
© 2017. Rajesh Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Data Leakage Detection
By Rajesh Kumar

Manav Rachna International University

Abstract-

Perturbation is a very useful technique where the data is modified and made ‘less sensitive´

before being handed to agents. For example, one can add random noise to certain attributes, or one
can replace exact values by ranges. However, in some cases it is important not to alter the original
distributor’s data. For example, if an outsourcer is doing our payroll, he must have the exact salary
and customer bank account numbers. If medical researchers will be treating patients (as opposed to
simply computing statistics), they may need accurate data for the patients. Traditionally, leakage
detection is handled by watermarking, e.g., a unique code is embedded in each distributed copy. If
that copy is later discovered in the hands of an unauthorized party, the leaker can be identified.
Watermarks can be very useful in some cases, but again, involve some modification of the original
data. Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious. In this
paper we study unobtrusive techniques for detecting leakage of a set of objects or records.
Specifically we study the following scenario: After giving a set of objects to agents, the distributor
discovers some of those same objects in an unauthorized place.

GJCST-E

Classification:

K.8.1, B.4.2

DataLeakageDetection

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: E
Network, Web & Security

Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Volume 17 Issue 4 Version 1.0 Year 2017

Data Leakage Detection
Rajesh Kumar

Abstract-

Perturbation is a very useful technique where the
data is modified and made ‘less sensitive´ before being
handed to agents. For example, one can add random noise to
certain attributes, or one can replace exact values by ranges.
However, in some cases it is important not to alter the original
distributor’s data. For example, if an outsourcer is doing our
payroll, he must have the exact salary and customer bank
account numbers. If medical researchers will be
treating patients (as opposed to simply computing statistics),
they may need accurate data for the patients. Traditionally,
leakage detection is handled by watermarking, e.g., a unique
code is embedded in each distributed copy. If that copy is
later discovered in the hands of an unauthorized party, the
leaker can be identified. Watermarks can be very useful in
some cases, but again, involve some modification of the
original data. Furthermore, watermarks can sometimes be
destroyed if the data recipient is malicious. In this paper we
study unobtrusive techniques for detecting leakage of a set of
objects or records. Specifically we study the following
scenario: After giving a set of objects to agents, the distributor
discovers some of those same objects in an unauthorized
place.

 I.

Introduction

 n the course of doing business, sometimes sensitive
data must be handed over to supposedly trusted third
parties. For example, a hospital may

give patient
records to researchers who will devise new treatments.
Similarly, a company may have partnerships with other
companies that require sharing customer

data. Another
enterprise may outsource its data processing, so data
must be given to various other companies. We call the
owner of the data the distributor and the supposedly
trusted third parties the agents. Our goal is to detect
when the distributor’s sensitive data has been leaked by
agents, and if possible to identify the agent that leaked
the data.

The distributor can assess the likelihood that

the leaked data came from one or more agents, as
opposed to having been independently gathered
by

other means. Using an analogy with cookies stolen
from a cookie jar, if we catch Freddie with a single
cookie, he can argue that a friend gave him the cookie.
But if we catch Freddie with 5 cookies, it will be much
harder for him to argue that his hands were not in the
cookie jar. If the distributor sees ‘enough evidence´ that
an agent leaked

data, he may stop doing business with
him, or may initiate legal proceedings. In this paper we
develop a model for assessing the ‘guilt´ of agents. We
also present algorithms for distributing objects to
agents, in a way that improves our chances of

identifying a leaker. Finally, we also consider the option
of adding ‘fake´ objects to the distributed set. Such
objects do not correspond to real entities but appear
realistic to the agents. In a sense, the fake objects
acts as a type of watermark for the entire set, without
modifying any individual members. If it turns out an
agent was given one or more fake objects that were
leaked, then the distributor can be more confident that
agent was guilty[1].

The distributor may be able to add fake objects
to the distributed data in order to improve his
effectiveness in detecting guilty agents. However, fake
objects may impact the correctness of what agents do,
so they may not always be allowable[1]. The idea of
perturbing data to detect leakage is not new, e.g.,.
However, in most cases, individual objects are
perturbed, e.g., by adding random noise to sensitive
salaries, or adding a watermark to an image. In our
case, we are perturbing the set of distributor objects by
adding fake elements. In some applications, fake
objects may cause fewer problems that perturbing real
objects. For example, say the distributed data objects
are medical records and the agents are hospitals. In this
case, even small modifications to the records of actual
patients may be undesirable. However, the addition of
some fake medical records may be acceptable, since
no patient matches these records, and hence no one
will ever be treated based on fake records. Our use of
fake objects is inspired by the use of ‘trace´ records in
mailing lists.

In this case, company A sells to company B
a mailing list to be used once (e.g., to send
advertisements). Company A adds trace records that
contain addresses owned by company A. Thus, each
time company Buses the purchased mailing list, A
receives copies of the mailing. These records area type
of fake objects that help identify improper use of data.
The distributor creates and adds fake objects to the
data that he distributes to agents. We let Fi _ Ri be the
subset of fake objects that agent Ui receives.

As discussed below, fake objects must be
created carefully so that agents cannot distinguish them
from real objects. In many cases, the distributor may be
limited in how many fake objects he can create. For
example, objects may contain email addresses, and
each fake email address may require the creation of an
actual inbox (otherwise the agent may discover the
object is fake). The inboxes can actually be monitored
by the distributor: if email is received from someone
other than the agent who was given the address, it is

I

13

© 2017 Global Journals Inc. (US)

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Y
e
a
r

20
17

Author: Manav Rachna International University.
e-mail: rajesh.sharmag96@gmail.com

evidence that the address was leaked. Since creating
and monitoring email accounts consumes resources,
the distributor may have a limit of fake objects. If there is
a limit, we denote it by B fake objects. Similarly, the
distributor may want to limit the number of fake objects
received by each agent, so as to not arouse suspicions
and to not adversely impact the agent’s activities. Thus,
we say that the distributor can send up to bi fake objects
to agent Ui Creation.

The creation of fake but real-looking objects is
a non-trivial problem whose thorough investigation is
beyond the scope of this paper. Here, we model the
creation of a fake object for agent Ui as a black-box
function CREATE FAKE OBJECT(Ri; Fi; Condi) that
takes as input the set of all objects Ri, the subset of
fake objects.Fi that Ui has received so far and Condi,
and returns anew fake object. This function needs
Condi to produce a valid object that satisfies Ui’s
condition. Set Ri is needed as input so that the created
fake object is not only valid but also indistinguishable
from other real objects. For example, the creation
function of a fake payroll record that includes an
employee rank and a salary attribute may take into
account the distribution of employee ranks, the
distribution of salaries as well as the correlation between
the two attributes. Ensuring that key statistics do not
change by the introduction of fake objects is important if
the agents will be using such statistics in their work.

II. Literature Survey

a) Agent Guilt Model
Suppose an agent Ui is guilty if it contributes

one or more objects to the target. The event that agent
Ui is guilty for a given leaked set S diesnoted by G
i| S. The next step is to estimate Pr {Gi| S }, i.e., the
probability that agentGi is guilty given evidence S.

To compute the Pr {Gi| S}, estimate the
probability that values in Sbcean “guessed” by the
target. For instance, say some of the objects in t are
emails of individuals. Conduct an experiment and ask a
person to find the email of say 100 individuals, the
person may only discover say 20, leading to an estimate
of 0.2. Call this estimate as pt, the probability that object
t can be guessed by the target.

The two assumptions regarding the relationship
among the various leakage events.
Assumption 1: For all t, t ∈ S such that t ≠ T the
provenance of t is independent of the provenance of T.

The term provenance in this assumption
statement refers to the source of a value t that appears
in the leaked set. The source can be any of the agents
who have t in their sets or the target itself.
Assumption 2: An object t ∈ S can only be obtained by
the target in one of two ways.

• A single agent Ui leaked t from its own Ri set, or

• The target guessed (or obtained through other
means) t without the help of any of the n agents.

To find the probability that an agent Ui is guilty
given a set S, consider the target guessed t1 with

probability p and that agent leaks t1 to Sthweith
probability 1-p. First compute the probability that he
leaks a single object t to S. To compute this, define the
set of agents Vt= {Ui

 | t<-Rt} that have t in their data
sets. Then using Assumption 2 and known probability
p,

We have,

Pr {some agent leaked t to S} = 1- p (1.1)

Assuming that all agents that belong to Vt can
leak t to S with equal probability and using Assumption
2 obtain,

Pr {Ui leaked t to S} = (1.2)

Given that agent

Ui is guilty if he leaks at least

one value to S, with Assumption 1 and Equation 1.2
compute the probability Pr { Gr| S}, agentUi is guilty,

Pr {Gi| S}

b)

Data Allocation Problem

The distributor “intelligently” gives

data to
agents in order to improve the chances of detecting a
guilty agent. There are four instances of this problem,
depending on the type of data requests made by
agents and whether “fake objects” [4] are allowed.
Agent makes two types of requests, called sample and
explicit. Based on the requests the fakes objects are
added to data list.

Fake objects are objects generated by the
distributor that are not in set T. The objects are designed
to look like real objects, and are distributed to agents
together with the T objects, in order to increase the
chances of detecting agents that leak data.

c)

Optimization Problem

The distributor’s data allocation

to agents has
one constraint and one objective. The distributor’s
constraint is to satisfy agents’ requests,

by providing
them with the number of objects they request or with all
available objects that satisfy their conditions. His
objective is to be able to detect an agent who leaks any
portion of his data.

We consider the constraint as strict. The
distributor may not deny serving an agent request
and may not provide agents with different perturbed
versions of the same objects. The fake object
distribution as the only possible constraint relaxation.
The objective is to maximize the chances of detecting a
guilty agent that leaks all his data objects.

© 2017 Global Journals Inc. (US)1

14

Y
e
a
r

20
17

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Data Leakage Detection

 (1.3)

The Pr {Gi |S =Ri } or simply Pr {Gi |Ri } is the
probability that agent Ui is guilty if the distributor
discovers a leaked table S that contains all Ri objects.
The difference functions Δ (i, j) is defined as:

Δ (i, j) = Pr {Gi |Ri } – Pr {G |Ri } (1.4)

i. Problem Definition
Let the distributor have data requests from n

agents. The distributor wants to give tables
R1, .Rn. to agents, U1 . . . , Un

respectively, so that

• Distribution satisfies agents’ requests; and
• Maximizes the guilt probability differences Δ (i, j) for

all i, j = 1. . . n and i= j.
Assuming that the sets satisfy the agents’

requests, we can express the problem as a multi-
criterion

ii. Optimization Problem
Maximize (. . . , Δ (i, j), . . .) i! = j

 (Over R1,….., Rn,)
The approximation [3] of objective of the

above equation does not depend on agent’s
probabilities and therefore minimize the relative overlap
among the agents as

Minimize (. . . ,(|Ri∩Rj|) / Ri , . . .) i != j (1.6)

(over R1 , . . . ,Rn)
This approximation is valid if minimizing the

relative overlap, (|Ri∩Rj|) / Ri maximizes Δ (i, j).

III. Allocation Strategies Algorithm

There are two types of strategies algorithms

a) Explicit data Request

In case of explicit data request with fake not
allowed, the distributor is not allowed to add fake
objects to the distributed data. So Data allocation is fully
defined by the agent’s data request. In case of explicit
data request with fake allowed, the distributor cannot
remove or alter the requests R from the agent. However
distributor can add the fake object.

In algorithm for data allocation for explicit
request, the input to this is a set of requestR1, R2,……,
Rn from n agents and different conditions for requests.
The e-optimal algorithm finds the agents that are eligible
to receiving fake objects. Then create one fake object in
iteration and allocate it to the agent selected. The e-
optimal algorithm minimizes every term of the objective
summation by adding maximum number bi of fake
objects to every set Ri yielding optimal solution.

Algorithm 1 : Allocation for Explicit Data Requests (EF)

Input:

R1, . . . , Rn, cond1, . . . , condn, b1, . . . ,bn, B

Output: R1, . . . , Rn, F1,. . . ,Fn

Step 1: R Ø , Agents that can receive fake objects
Step 2: for i = 1,……., n do
Step 3: if bi > 0 then
Step 4: R R U {i}
Step 5: Fi Ø; Step 6: while B > 0 do
Step 7: i SELECTAGENT(R,R1,……..,Rn)
Step 8: f CREATEFAKEOBJECT (Ri, Fi,
condi)
Step 9: Ri Ri U {i}
Step 10: Fi Fi U {i}
Step 11: bi bi - 1
Step 12: if bi = 0 then
Step 13: R R \ {Ri}
Step 14: B B – 1.

Algorithm 2 : Agent Selection for e-random
Step 1: function SELECTAGENT(R,R1,……,Rn)
Step 2: i select at random an agent from R
Step 3: return I
 Algorithm 3: Agent selection for e-optimal
Step 1: function SELECTAGENT(R;R1; : : : ;Rn)

Step 2: i

Step 3: return i ;

b) Sample Data Request
With sample data requests, each agent Ui may

receive any T from a subset out of different ones.
Hence,there are different allocations.In every
allocation, the distributor can permute T objects and
keep the same chances of guilty agent detection. The
reason is that the guilt probability depends only on
which agents have received the leaked objects and not
on the identity of the leaked objects. Therefore, from the

Algorithm 4: Allocation for Sample Data Requests (SF)

Input:

m1, . . . , mn, |T| . Assuming mi <=|T|

Output: R1,……..,Rn

Step 1:

a 0|T| . a[k]:number of agents who

have received object tk

Step 2:

R1,……….,Rn ;

Step 3:

remaining

Step 4:

while remaining > 0 do

Step 5:

for all i = 1,….., n : |Ri| < mi do

15

© 2017 Global Journals Inc. (US)

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Y
e
a
r

20
17

Data Leakage Detection

(1.5)

argmax () |Ri’ Rj|

i’:R R

distributor’s perspective there are
different allocations. An object allocation that satisfies
requests and ignores the distributor’s objective is to
give each agent a unique subset of T of size m. The s-
max algorithm allocates to an agent the data record that
yields the minimum increase of the maximum relative
overlap among any pair of agents. The s-max algorithm
is as follows.

Step 6: k SELECTOBJECT (i, Ri). May also use
additional parameters
Step 7: Ri Ri U {tk}
Step 8: a[k] a[k] + 1
Step 9: remaining remaining – 1.

Algorithm 5 : Object Selection for s-random
Step 1: function SELECTOBJECT(i , Ri)
Step 2: k select at random an element from
 set{ k’ | tk’ Ri }
Step 3: return k.

Algorithm 6 : Object Selection for s-overlap
Step 1: function SELECTOBJECT(i;Ri; a)
Step 2: K {k | k = argmin a[k’]}
Step 3: k select at random an element from
 set {k’ | k’ K ^ tk’ Ri}
Step 4: return k.

Step 2: min_ overlap 1 . The minimum out of the
maximum relative overlaps that the allocations of
different objects to Ui yield
Step 3: for k {k’ | tk’ Ri } do
Step 4: max_ rel_ ov 0. The maximum relative
overlap between Ri and any set Rj that the allocation of
tk to Ui yields
Step 5: for all j = 1,…………, n : j i and tk Rj
do
Step 6: abs_ ov | Ri Rj | + 1
Step 7: rel_ ov abs_ ov /min (mi , mj)
Step 8: max_ rel_ ov MAX(max_rel_ov ,

rel_ov)
Step 9: if max_ rel_ ov <= min_ overlap then
Step 10: min_overlap max_ rel_ ov
Step 11: ret_ k k
Step 12: return ret_ k.

IV. Existing System

There are conventional techniques being used
and include technical and fundamental analysis. The
main issue with these techniques is that they are manual
and need laborious work along with experience.

Traditionally, leakage detection is handled by
watermarking, e.g., a unique code is embedded in each
distributed copy. If that copy is later discovered in the
hands of an unauthorized party, the leaker can be
identified. Watermarks can be very useful in some
cases, but again, involve some modification of the
original data. Furthermore, watermarks can sometimes

be destroyed if the data recipient is malicious. E.g. . A
hospital may give patient records to researchers
who will devise new treatments. Similarly, a company
may have partnerships with other companies that
require sharing customer data. Another enterprise may
outsource its data processing, so data must be given to
various other companies[4].

We call the owner of the data the distributor and
the supposedly trusted third parties the agents. The
distributor gives the data to the agents. These data will
be watermarked. Watermarking is the process of
embedding the name or information regarding the
company. The examples include the pictures we have
seen in the internet. The authors of the pictures are
watermarked within it. If anyone tries to copy the
picture or data the watermark will be present. And thus
the data may be unusable by the leakers.

a) Disadvantage
This data is vulnerable to attacks. There are

several techniques by which the watermark can be
removed. Thus the data will be vulnerable to attacks.

V. Proposed System

We propose data allocation strategies (across
the agents) that improve the probability of identifying
leakages. These methods do not rely on alterations of
the released data (e.g., watermarks). In some cases we
can also inject “realistic but fake” data records to further
improve our chances of detecting leakage and
identifying the guilty party. We also present algorithm for
distributing object to agent.

Our goal is to detect when the distributor’s
sensitive data has been leaked by agents, and if
possible to identify the agent that leaked the data.
Perturbation is a very useful technique where the data is
modified and made ‘less sensitive´ before being
handed to agents. We develop unobtrusive techniques
for detecting leakage of a set of objects or records. In
this section we develop a model for assessing the
‘guilt´ of agents. We also present algorithms for
distributing objects to agents, in a way that improves
our chances of identifying a leaker.

Finally, we also consider the option of adding
’fake´ objects to the distributed set. Such objects do not
correspond to real entities but appear realistic to the
agents. In a sense, the fake objects acts as a type of
watermark for the entire set, without modifying any
individual members. If it turns out an agent was

given

one or more fake objects that were leaked, then the
distributor can be more confident that agent was guilty.
Today the advancement in technology made the
watermarking system a simple technique of data
authorization. There are various software which can
remove the watermark from the data and makes the
data as original[5].

© 2017 Global Journals Inc. (US)1

16

Y
e
a
r

20
17

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Data Leakage Detection

Algorithm 7 : Object Selection for s-max
Step1: function SELECTOBJECT(i,
R1,…….,Rn ,m1,……..,mn)

a) Advantage
This system includes the data hiding along with

the provisional software with which only the data can be
accessed. This system gives privileged access to the
administrator (data distributor) as well as the agents
registered by the distributors. Only registered agents
can access the system. The user accounts can be
activated as well as cancelled. The exported file will be
accessed only by the system. The agent has given only
the permission to access the software and view the
data. The data can be copied by our software. If the
data is copied to the agent’ system the path and agent
information will be sent to the distributors email id
thereby the identity of the leaked user can be traced[2].

Figure 1: Illustration Diagram

Figure 2: System Architecture Design

b)

System Implementation

The implementation stage involves careful
planning, investigation of the existing system and it’s
constraints on implementation, designing of methods
to achieve changeover and evaluation of changeover
methods.

i. Modules
(1) Data Allocation Module,
(2) Data Distribution Module,
(3) Data Leakage & Detection Module.

ii. Module Description

2. Data Distribution Module

Once the agent has been added by the
administrator, he can create one username and
password for that particular agent, in fact registering.

After the agent has been successfully registered we

now want to send the data to agent according to their
request. Administrator will now select a requested
amount of data and then export these data into an excel
file in byte format. After the file is created, the
administrator will send the data to agent. Sending the
data includes transferring the data through the network
(LAN).At the same time the administrator will keep the
record of the agent with his id.

3.

Data Leakage and Detection Module

Agent can login with their given username and
password. Now they can view the data that is being sent
by the administrator, but they cannot edit nor do any
changes with it. He can now copy the data anywhere
he wants to. The path and the agent which is copying
the file will be recorded and the notification is sent
through e-mail. Whenever a guilty agent tries to send the
data to any other anonymous user i.e. leaking the data,
a notification will be sent through email. The
administrator has an email id with

all the notifications,

including the path to which the data is saved along with
agent id[6].

Figure3:

Login for Distributor & Agent

17

© 2017 Global Journals Inc. (US)

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Y
e
a
r

20
17

Data Leakage Detection

1. Data Allocation Module
In this module, administrator has to login with

his id and password. Administrator has all the agent
information, user data inside his database. Administrator
is now able to view the database consisting of the
original data as well as the fake data.

Administrator can also list the agents here. He
will be able to add additional information to the
database. Agent’s information can be added here.

Figure 4: Distributor Login

Figure 5:

Distributor Function

Figure 6: The Agent Detai in Database Table

Figure 7:

Distributor Sending Data to Agent

Figure 8: Selection of Agent Side Path

Figure 9:

Conformation of Data Reception

Figure 10: Transfer Data to the Agent is Saved in Record
of Distributor Data

Figure 11: Agent to Agent Data Transfer

© 2017 Global Journals Inc. (US)1

18

Y
e
a
r

20
17

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Data Leakage Detection

Figure12:

Data Leakage can seen in Agent Guilt Model

Figure 13: Agent Record

Figure 14: Find Probability of Agent Guilt Model

Figure 15: Draw Graph of Guilty Model

VI. Future Work

The notion of a trusted environment is
somewhat fluid. The departure of a trusted staff member
with access to sensitive information can become a data
breach if the staff member retains access to the data
subsequent to termination of the trust relationship. In
distributed systems, this can also occur with a break
down in a web of trust. Most such incidents publicized in
the media involve private information on individuals, i.e.
social security numbers, etc Loss of corporate
information such as trade secrets, sensitive corporate
information, details of contracts, etc or of government
information is frequently unreported, as there is no
compelling reason to do so in the absence of potential
damage to private citizens, and the publicity around
such an event may be more damaging than the loss of
the data itself.

Although such incidents pose the risk of identity
theft or other serious consequences, in most cases
there is no lasting damage; either the breach in security
is remedied before the information is accessed by
unscrupulous people, or the thief is only interested in the
hardware stolen, not the data it contains. Never the less,
when such incidents become publicly known, it is
customary for the offending party to attempt to
mitigate damages by providing to the victims
subscription to a credit reporting agency, for instance.

VII.

Conclusion

In a perfect world there would be no need to
hand over sensitive data to agents that may
unknowingly or maliciously leak it. And even if we had to
handover sensitive data, in a perfect world we could
watermark each object so that we could trace its origins
with absolute certainty. However, in many cases we
must indeed work with agents that may not be 100%
trusted.

In spite of these difficulties, we have shown it
is possible to assess the likelihood that an agent is
responsible for a leak, based on the overlap of his
data with the leaked data and the data of other agents,
and based on the probability that objects can be
‘guessed´ by other means. Our model is relatively
simple, but we believe it captures the essential trade-
offs. The algorithms we have presented implement a
variety of data distribution strategies that can improve
the distributor’s chances of identifying a leaker. We have
shown that distributing objects judiciously can make a
significant difference in identifying guilty agents,
especially in cases where there is large overlap in the
data that agents must receive. It includes the
investigation of agent guilt models that capture leakage
scenarios that are not studied in this paper.

19

© 2017 Global Journals Inc. (US)

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Y
e
a
r

20
17

Data Leakage Detection

References Références Referencias

1. Data Leakage Detection, an IEEE paper by
Panagiotis Papadimitriou, Member, IEEE, Hector
Garcia-Molina, Member, IEEE NOV-2010.

2. Watermarking relational databases. In VLDB ’02:
Proceedings of the 28th international conference on
Very Large Data Bases, By R. Agrawal and J.
Kiernan, pages 155–166. VLDB Endowment, 2002.

3. An algebra for composing access control policies,
By P. Bonatti, S. D. C. di Vimercati and P. Samarati,
ACM Trans. Inf. Syst. Secur., 5(1):1–35, 2002.

4. P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In J.
V. den Bussche and V. Vianu, editors, Database
Theory - ICDT 2001, 8th International Conference,
London, UK, January 4-6, 2001, Proceedings,
volume 1973 of Lecture Notes in Computer Science,
pages 316–330. Springer, 2001.

5. P. Buneman and W.-C. Tan. Provenance in
databases. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, pages 1171–1173, New York,
NY, USA, 2007. ACM.

6. Lineage tracing for general data warehouse
transformations, By Y. Cui and J. Widom, In The
VLDB Journal, pages 471–480, 2001.

7. Digital music distribution and audio watermarking,
by S. Czerwinski, R. Fromm, and T. Hodes.

© 2017 Global Journals Inc. (US)1

20

Y
e
a
r

20
17

(
)

E
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
IV

 V
er
sio

n
I

Data Leakage Detection

	Data Leakage Detection
	Author
	I.Introduction
	II. Literature Survey
	a) Agent Guilt Model
	b)Data Allocation Problem
	c)Optimization Problem
	i. Problem Definition
	ii. Optimization Problem

	III. Allocation Strategies Algorithm
	a) Explicit data Request
	b) Sample Data Request

	IV. Existing System
	a) Disadvantage

	V. Proposed System
	a) Advantage
	b)System Implementation
	i. Modules
	ii. Module Description

	VI. Future Work
	VII.Conclusion
	References Références Referencias

