K Pattabiraman ,265
Jseft . IEEE 8th International Conference on Software Testing, Verification and Validation, (ICST ’15), p. .266

[Meyerovich et al.] ‘Flapjax: a programming language for Ajax applications’. L A Meyerovich , A Guha , J Baskin267
, G H Cooper , M Greenberg , A Bromfield , S Krishnamurthi . Proceedings of the 24th ACM SIGPLAN268
conference on Object oriented programming systems languages and applications, (the 24th ACM SIGPLAN269
conference on Object oriented programming systems languages and applicationsNew York) ACM. p. .270

[Mesbah and Deursen] ‘Invariant-based automatic testing of AJAX user interfaces’. A Mesbah , A V Deursen .271
Proceedings of the 31st International Conference on Software Engineering, (ICSE ’09), (the 31st International272
Conference on Software Engineering, (ICSE ’09)) IEEE Computer Society Washington. p. .273

[Kosk and Mikkonen] ‘Rolling out a mission critical system in an agilish way: reflections on building a large-274
scale dependable information system for public sector’. A Kosk , T Mikkonen . Proceedings of the Second275
International Workshop on Rapid Continuous Software Engineering, (the Second International Workshop on276
Rapid Continuous Software Engineering) IEEE Press Piscataway. p. . (RCoSE ’15)277

[Zheng et al.] ‘Statically locating web application bugs caused by asynchronous calls’. Y Zheng , T Bao , X Zhang278
. Proceedings of the 20th international conference on World Wide Web, (the 20th international conference on279
World Wide WebNew York) ACM. p. .280

[Dallmeier et al.] ‘WebMate: a tool for testing web 2.0 applications’. V Dallmeier , M Burger , T Orth , A Zeller281
. Proceedings of the Workshop on JavaScript Tools, (the Workshop on JavaScript ToolsNew York) ACM. p. .282

9

https://github.com/localmed/api-mock
https://github.com/jasmine/jasmine-ajax
https://github.com/jakerella/jquery-mockjax
https://github.com/jakerella/jquery-mockjax
https://github.com/jakerella/jquery-mockjax
http://sinonjs.org/
https://xhr.spec.whatwg.Org/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

