
Scheduling Techniques for Operating Systems for Medical and1

IoT Devices: A Review2

Vipan Kakkar13

1 Shri Mata Vaishno Devi University, Katra4

Received: 7 December 2016 Accepted: 4 January 2017 Published: 15 January 20175

6

Abstract7

Software and Hardware synthesis are the major subtasks in the implementation of8

hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for9

Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes10

multiple Microprocessors and Signal Processors, allowing designing complex hardware and11

software systems, yet flexible with respect to the delivered performance and executed12

application. An important technique, which affect the macroscopic system implementation13

characteristics is the scheduling of hardware operations, program instructions and software14

processes. This paper presents a survey of the various scheduling strategies in process15

scheduling. Process Scheduling has to take into account the real-time constraints. Processes16

are characterized by their timing constraints, periodicity, precedence and data dependency,17

pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been18

described in this paper.19

20

Index terms— process scheduling, hardware software synthesis, implantable medical devices (IMD), internet21
of things (IoT) devices, dynamic voltage and frequency sc22

1 Introduction23

he scheduling problem i n p o r t a b l e a n d m o b i l e s y s t e m s has many facets [1] [2]. Scheduling24
algorithms have been developed in both the operation research and computer science community, with different25
models and objectives. The techniques that are applicable today to the design of hardware and software systems26
draw ideas from both communities.27

Generally speaking, hardware and software scheduling problems differ not just in the formulation but in th28
e ir overall g o a l s . Nevertheless, som e hardware scheduling algorithms are based on techniques used in the29
software domain, and some recent system-level process scheduling methods have leveraged ideas in hardware30
sequencing.31

Scheduling can be loosely defined as assigning an execution start time to each task in a set, where tasks32
are linked by some relations (e.g., dependencies, priorities, etc.). The tasks can be elementary operations (like33
hardware operations or computer instructions) or can be an ensemble of elementary operations (like software34
programs). The tasks can be periodic or aperiodic, and task execution may be subject to real time constraints35
or not.36

Scheduling under timing constraints is common for hardware circuits, and for software applications in37
embedded control systems. Task execution requires the use of resources, which can be limited in number,38
thus causing the serialization of some task execution. Most scheduling problems are computationally intractable,39
and thus their solutions are often based on heuristic techniques. Scheduling algorithms as applied to design of40
operating systems are explained below.41

Scheduling in High-Level Synthesis (HLS) is an optimization problem [3]. The different entities that should42
be optimized here are speed, cost (area or resources) and power consumption. By making use of these entities,43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

4 A) REAL-TIME SYSTEM

scheduling problems can be listed as (i) time constrained scheduling (ii) resource constrained scheduling (iii)44
feasible constrained scheduling and (iv) power constrained scheduling. There are also other factors that are45
important in evaluating designs such as pin limitations, package selection, testability, variety of latches, library46
of cells, clock skew etc. These are not discussed here.47

2 ii. Scheduling in Different48

Operating Systems49
Process scheduling is the problem of determining when processes execute and includes handling synchronization50

and mutual exclusion problem [3]. Algorithms for process scheduling are important constituents of operating51
systems and runtime schedulers.52

The model of the scheduling problem is more general than the one previously considered. Processes have a53
coarser granularity and their overall execution time may not be known. Processes may maintain a separate context54
through local storage and associated control information. Scheduling objectives may also vary. In a multitasking55
operating system, scheduling primarily addresses increasing processor utilization and reducing response time. On56
the other hand, scheduling in real-time operating systems (RTOS) primarily addresses the satisfaction of timing57
constraints.58

First consider the scheduling without real-time constraints. The scheduling objective involves usually variety59
of goals, such as maximizing CPU utilization and throughput as well as minimizing response time. Scheduling60
algorithms may be complex, but they are often rooted on simple procedures ?? 9 7] such as shortest job first61
(SJF) or round robin (RR). The SJF is a priority-based algorithm that schedules processes according to their62
priorities, where the shorter the process length (or, more precisely, its CPU burst length) the higher the priority63
as shown in Fig. 1. This technique arranges the processes with the least burst time in head of the queue and64
longest burst time in tail of the queue. This requires advanced knowledge or estimations about the time required65
for a process to complete. This algorithm would give the minimum average time for a given set of processes,66
their (CPUburst) lengths were known exactly. In practice, predictive formulas are used. Processes in a SJF may67
allow preempting other processes to avoid starvation. The round robin scheduling algorithm as shown in Fig.68
2, uses a circular queue and it schedules the processes around the queue for a time interval up to a predefined69
quantum. The queue is implemented as a first-in/first-out (FIFO) queue and new processes are added at the70
tail of the queue. The scheduler pops the queue and sets a timer. If the popped process terminates before the71
timer, the scheduler pops the queue again. Otherwise it performs a context switch by interrupting the process,72
saving the state, and starting the next process on the FIFO. Schedules may or may not exist that satisfy the73
given timing constraints. In general, the primary goal is to schedule the tasks such that all deadlines are met:74
in case of success (failure) a secondary goal is maximizing earliness (minimizing tardiness) of task completion.75
An important issue is predictability of the scheduler, i.e., the level of confidence that the scheduler meets the76
constraints.77

The different paradigms for process scheduling in RTOS can be grouped as static or dynamic. In the former78
case, a schedule ability analysis is performed before run time, even though task execution can be determined at79
run time based on priorities. In the latter case, feasibility is checked at run time. In either case, processes may80
be considered periodic or aperiodic. Most algorithms assume periodic tasks and tasks are converted into periodic81
tasks when they are not originally so.82

Rate monotonic (RM) analysis is one of the most celebrated algorithms for scheduling periodic processes on a83
single processor. RM is a prioritydriven preemptive algorithm. Processes are statically scheduled with priorities84
that are higher for processes with higher invocation rate, hence the name. Liu and Lay land showed that this85
schedule is optimum in the sense that no other fixed priority scheduler can schedule a set of processes, which86
cannot be scheduled by RM. The optimality of RM is valid under some restrictive assumptions, e.g., neglecting87
contextswitch time. Nevertheless, RM analysis has been the basis for more elaborate scheduling algorithms.88
Deadline Monotonic (DM) executes at any time instant the instance of the ready task with the shortest deadline,89
first. If two or more tasks have the same deadline, then DM randomly selects one for execution next. DM90
becomes equivalent to the RM algorithm when the deadlines of tasks are equal to their period [95].91

Process scheduling plays an important role in the design of mixed hardware/software systems, because it92
handles the synchronization of the tasks executing in both the hardware and software components. For this93
reason, it is currently a subject of intensive research. A description on process scheduling is given in the next94
chapter.95

3 I96

Also, many references have been suggested for every scheduling scheme for an interested reader to get more97
details.98

4 a) Real-time System99

Real-time systems are broadly classified into soft real-time systems and hard real-time systems. In soft real-time100
systems, the tasks have either soft deadlines or do not have deadlines at all. Scheduler performs task scheduling101
as fast as possible. If the task with soft deadline finishes late, it does not lead to serious problems, but results in102

2

degraded system performance. On the other hand, in hard real-time systems, tasks have timing constraints and103
if these timing constraints are not met, the outcomes may be fatal. Missing the deadline of critical tasks leads104
to system malfunction or breakdown. Therefore, scheduling algorithm employed for task scheduling in a hard105
real-time system has to work satisfactorily and ensure that every task completes before its deadline. In practice,106
hard real-time systems invariably have many soft real-time jobs and vice versa.107

Clearly, scheduling pure soft real-time tasks is a trivial job and scheduling hard real-time tasks is quite complex.108
In the remainder of this paper, scheduling in hard real-time systems is considered only. It is good to note that109
task scheduling is among the most important and critical services real-time operating system should provide.110
Task scheduling in hard real-time can be static or dynamic as will be seen in this paper.111

5 b) Characteristics of the Real-Time Tasks112

i. Timing Constraints Their timing constraints, precedence constraints and resource requirements typically113
characterize real-time tasks. Real-time tasks should have the information about their timing constraints so that114
they can be scheduled and managed efficiently. Various timing parameters used to characterize the hard real-time115
tasks are given below: Deadline: Deadline of a request for a task is defined to be the time of the next request for116
a task. This is the time by which the task must finish.117

6 Response time:118

The response time of the task is the time span between the request and the end of the response to that request.119
Arrival time or Release time (r): It is the time at which a task is invoked in the system. However, in many real120
time systems, we do not know the exact instant r i at which the task J i will be released. We only know, r i is in121
the range [r i r i +], that is, r i can be as early as r i and as late as r i + . This range of r is sometimes called122
as release time jitter or simply jitter. Relative Deadline: Relative deadline is the maximum allowable response123
time of the job.124

Ready time: It is the earliest time at which the task can begin execution. Obviously, the ready time of a task125
is equal to or greater than the arrival time.126

Execution time: It is the amount of time required to complete the execution of a task when it executes alone127
and has all the resources it requires. The actual amount of time taken may however differ for many reasons. The128
actual execution for a task is known only after it finishes.129

Hence, the execution time is mentioned as minimum and maximum execution times. Knowing the maximum130
execution time is enough for determining whether the task meets its deadline. Therefore, in many hard real time131
systems, the execution time specifically means its maximum execution time. In hard real-time systems, tasks can132
be periodic, sporadic or aperiodic in nature.133

7 Slack time: Time difference between execution time and the134

deadline ii. Periodic Task Model135

The periodic task model is a well-known deterministic workload model. With its various extensions, the model136
characterizes accurately many traditional hard real-time applications. Many scheduling algorithms based on137
this model have good performance and well-understood behavior. In this model, each computation and data138
transmission that is repeated at regular or semi regular intervals in order to provide a function of the system on139
a continuing basis is modeled as a periodic task. Specifically, each periodic task, denoted by T i is a sequence of140
jobs. The period p i of the periodic task T i is the minimum length of all time intervals between release times of141
consecutive jobs in T i . Its execution time is the maximum execution time of all the jobs in it. We use e i to142
denote the execution time of the periodic task T i , as well as that of all the jobs in it. At all times, the period143
and execution time of every periodic task in the system are known.144

8 iii. Aperiodic and Sporadic Tasks145

Aperiodic and sporadic tasks are used to characterize the external events to the real-time system. Aperiodic and146
sporadic tasks are the streams of aperiodic and sporadic jobs respectively. The release times for aperiodic and147
sporadic tasks are not known a priori.148

Real-time system has to respond to the external events while it is executing some other tasks. Real-time system149
executes certain routines in response to the external events. These routines or tasks to be executed in response150
to an external event may have soft or hard timing constraints. If the task has soft deadline or no deadline, we151
call it as an aperiodic task. Since the aperiodic tasks have soft responsive in a sense that it completes the job as152
soon as possible. Although late response is annoying, it is tolerable, so the need is to optimize the responsiveness153
of the system for aperiodic tasks, but never at the expense of the hard real-time tasks whose deadlines must be154
met at all times. Priority of the job is the measure of the criticality or importance of the job with respect to155
other jobs in the system.156

Higher the priority, the larger its importance. Tasks scheduling algorithm decisions are mainly based on the157
priority of the tasks and hence the priority assignment to the task is very important. As we will see, scheduling158
algorithms uses static and dynamic priority assignment schemes for assigning priority to the tasks. Assigning159

3

8 III. APERIODIC AND SPORADIC TASKS

priorities to the tasks so that all tasks meet their deadline is a difficult problem and usually some sort of heuristic160
is employed.161

c. Energy Aware Scheduling The trend in the industry towards Dynamic Power Management (DPM), where162
hardware technologies for dynamic frequency scaling (DVS) and dynamic voltage scaling (DVS) are being used163
to reduce the power consumption of individual processing elements (PE) at run-time. However, crucial to the164
success of this approach is a presence of intelligent software that adjusts the system performance level to maximize165
energy savings while still meeting application real-time deadlines.166

Moreover, another trend is to build SoCs/ NoC/ Embedded System for Implantable Medical Devices (IMD)167
and Internet of Things (IoT) devices, which includes multiple PEs (Microprocessors+DSPs), allowing designing168
complex systems, yet flexible with respect to the delivered performance and executed application. The energy169
management of multi-PE SoCs should manage several elements with shared resources, each running their own170
OS, and a plurality of both realtime and non real-time applications.171

Therefore, there is a need to directly address the energy problem. Intelligent energy management has impact172
on the hardware as well as on the software architecture of system, both implementing an infrastructure for energy173
management.174

The objective of this energy-aware scheduling is to design a Generic Adaptive Power optimized design, which175
can be used in IoT and IMD devices. Its main purpose is to enable intelligent as well as adaptive power176
management, including the ability to make dynamic changes to the voltages and frequencies being applied to177
these devices. Peng et.al (2010) presented a novel wireless integrated power management design for biomedical178
telemetry systems. They designed a model such that it draws ultra-low standby current [30]. Gaurav et.al (2008)179
evaluated the effectiveness of power management using DVFS from a system level energy savings perspective [100].180
However, simple policies they justified their work using benchmarks ranging from memory intensive workloads181
to CPU intensive workloads.182

If the task has hard real-time constraints, it has to meet its deadline. Failure in meeting deadlines lead to183
catastrophic results. Task of recovering from transient fault in time, for example, should complete before system184
goes down. The jobs that execute in response to these events have hard deadlines. Tasks containing jobs that are185
released at random time instants and have hard deadlines are sporadic tasks. Sporadic jobs may arrive at any186
instant, even immediately after each other. Moreover their execution times may vary widely, and their deadlines187
are arbitrary. In general, it is impossible for some sporadic jobs to meet their deadlines no matter what algorithm188
we use to schedule them. The only alternatives are (1) to reject the sporadic jobs that cannot complete in time189
or (2) to accept all sporadic jobs and allow some of them to complete them. Primary concern for sporadic tasks190
is to ensure that their deadlines are always met; minimizing their response times is of secondary concern.191

Jobs are said to be independent of each other if they can execute in any order without affecting the end192
result. In practice, however, jobs wait for the control and data inputs from other jobs and hence cannot execute193
independently. Therefore, control and data dependencies constrain the order in which the jobs can execute.194
Presence of dependency complicates the job scheduling, especially on a multiprocessor system.195

Though scheduling and resource accesscontrol decisions are generally taken without considering the functional196
characteristics of the task, several functional parameters do affect these decisions. Therefore, task workload197
model should explicitly mention the relevant functional parameters. Following functional parameters are generally198
described in the task workload model: Preemption of the task is provided in the realtime systems to suspend the199
execution of the current job for giving processor to a higher priority or urgent task. However, some jobs need200
to be executed from start to finish without interruption to avoid errors in the system and to keep the switching201
overheads to a minimum. Such jobs are said to be non-preemptive.202

In order to introduce intelligence in any system, different learning techniques have been developed so far such203
as TD-learning and Q-learning, which are two powerful in terms of saving power. The ”wake-up” operation204
after sleep mode creates a significant powerdraw from the battery supply (energy overhead). To deal with this205
issue Siyu et.al (2012) proposed a hybrid power supply using continuous Q-Learning and Discrete Q-Learning for206
reinforcement learning respectively [101] with good improvement in efficiency.207

Umair and Bernard (2012) proposed a novel, model-free RL (reinforcement learning) Technique for the power208
management of a portable traffic monitoring system having the computer hardware which is the major contributor209
to the entire power consumption. Unlike the previous works they have proposed to use Timeout policy for RL210
in sleep as well as idle state [102]. They used MLANN (Multi-layer artificial neural network) for the workload211
estimation as shown in Fig. 3. In addition to this they used multiple state update in idle as well as sleep modes212
to increase the convergence speed of the algorithm. Their work proves that using Timeout policy in idle as well213
as sleep state is more efficient than using Timeout in idle state and N-policy in sleep state.214

Although the DPM techniques effectively reduce the power consumption, they do not provide an optimal policy215
to extend the battery service lifetime of the battery. Maryam et.al (2013) proposed a power management policy216
claiming to extend the battery service lifetime by 35% compared to previous methods [103] as shown in Fig. 4.217
They have presented a modelfree reinforcement learning technique used to define the optimal battery threshold218
value for a closed loop policy and used the same to specify the system active mode. Their power manager219
automatically adjusts the power management policy by learning the optimal timeout value. It performs power220
management in an ”eventdriven” and ”continuous-time” manner. Their algorithm has a fast convergence rate and221
has less reliance on the Markovian property. proposed a novel, online, as well as adaptive RL based hierarchical222

4

approach to directly schedule the service request traffic that reaches the power managed components through223
SFC [104], using the technique is robust and has a faster convergence rate, the authors performed continuous224
time and event driven power management using the same. They were able to achieve a maximum energy saving225
of almost 63% during testing.226

Based on the literature survey it is seen that a lot of work has been done in DPM for portable systems. Various227
low power design techniques have been used at circuit level to manage power consumption in IMDs in [18][20]228
[27]. However no or very less work has been done in Power Management in IMDs at architectural level. Hence,229
there is a scope to work in this area.230

9 c) Process Scheduling Techniques231

Process scheduling involves allocating the tasks (ready for execution) to the available hardware resources. As232
the available hardware resources are often less in number than the tasks, tasks compete for it and the winner is233
scheduled for execution. Optimal task scheduling algorithm is a one that always keeps the available hardware234
resources occupied with tasks. The basic goal of any scheduling algorithm is to maximize the processor utilization.235
If the processor utilization is equal to or less than 1, then the schedule is said to be feasible.236

The complexity of the scheduling algorithm increases when many tasks are to be scheduled on a large number237
of processing elements. In such systems, complexity of the scheduling algorithm decides the overall system238
performance. Scheduling the tasks on more than one processor is a NP-complete problem and no optimal239
solution exists for such a system. Therefore, heuristics are applied.240

i. Terminology used in Scheduling a. Scheduler Scheduler is a module that schedules tasks using some241
scheduling algorithms and resource b. Schedule By schedule it means assignment of the jobs to the available242
processors as per the guidelines from the scheduler.243

10 c. Feasible Schedule244

A feasible schedule is a one that schedules the set of tasks meeting their deadlines. The feasible schedule is245
represented by timed labeled transition system.246

11 d. Optimal Scheduling or Scheduler247

A scheduling algorithm or scheduler (static or dynamic) is said to be optimal if it always constructs a feasible248
schedule for every task that has feasible schedule.249

A static scheduling algorithm is said to be optimal if, for any set of tasks, it always produces the feasible250
schedule whenever any other algorithm can do so.251

A dynamic scheduling algorithm is said to be optimal if it always produces a feasible schedule whenever a252
static scheduling algorithm with complete prior knowledge of all the possible tasks can do so.253

An aperiodic scheduling algorithm is optimal if it minimizes wither the response time of the aperiodic job or254
the average response time of all the aperiodic jobs for a given task set.255

An algorithm for scheduling sporadic jobs is optimal if it accepts each sporadic job newly offered to the system256
and schedules the job to complete in time if and only if the new job can be correctly scheduled.257

12 e. Static Scheduling Algorithm258

A scheduling algorithm is said to be static if priorities are assigned to tasks once and for all. A static priority259
algorithm is said to be fixed-priority scheduling algorithm also.260

13 f. Dynamic Scheduling Algorithm261

A scheduling algorithm is said to be dynamic if priorities of tasks might change from request to request.262

14 g. Mixed Scheduling Algorithm263

A scheduling algorithm is said to be mixed scheduling algorithm if the priorities of some of the tasks are fixed264
yet the priorities of the remaining tasks vary from request to request.265

15 ii. Definition of Scheduling Problem266

Task Scheduling involves determining the schedule, for a set of given tasks, such that the timing constraints,267
precedence constraints and resource requirements for the tasks are met and to compute the schedule if it is found268
to exist. Real-time system has a mix of periodic and non-periodic (aperiodic and sporadic) tasks. Out of which269
periodic and sporadic tasks have hard deadlines to follow while aperiodic tasks have soft deadlines. The basic aim270
of any scheduling algorithm or scheme is to model these task characteristics with various changing parameters.271
Therefore, scheduling scheme should provide following things: 1. Assumptions made for the tasks. 2. Scheduling272
of non-periodic tasks that include soft aperiodic and hard sporadic tasks. 3. Schedulability test and analysis. 4.273
Performance analysis.274

5

20 II. PREEMPTIVE VS. NON-PREEMPTIVE SCHEDULING

16 a. Schedulability Analysis275

Its required to analyze schedulability to determine whether a set of tasks meets its timing constraints.276
One way to analyze schedulability is to compute the worst case response time (WCRT) of each task as proposed277

in Balarin, L. Lavagno, Murthy and Vincentelli [2]. A task’s WCRT is the maximum possible length of an interval278
that begins with the task being enabled and ends with the task completing its execution. It includes both the279
task’s runtime and interference from other tasks. The WCRT concept is useful regardless of the scheduling280
approach.281

However, finding WCRT for a real life embedded system is a difficult task due to the presence of varying282
parameters like runtimes, dependency between tasks, and non-periodic events in the environment.283

17 b. Performance Analysis of Scheduling Algorithms284

Performance analysis of scheduling algorithm is required to find out its effectiveness in scheduling the set of tasks.285
The most often used measure of the performance is the ability of the scheduling algorithm to find out the feasible286
schedule for a set of tasks provided such a schedule exists. Schedulable utilization and fast response time to287
urgent tasks are also used as main performance measures. Other commonly used performance measures include288
maximum and average tardiness, lateness, and response time and the miss, loss, and invalid rates. Generally, only289
the relevant performance measures are used in the performance analysis of a particular scheduling algorithm.290

This depends on the task characteristics and the environment.291

18 d) Approaches Taken to Real-Time Scheduling292

The approaches taken to real-time scheduling can be broadly classified into three categories: clock-driven293
scheduling, round robin scheduling and priority-driven scheduling. Priority driven scheduling can be further294
classified into fixed and dynamic priority scheduling. The scheduling scheme may support either preemptive or295
non-preemptive scheduling etc. The scheduling algorithms found in the literature target the topic of scheduling296
the hybrid of real-time periodic and non-periodic (aperiodic and sporadic) tasks with hard or soft deadlines297
respectively. In literature the work of scheduling covers specific cases of uniprocessor, multiprocessor and298
distributed systems (with identical or heterogeneous processors). Each scheduling algorithm assumes certain299
task characteristics. Some assumptions are often made for the real-time task [9] that may include:300

The real time tasks with hard deadlines are periodic.301
The tasks are independent i.e. the tasks release time does not depend on the initiation or completion of other302

tasks.303
Run-time for each task remain constant; runtime here means the time taken by the processor to execute the304

task.305
Any non-periodic (aperiodic and sporadic) tasks are special cases; they are initialization and failure-recovery306

routines; and do not have hard deadlines. All parameters of the periodic jobs are known a priori. In particular,307
variations in the inter-release times in any periodic job are negligibly small.308

Different scheduling algorithms try to relax one or more of the above assumptions so as to make the task309
model more realistic. The way the aperiodic and sporadic tasks are scheduled distinguishes various scheduling310
schemes.311

19 i. Static and Dynamic Task Scheduling312

Task scheduling in hard real-time system can be either static or dynamic. In static task scheduling, the schedule313
for the tasks is prepared offline and requires complete prior knowledge of the task characteristics. In dynamic314
task scheduling, on the other hand, tasks are accepted for scheduling during run-time (if a feasible schedule is315
obtained). If the tasks’ characteristics are well known and doesn’t vary, static scheduling schemes always produce316
feasible schedule.317

We can use complex static scheduling scheme, as schedule is computed offline. However, static scheduling318
schemes are inflexible and cannot adapt to changing environment. The schedule needs to be recomputed if the319
system is reconfigured. In contrast, dynamic schemes have high run-time cost as the schedule is found on the fly.320
However, they are flexible and can easily adapt to the changes in the environment.321

20 ii. Preemptive vs. Non-preemptive Scheduling322

Most of the scheduling algorithms assume that the tasks are preemptive.323
However, nonpreemptive scheduling of a set of periodic and sporadic tasks on a uniprocessor is important for324

variety of reasons such as:325
In many practical real-time scheduling problems such as I/O scheduling, properties of device hardware and326

software either make preemption impossible or prohibitively expensive. easier to implement than preemptive327
algorithms, and can exhibit dramatically lower overhead at runtime. The problem of scheduling all tasks without328
preemption forms the theoretical basis for more general tasking models that include shared resources.329

Jeffay et al. [17] focus on scheduling a set of periodic or sporadic tasks on a uniprocessor without preemption330
and without inserted idle time. The paper gives necessary and sufficient set of conditions C for a set of periodic331

6

or sporadic tasks to be schedulable for arbitrary release time of the tasks. They have shown that a set of periodic332
or sporadic tasks that satisfy C can be scheduled with an earlierdeadline-first (EDF) scheduling algorithm. For333
a set of sporadic tasks with specified release times conditions C are necessary and sufficient for schedulability.334
However, for sets of periodic tasks with specified release times, conditions C are sufficient but not necessary.335

21 iii. Clock-driven Scheduling336

In clock-driven scheduling, the jobs are scheduled by the scheduler at specific time instants. These time instants337
are chosen a priori before the system starts execution. The timing instants may or may not be at regular intervals.338
All the parameters of hard real-time jobs should be fixed and known before hand. In other words, the clock driven339
scheduling is possible for a system that is by and large deterministic.340

To keep the information ready for the scheduler, the schedule for the jobs is computed off-line and is stored in341
the form of a table for use at run-time. Each entry in this table gives time instant at which a scheduling decision342
is made. Scheduler makes use of a timer.343

Upon receiving a timer interrupt, the scheduler sets the timer to expire at the next decision instant (from the344
table entry). When the timer expires again, scheduler repeats this operation.345

22 iv. Weighted Round Robin Scheduling346

The round robin approach is commonly used for scheduling time-shared applications. When jobs are scheduled347
on a round robin basis, every job joins a348

The overhead of preemptive algorithms is more difficult to characterize and predict than that of non-preemptive349
algorithms. Since scheduling overhead is often ignored in scheduling models, an implementation f a non-350
preemptive scheduler will be closer to the formal model than an implementation of a preemptive scheduler351
.352

Non-preemptive scheduling on a uniprocessor naturally guarantees exclusive access to shared resources and353
data, thus eliminating both the needs for synchronization and its associated overhead.354

23 Non-preemptive scheduling algorithms are355

First-in-first-out (FIFO) queue when it becomes ready for execution. The job at the head of the queue executes356
for at most one time slice. If the job does not complete by the end of the time slice, it is preempted and placed357
at the end of the queue to wait for its next turn. When there are n ready jobs in the queue, each job gets one358
time slice every n time slices, that is every round. In essence, each job gets 1/nth share of the processor when359
there are n jobs ready for execution. The problem with round robin scheduling is that it provides poor service360
to urgent tasks. It is possible that even the most urgent task needs to wait for all other tasks to execute before361
it gets its turn. Thus to satisfy the timing constraints a very fast processing unit may be necessary, which may362
not be available. Then round robin may not produce the feasible schedule.363

Therefore, weighted round robin scheduling scheme is used. It builds basic round robin scheme. Rather than364
giving all the ready jobs equal shares of the processor, different jobs may be given different weights. Here, the365
weight of a job refers to the fraction of processor time allocated to the job. By adjusting the weight of the jobs,366
we can speed up or retard the progress of each job toward its completion.367

If round robin scheme is used to schedule precedence constrained jobs; the response time of a chain of jobs can368
be unduly large. For this reason, the weighted round robin approach is not suitable for scheduling such jobs. On369
the other hand, a successor job may be able to incrementally consume what a predecessor produces. In this case,370
weighted round robin scheduling is a reasonable approach, since a job and its successors can execute concurrently371
in a pipelined fashion.372

24 v. Priority Driven Scheduling373

The term priority-driven algorithms refer to a large class of scheduling algorithms that never leave any processor374
idle intentionally. Priority driven algorithms assign priorities to the tasks either statically or dynamically.375
Scheduling decisions are taken when events such as releases and completions of jobs occur and hence priority-376
driven algorithms are also known as event-driven. As any scheduling decision time, the jobs with the highest377
priority are scheduled and executed on the available processors.378

Compared with the clock-driven approach, the priority-driven scheduling approach has many advantages.379
Many well-known priority-driven algorithms use very simple priority assignments, and for these algorithms,380

the run-time overhead due to maintaining a priority queue of ready jobs can be made very small. A clock-driven381
scheduler requires the information on the release times and execution times of the jobs a priori in order to decide382
when to schedule them. In contrast, a priority-driven scheduler does not require most of this information, making383
it much better suited for applications with varying time and resource requirements.384

Despite its merits, the priority-driven approach has not been widely used in hard real-time systems, especially385
safety-critical systems, until recently. The major reason is that the timing behavior of a prioritydriven system386
is non-deterministic when job parameters vary. Consequently, it is difficult to validate that the deadlines of all387
jobs scheduled in a prioritydriven manner indeed meet their deadlines when the job parameters vary.388

7

28 C. RELATED WORK

25 vi. Static or Fixed Priority Scheduling Algorithms389

One way of building hard real-time systems is from a number of periodic and sporadic tasks and a common way of390
scheduling such tasks is by using a static priority pre-emptive scheduler; at runtime the highest priority runnable391
job is executed. Rate-Monotonic scheduling scheme proposed by Liu and Layland [9] and Deadline-Monotonic392
scheme proposed by ??eung [62] are used to assign static priorities to the real-time jobs. In this section, both393
these scheduling schemes are explained and how they are used to schedule periodic and non-periodic jobs is394
covered.395

a. Rate Monotonic Priority Assignment Liu and Layland [9] in 1973 proposed a fixed priority scheduling396
scheme known as Rate Monotonic Scheduling. In rate monotonic priority assignment, priorities are assigned to397
tasks according to their request rates, independent of their runtimes. Specifically, tasks with higher request rates398
will have higher priorities. They also derived a schedulability analysis that determines if a given task set will399
always meet all deadlines under all possible release conditions. However, original rate monotonic scheme had400
several restrictions: All tasks are independent to each other and they cannot interact. All tasks are periodic. No401
task can block waiting for an external event. All tasks share a common release time (critical instant). All tasks402
have a deadline equal to their period.403

Liu & Layland’s work has had a wide impact on research in real-time computing and embedded systems.404
However, every assumption of their model is violated to some extent in the design of embedded systems.405

Tasks are rarely independent and generally events in the environment or execution of other tasks invoke them.406
In many systems, request for tasks do not arrive at regular periods. Only some constraints on the request rate are407
known. In many low-cost embedded systems preemption cost is not affordable due to context switch overhead.408
In addition, tasks’ runtime is almost never constant. It may vary with different input patterns as well as with409
the state of the task.410

Because of all the above real life issues, research community has come up with more realistic models in which411
some of the assumptions of Liu and Layland have been relaxed.412

The first assumption that tasks cannot interact has been removed by Sha et al. [31]. Sha also provided a413
test to incorporate processes that synchronize using semaphores in [47]. Sha [31] addresses the issue of priority414
inversion (if synchronization primitives like semaphores, monitors and ada task model [47] are directly applied).415
Two priority inheritance protocols called the basic priority inheritance protocol and Priority Ceiling Protocol416
(PCP) have been presented. This protocols also shown to avoid deadlocks. Baker [15] proposes a Stack Resource417
Policy (SRP) which is a resource allocation policy that permits processes with different priorities to share a418
single runtime stack. SRP is a refinement of PCP [31], which strictly bound priority inversion and permits simple419
schedulability analysis. The related work on this topic can also be found in [12,48,49].420

Sha [61] reported work that includes test to allow aperiodic processes to be included in the theory.421
Rajkumar [58] used external blocking (i.e. when a task is blocked awaiting an external event) with the422

Rate Monotonic approach to model the operation of a multiprocessor priority ceiling protocol [12] and provided423
schedulability analysis to bound its effects.424

The restriction that tasks are assumed to share a common critical instant has been relaxed by Audsley [57].425
Leung [62] suggested a Deadline-Monotonic priority assignment that removed the constraint that the deadline426

and period of a process must be equal. Audsley et al. [7] provided schedulability test for the scheme proposed427
by Leung.428

26 b. Deadline Monotonic Priority Assignment429

In deadline-monotonic scheduling theory, processes to be scheduled are characterized by the following relation:430

27 Computation time <= deadline <= period431

Deadline monotonic priority assignment is similar in concept to rate-monotonic priority assignment.432
Priorities assigned to processes are inversely proportional to the length of the deadline [62]. Thus, the process433

with the shortest deadline is assigned the highest priority and the longest deadline process is assigned to lowest434
priority. This priority assignment defaults to a rate-monotonic assignment when period = deadline.435

Deadline monotonic priority assignment is shown to be optimal static priority scheme [62]. The implication436
of this is that if any static priority scheduling algorithm can schedule a process set where process deadlines are437
unequal to their periods an algorithm using deadline-monotonic priority ordering for processes will also schedule438
that process set.439

Audsley et al. [7] also showed that since deadline-monotonic scheme guarantees that computation time is less440
than or equal to deadline, it is possible to schedule sporadic tasks within the existing periodic framework. They441
also discussed problems involved for guaranteeing deadlines of sporadic processes using sporadic servers within442
the ratemonotonic scheduling framework.443

28 c. Related Work444

Lehoczky [14] considers the problem of fixed priority scheduling of periodic tasks with arbitrary deadlines and an445
exact schedulability criterion has been developed. A worst case bound for the case of rate-monotonic scheduling446

8

is developed generalizing the original bounds of Liu and Layland in that the tasks are allowed to have deadlines447
D = ?T for any ? > 0.448

The bounds show that when one additional period (? = 2) is given to tasks to complete their computation449
requirement, the worst case schedulable utilization increases from 0.693 to 0.811. Also, average schedulable450
utilization is shown to have increased from 0.88 to over 0.95 that often goes to 1.00.451

Audsley et al. [20] have given exact schedulability analysis for real-time systems scheduled at runtime with452
static priority preemptive scheme. Exact analysis of sporadic tasks is given and analysis extended to include453
release jitter. Schedulability analysis to predict worst case response times for a set of periodic and sporadic tasks454
under any given priority assignment and scheduled by a static priority preemptive scheduler can be found in [20].455

Lehoczky et al [63] provides an exact characterization and stochastic analysis for a randomly generated set of456
periodic tasks scheduled by ratemonotonic algorithm.457

Shih et al. [65] presents modified ratemonotonic algorithm for scheduling periodic jobs with deferred deadlines.458
The deadline of the request in any period of a job with deferred deadline is some time instant after the end of459
the period. The paper describes a semi-static priority-driven algorithm for scheduling periodic jobs with deferred460
deadlines: each job is assigned two priorities, the higher one of the old request and the lower one for the current461
request. The optimal schedulability analysis and the applications Predictive periodic and non-periodic algorithms462
are given by Singh [64]. A predictive preemptive scheduling algorithm avoids unnecessary preemption while a463
non-preemptive algorithm is predictive in a sense that it looks for future task arrival times and schedules them464
non-preemptively.465

Recent work on scheduling has focussed on scheduling of flexible applications (or imprecise computation). The466
work in [28,30,[38][39][40][41][42][43][44][45][46]54] provides sufficient material for the interest reader.467

29 d. Scheduling Non-Periodic Tasks in Fixed Priority468

Real-Time Systems Till now, the focus was only on the scheduling of periodic tasks. In practice, real-time469
systems comprise of a hybrid of hard periodic jobs and soft/hard aperiodic jobs. The mixed scheduling problem470
is important, because many real-time systems have substantial aperiodic task workloads.471

Aperiodic job and sporadic job scheduling algorithms are solutions to the following problems: 1. Sporadic job472
scheduler decides whether to accept or reject the newly arrived sporadic job depending on its execution time and473
the deadline.474

If it accepts a job, it schedules a job such that all other hard deadline periodic tasks and previously accepted475
sporadic tasks meet their deadlines. Here the problem lies in determining how to do acceptance test and how to476
schedule accepte d sp orad ic j obs. 2. Aperiodic job scheduler tries to complete each aperiodic job as early as477
possible. The problem with this scheduler is to do so without causing other hard periodic and sporadic tasks to478
miss their deadline. Obviously, average response time is a measure of performance of these schedulers.479

Within the framework of fixed priority preemptive scheduling, a number of approaches have been developed480
for scheduling mixed task sets. The simplest and perhaps least effective of these is background scheduling of481
aperiodic tasks. In background scheduling, soft deadline tasks are executed at a lower priority than any hard482
deadlines tasks. Clearly, this method always produces correct schedules and is simple to implement. However,483
the execution of aperiodic jobs may be delayed and their response times prolonged unnecessarily. An obvious484
way to make the response times of aperiodic jobs as short as possible is to make their execution interrupt driven.485

Whenever an aperiodic job arrives, the execution of periodic tasks is interrupted, and the aperiodic job is486
executed. However, if aperiodic tasks always execute as fast as possible, periodic tasks may miss some deadlines.487

Another approach for scheduling aperiodic tasks is to use a periodic task that looks for the ready aperiodic488
tasks in an aperiodic task queue. Such a periodic task is called as polling server. A polling server has a fixed489
priority level (usually the highest) and an execution capacity. The capacity of the server is calculated off-line490
and is normally set to the maximum possible, such that the hard task set, including server, is schedulable. At491
run-time, the polling server is released periodically and its capacity is used to service soft real-time tasks. Once492
this capacity has been exhausted, execution is suspended until it can be replenished at the server’s next release.493
The polling server will usually significantly improve the response times of soft tasks over background processing.494
However, if the ready soft tasks exceed the capacity of the server, then some of them will have to wait until its495
next release, leading to potentially long response times. Conversely, no soft tasks may be ready when the server496
is released, wasting its high priority capacity.497

This drawback is avoided by the Priority Exchange, Deferrable server [60,67,68] and Sporadic servers [61,68]498
algorithms. These are all based on similar principles to the polling server. However, they are able to preserve499
capacity if no soft tasks are pending when they are released. Due to this property, they are termed as ”bandwidth500
preserving algorithms”. These three algorithms differ in the ways in which the capacity of the server is preserved501
and replenished and in the schedulability analysis needed to determine their maximum capacity.502

In general, all three offer improved responsiveness over the polling approach. However, there are still503
disadvantages with these more complex server algorithms. They are unable to make use of slack time that504
may be present due to the often favorable phasing of periodic tasks. Further, they tend to degrade to providing505
essentially the same performance as the polling server at high loads. The deferrable and sporadic servers are506
also unable to reclaim spare capacity gained, when for example, hard tasks require less than their worst case507

9

30 VII. DYNAMIC PRIORITY SCHEDULING ALGORITHMS: EDF, LST

execution time. This spare capacity termed gain time, can however be reclaimed by the extended priority508
exchange algorithm [69].509

Chetto [66] and Lehoczky [18] proposed the slack stealing algorithm.510
This algorithm uses the strategy to make use of the available slack times of periodic and sporadic jobs to511

complete aperiodic jobs. The slack stealing algorithm suffers from none of the above disadvantages. It is optimal512
in the sense that it minimizes the response times of soft aperiodic tasks amongst all algorithms that meet all513
hard periodic task deadlines. The slack stealer services aperiodic requests by making any spare processing time514
available as soon as possible.515

In doing so, it effectively steals slack from the hard deadline periodic tasks.516
In [22], Davis et al. presents new analysis that allows the slack available on hard deadline periodic and517

hard deadline sporadic tasks to be calculated. The analysis caters for tasks that have release time jitter,518
synchronization, stochastic execution times and arbitrary deadlines. Further extension to the basic slack stealing519
work can be found in [21,25].520

30 vii. Dynamic Priority Scheduling Algorithms: EDF, LST521

Now the turn comes to the study of dynamic scheduling algorithms that we call the deadline driven scheduling522
algorithm.523

As said earlier, processor utilization increases by use of the dynamic scheduling schemes. In this section, the524
dynamic priority assignment scheduling schemes used in the literature is studied.525

Liu and Layland [9], proposed an Earlier-Deadline-First EDF scheduling scheme. Using this algorithm,526
priorities are assigned to tasks according to the deadlines of their current requests. Specifically, a task will527
be assigned the highest priority if the deadline of its current request is the nearest, and will be assigned the528
lowest priority if the deadline of its current request is the furthest. Such a method of assigning priorities to the529
tasks is a dynamic one, in contrast to a static assignment in which priorities of tasks do not change with time.530
Schedulability analysis to determine whether a given task set can be scheduled by EDF is given in [9]. An EDF531
algorithm is optimal for scheduling preemptive jobs on one processor. However, it is non-optimal when jobs are532
non-preemptive or when there is more than one processor [96].533

Another well-known dynamic-priority algorithm is the Least-Slack-Time-First (LST) [48] algorithm. At time534
t, slack of a job whose remaining execution time is x and whose deadline is d is equal to d -t -x. The LST535
scheduling algorithm checks the slacks of all the ready jobs each time a new job is released and orders the new536
job and the existing jobs on the basis of their slacks: the smaller the slack, the higher the priority. Like EDF,537
LST algorithm is also optimal for scheduling preemptive periodic jobs [95] on one processor but non-optimal for538
scheduling non-preemptive jobs or multiprocessor scheduling.539

As dynamic priority-driven scheduling schemes makes a better processor utilization, many approaches have540
been reported in the literature that cover the problem of scheduling the soft / hard aperiodic jobs in the dynamic541
priority-driven framework. Chetto and Chetto [66] studied the localization and duration of idle times and542
proposed an algorithm for scheduling hard aperiodic tasks. Chetto’s algorithm requires that the periodic task543
deadlines be equal to their periods, and assumes that when any hard aperiodic task arrives and is required to544
run, all the aperiodic tasks previously accepted have completed their execution. Schwan and Zhou [70] relax the545
above assumptions and propose a joint algorithm in which every task, whether periodic or aperiodic, is subject546
to an acceptance test upon arrival.547

Work has been carried out for dynamic priority versions of deferrable server, sporadic servers and other548
bandwidth preserving algorithms, as is found in the fixed priority schemes. Three server mechanisms under EDF549
have been proposed by Ghazalie and Baker [68]. The authors describe a dynamic version of the known Deferrable550
and Sporadic servers [61], called Deadline Deferrable server and Deadline Sporadic Server respectively.551

Then, the later is extended to obtain a simpler algorithm called Deadline Exchange Server. Later, Spuri and552
Buttazzo [72,73], presented five new online algorithms for servicing soft aperiodic tasks scheduled using EDF.553
They presented following algorithms: 1. Dynamic Priority Exchange, an extension of previous work under RM.554
2. A new bandwidth-preserving algorithm called as Total Bandwidth Server. 3. Earliest-Deadline-Last (EDL)555
Server. 4. Improved Priority Exchange with less runtime overhead and 5. Dynamic Sporadic Server (DSS)556
Algorithm.557

Spuri et al in [29], extended the Total Bandwidth Sever algorithm to handle hard aperiodic tasks and to deal558
with overload situations. Total Bandwidth approach was further expanded toward optimality by Buttazzo and559
Sensini [51,74]. They provided a general method for assigning deadlines to soft aperiodic requests.560

Homayoun et al [56] combine the EDF algorithm for scheduling periodic tasks with the deferrable server for561
servicing aperiodic tasks. An online algorithm for scheduling sporadic tasks with shared resources in hard real-562
time systems has been presented in [75]. Jeffay [75] describes a method, the Dynamic Deadline Modification563
(DDM) protocol, for scheduling sporadic tasks with shared resources under the Earliest Deadline First (EDF)564
scheduling algorithm. Baker [15] proposed a general resource access protocol, the Stack Resource Policy (SRP),565
which can be used under fixed as well as dynamic priority assignments. Group Priority Earliest Deadline First566
(GPEDF) performs schedulability test prior to grouping a particular job. In the GPEDF, jobs with short567
execution time are executed first in the group, which leaves more time for other jobs to execute. This allows568
more jobs to be completed, the response is reduced. [96].569

10

In [71], Caccomo et al extended the analysis to deal with dynamic deadline modifications, in order to use570
the tunable Total Bandwidth server [51,74], for improving aperiodic responsiveness in the presence of resource571
constraints.572

Kim et al [76][77][78], discuss two scheduling algorithms known as Alternative Priority Scheduling (APS) and573
Critical Task Indication (CTI) algorithms.574

Buttazzo [50] proposes a variant of earliest deadline first scheduling algorithm which exploits skips to minimize575
the response time of aperiodic requests in a firm real-time system.576

viii. Scheduling in Multiprocessor Systems a. Introduction Thus far we have seen about the scheduling577
algorithms without considering the case where the realtime system has more than one processor. A multiprocessor578
system is classified into the sharedmemory and distributed-memory systems. A sharedmemory multiprocessor579
model is a centralized system as the processors are located at a single point in the system and the inter-580
processor communication cost is negligible compared to the processor execution cost. The distributed-memory581
multiprocessor model, also known as distributed system, is one in which the processors are distributed at different582
points in the system and the inter-processor communication cost is not negligible compared to the processor583
execution cost. A local area network is an example of such system.584

Scheduling scheme for multiprocessor systems has to provide solutions for the problems that arise in the585
multiprocessor environments. Firstly, task assignment is an important problem in multiprocessor systems. Most586
hard real-time systems built to date are static, that is jobs or tasks are partitioned and statically bound to587
processors. The task assignment problem is concerned with how to partition the system of tasks and passive588
resources into modules and how to assign the modules to processors. Second problem is the inter-processor589
synchronization. Some kind of synchronization protocol is needed to ensure that precedence constraints of jobs590
on different processors are always satisfied.591

Finally, in a distributed real-time system, tasks may arrive unevenly at the nodes (processors) in the system592
and / or processing power may vary from node to node, thus getting some nodes temporarily overloaded while593
leaving others idle or under-loaded. Many load sharing (LS) algorithms have been proposed in the literature to594
counter this problem.595

Scheduling schemes for multiprocessor system has to take into account the following important factors: memory596
and resource utilization, deadlock avoidance, precedence constraints, and communication delay. Because of597
all these complicating factors, the development of appropriate scheduling schemes for multiprocessor real-time598
systems is problematic, it is known that optimal scheduling for multiprocessor systems is NP hard. It is therefore599
necessary to look for ways of simplifying the problem and algorithms that give adequate suboptimal results.600

31 b. Scheduling Problem Definition for Multiprocessor Sys-601

tems602

The problem of multiprocessor scheduling is to determine when and on which processor a given task executes.603
This can be done either statically or dynamically. In static algorithms, the assignment of tasks to processors604
and the time at which the tasks start execution are determined a priori. Static algorithms [19], [37] are often605
used to schedule periodic tasks with hard deadlines. The main advantage is that, if a solution is found, then606
one can be sure that all deadlines will be guaranteed. However, this approach is not applicable to aperiodic607
tasks whose characteristics are not known a priori. Scheduling such tasks in a multiprocessor real-time system608
requires dynamic scheduling algorithms. In dynamic scheduling [4], [53], when new tasks arrive, the scheduler609
dynamically determines the feasibility of scheduling these new tasks without jeopardizing the guarantees that610
have been provided for the previously scheduled tasks. Thus, for predictable executions, schedulability analysis611
must be done before a task’s execution is begun.612

Dynamic scheduling algorithms can be either distributed or centralized. In a distributed dynamic scheduling613
scheme, tasks arrive independently at each processor. When a task arrives at a processor, the local scheduler at614
the processor determines whether or not it can satisfy the constraints of the incoming task. The task is accepted615
if they can be satisfied, otherwise, the local scheduler tries to find another processor which can accept the task.616
In a centralized scheme, all the tasks arrive at a central processor called the scheduler, from where they are617
distributed to other processors in the system for execution.618

32 c. Inter-Processor Synchronization Protocols619

Synchronization protocol is a protocol that governs when the schedulers on different processors release the jobs of620
sibling subtasks. A synchronization protocol is said to be correct if it (1) never releases jobs in any first subtask621
before the end-to-end release times of the jobs and (2) never allows the violation of any precedence constraint622
among sibling subtasks. Four types of synchronization protocols are reported in the literature. Those are Greedy623
Synchronization Protocol, Phase Modification (PM) Protocol, Modified Phase-Modification (MPM) Protocol624
and the Release-Guard (RG) Protocol [8,80]. Rajkumar et al [12] extend the priority inheritance protocol for625
uniprocessors [31] to multiprocessors.626

11

35 F. RELATED WORK

33 d. Load Sharing Algorithms627

In load sharing scheme, if a node cannot guarantee a task or some of its existing guarantees are to be violated as628
a result of inserting a task into its schedule, it has to determine candidate receiving processor(s) for the task(s)629
to be transferred. Two issues need to be considered when choosing a receiving processor(s).630

Most of the work concentrates on 1 and chooses the most desirable receiving processor based on the state631
information collected from periodic/aperiodic state broadcasts [87,88,98] or state probing/bidding [89]. Moreover,632
implied in this work is the assumption of homogeneous workload distribution among nodes. This assumption633
does not always hold, because the distribution that governs task arrivals at different nodes may vary greatly over634
time and thus the workload distribution is not homogeneous among the nodes. Therefore both 1 and 2 above635
should be considered in guaranteeing tasks on a heterogeneous system.636

Hou and Shin [81] propose a load-sharing algorithm for real-time applications, which takes into account the637
future task arrivals.638

34 e. Fault Tolerant Scheduling639

In many real-time systems, a fault tolerance is an important issue. A system is fault tolerant if it produces640
correct results even in the presence of faults. When a fault occurs, extra time is required during task execution641
to handle fault detection and recovery. For real-time systems in particular, it is essential that the extra time be642
considered and accounted for prior to execution. Methods explicitly developed for fault tolerance in real-time643
systems must take into consideration the number and type of faults, and ensure that the timing constraints are644
not violated.645

In a multiprocessor system fault tolerance can be provided by scheduling multiple copies of tasks on different646
processors [81,82] and the high-performance computation power from multiple cores on the platforms [99]. A647
primary / backup (PB) approach and triple modular redundancy (TMR) approach are two basic approaches that648
allow multiple copies of task to be scheduled on different processors [83]. One or more of these copies can be649
run to ensure that the task completes before its deadline. In TMR, multiple copies are usually run to achieve650
error checking by comparing results after completion. In PB approach, if correct results are generated from the651
primary task, the backup task is activated. Ghost et al [84] study techniques for providing fault tolerance for652
nonpreemptive, aperiodic, dynamic real-time tasks using the PB approach. Maode et al [85] proposed a strategy653
called as task reassignment fault tolerance (TRFT) scheduling scheme. The basic idea in [85] is that when a654
fault appears in the system, it means that a node has no capability to handle tasks and it can not accept other655
tasks any more. The tasks that have been assigned to it not successfully done should be reassigned to other656
node which is ready to accept new batch of tasks. Liberto et al [86], focus on global scheduling where tasks can657
migrate across processors. Two varieties of global multiprocessor scheduling schemes, frame-based scheduling658
and periodic scheduling, are discussed.659

In the frame-based scheduling model, an aperiodic task set is scheduled to create a template (frame), and that660
schedule may be executed periodically. In the periodic model, each task in the set has a separate period, and is661
executed with no explicitly predetermined schedule.662

35 f. Related Work663

Tasks can be statically bounded to a processor i.e. once tasks are allocated to processors; each processor runs the664
same set of tasks. Each task thus runs on its host processor. Dhall and Liu [79] have shown that the rate monotonic665
algorithm, which performs well on uniprocessors, behaves poorly for multiprocessor with dynamic binding. They666
considered the problem of assigning a set of independent periodic tasks to a minimal number of processors. They667
proposed two heuristic algorithms, called the Rate-monotonic-First-Fit (RMFF) and Rate-Monotonic-Next-Fit668
(RMNF) algorithms respectively. They showed that in the worst-case, the assignment produced by the RMFF669
algorithm uses no more than 2.33 times the optimal number of processors, while RMNF uses no more than 2.67670
1. Minimization of the probability of transferring a task to an incapable node. 2. Avoidance of task collisions671
and / or excessive task transfers, and minimization of the possibility of a task’s guarantee being violated due to672
future tighterlaxity task arrivals.673

times. Davari and Dhall [90] considered another variation of the heuristic, called First-Fit-Decreasing-674
Utilization-Factor (FFDUF) algorithm, which improves the worst-case performance to 2 times the optimal number675
of processors. Davari and Dhall then devised an on-line algorithm, called Next-Fit-M algorithm [91] which has a676
worst-case performance ratio of 2.2838. Baruah et al [92,93] devised new dynamicpriority schemes that result in677
optimal multiprocessor schedulers for hard real-time periodic tasks. Authors [92] proved that any task set whose678
combined weights is at most m can be scheduled in a pfair manner on m processors, and presented a scheduling679
algorithm that would achieve this. In [93], they provided a more efficient algorithm.680

Kwon et al. proposed an optimal algorithm for parallelizing and scheduling a task set with multiple681
parallelization options on multiple processor systems ??10]. The algorithm presented in [10] is a global strategy682
while our proposed algorithm is a partitioning strategy.683

12

36 iv. Summary and Conclusion684

Different goals and algorithms characterize process scheduling in real-time operating system. Schedules may or685
may not exist that satisfy the given timing constraints. In general, the primary goal is to schedule the tasks686
such that all deadlines are met: in case of success (failure) a secondary goal is maximizing earliness (minimizing687
tardiness) of task completion. An important issue is predictability of the scheduler, i.e., the level of confidence688
that the scheduler meets the constraints.689

In this section, various scheduling schemes and their schedulability tests have been given. Recent work in690
process scheduling for multiprocessor and distributed systems is also covered.691

The scheduling problem for the design of hardware/software systems is explained in this report.692
Here it has defined the scheduling in the scenario of embedded systems. Generally speaking, hardware and693

software scheduling problems differ not just in the formulation but in their overall goals. Nevertheless, some694
hardware scheduling algorithms are based on techniques used in the software domain, and some recent system-695
level process scheduling methods have leveraged ideas in hardware sequencing. Scheduling algorithms as applied696
to design of hardware, compilers, and operating systems were explained in chapters 2, 3 and 4 respectively.697

Various process scheduling algorithms have been described. Process Scheduling has to take into account the698
real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data699
dependency, pre-emptivity, priority etc. The way in which these characteristics affect scheduling decisions has700
been described.701

Broadly, the approaches taken to real-time task scheduling are classified into three categories: clock-driven702
scheduling, round-robin scheduling and priority-driven scheduling. Priority driven scheduling can be further703
classified into fixed and dynamic priority scheduling. Also, scheduling schemes are differentiated as preemptive704
and non-preemptive scheduling scheme. The scheduling algorithms found in the literature target the topic of705
scheduling the hybrid of real-time periodic and non-periodic (aperiodic and sporadic) tasks with hard or soft706
deadlines respectively. In literature the work of scheduling covers specific cases of uniprocessor, multiprocessor707
and distributed systems (with identical or heterogeneous processors).708

Clock-driven scheduler schedules the jobs at specific and pre-defined time instants. So, clock-driven scheduling709
is possible for a system that is by and large deterministic. In round robin scheduling, every process gets its share710
of the processor (depending on its weight or priority) when there are n jobs ready for execution. Round robin711
scheduling is very simple to implement but is not suitable for the jobs with precedence constraints. Moreover,712
it may require a very fast processing unit to satisfy timing constraints. Priority-driven scheduling algorithms713
are mostly used because they never leave any processor idle intentionally and therefore often results into better714
processor utilization. Priorities to the tasks can be assigned statically or dynamically. Rate Monotonic (RM) and715
Deadline Monotonic (DM) scheduling schemes are static priority scheduling schemes and Earlier-Deadline-First716
(EDF) and Least-Slack-Time-First (LST) are the examples of dynamic priority scheduling schemes.717

Scheduling scheme for multiprocessor systems has to provide solutions for the problems that arise in718
multiprocessor environments.719

The problems that need to be tackled by the multiprocessor scheduling schemes are: task assignment to720
a processor, Synchronization protocol, load-balancing etc. Also, scheduling scheme for multiprocessor system721
has to take into account the following important factors: memory and resource utilization, deadlock avoidance,722
precedence constraints, and communication delay. Because of these conflicting requirements, development of723
scheduling scheme for multiprocessor system is difficult. 1

1

Figure 1: Fig. 1 :

13

36 IV. SUMMARY AND CONCLUSION

2

Figure 2: Fig. 2 :

Figure 3:

14

Figure 4:

1Year 2017 () © 2017 Global Journals Inc. (US)

15

36 IV. SUMMARY AND CONCLUSION

16

[Kaur and Kinger ()] , Arshjot Kaur , Supriya Kinger . International Journal of Computer Science and724
Information Technologies 2014. 5 (4) p. .725

[Balarin et al. (1998)] , F Balarin , L Lavango , P Murthy , A S Vincentelli . IEEE Design and Test of Computers726
Jan.-March, 1998. 12 (1) . Scheduling for Embedded Real-Time Systems727

[Hamdaoui and Ramanathan (1995)] ‘?A Dynamic Priority Assignment Technique for Streams with (m, k)-Firm728
Deadlines’. M Hamdaoui , P Ramanathan . IEEE Trans. Computers Dec. 1995. 44 (12) p. .729

[Shih et al. (1991)] ‘?Algorithms for Scheduling Imprecise Computations with Timing Constraints’. W. -K Shih730
, J W S Liu , J. -Y. Chung . SIAM J. Computing July 1991. 20 (3) p. .731

[Feng and Liu (1997)] ‘?Algorithms for Scheduling Real-Time Tasks with Input Error and End-to-End Dead-732
lines’. W Feng , JW , -S Liu . IEEE Trans. Software Eng Feb. 1997. 23 (2) p. .733

[Bernat and Burns (1997)] ‘?Combining (n, m) Hard Deadlines and Dual Priority Scheduling’. G Bernat , A734
Burns . Proc. 18th IEEE Real-Time Systems Symp, (18th IEEE Real-Time Systems Symp) Dec. 1997. p. .735

[Dey et al.] ?Efficient on-line Processor Scheduling for a Class of IRIS Increasing Reward with Increasing Service)736
Real-Time Tasks, J K Dey , J Kurose , D Towsley , C M Krishna , M Girkar . Proc.737

[Bertossi and Mancini ()] ‘?Scheduling Algorithms for Fault-Tolerance in Hard-Real-Time Systems’. A Bertossi738
, L V Mancini . Real-Time Systems, 1994. 7 p. .739

[Chung et al. (1990)] ‘?Scheduling Periodic Jobs that Allow Imprecise Results’. J. -Y Chung , J W S Liu , K. -J740
Lin . IEEE Trans. Computers Sept. 1990. 19 (9) p. .741

[Lee et al. ()] A Cost Effective Scheduling with Load Balancing for Multiprocessor Systems, Shu-Ling Lee , Chao-742
Tung Yang , Shian-Shyong Tseng , Chang-Jiun Tsai . 2000. IEEE.743

[Liestman and Campbell ()] ‘A Fault-Tolerant Scheduling Problem’. A L Liestman , R H Campbell . IEEE Trans.744
Software Engg 1988. 12 (11) .745

[Maode and Babak ()] ‘A Fault-tolerant Strategy for Real-Time Task Scheduling on Multiprocessor System’. M746
Maode , H Babak . Proceedings of the 1996 International Symposium on Parallel Architectures, Algorithms747
and Networks (ISPAN ’96), (the 1996 International Symposium on Parallel Architectures, Algorithms and748
Networks (ISPAN ’96)) 1996.749

[Li and Ba (2012)] ‘A group priority earliest deadline first scheduling algorithm’. Q Li , W Ba . Frontiers of750
Computer Science, October 2012. 6 p. .751

[Li et al. ()] ‘A non-preemptive scheduling algorithm for soft real-time systems’. W Li , K Kavi , R Akl .752
Computers and Electrical Engineering 2007. 33 (1) p. .753

[Khan and Rinner ()] ‘A reinforcement learning framework for dynamic power management of a portable, multi-754
camera traffic monitoring system’. U Khan , B Rinner . Green Computing and Communications (GreenCom),755
2012. IEEE. p. .756

[Kim et al. ()] ‘A soft Aperiodic Task Scheduling Algorithm in Dynamic Priority Systems’. H I Kim , S Y Lee , J757
W Lee . Proceedings of the 2 nd International Workshop on Real-Time Computing Systems and Applications,758
(the 2 nd International Workshop on Real-Time Computing Systems and Applications) 1995.759

[Baker ()] ‘A Stack-Based Resource Allocation Policy for Real-Time Processes’. T P Baker . Proceedings of IEEE760
Real-Time Systems Symposium, (IEEE Real-Time Systems Symposium) 1990.761

[Eager et al. ()] ‘Adaptive load sharing in homogeneous distributed systems’. D L Eager , E D Lazowska , J762
Zahorjan . IEEE Trans. On Software Engineering 1986. 12 (5) .763

[Thuel and Lehoczky ()] ‘Algorithm for Scheduling Hard Aperiodic Tasks in Fixed-Priority Systems using Slack764
Stealing’. Sandra R Thuel , John P Lehoczky . IEEE Real-Time Systems Symposium, 1994. IEEE Computer765
Society Press. p. .766

[Ramamritham (1995)] ‘Allocation and Scheduling of Precedence-Related Periodic Tasks’. K Ramamritham .767
IEEE Trans. Parallel and Distributed Systems Apr. 1995. 6 (4) p. .768

[Kim et al. ()] ‘Alternative Priority Scheduling in Dynamic Priority Systems’. H I Kim , S Y Lee , J W Lee769
. Proceedings of the 2 nd IEEE International Conference on Engineering of Complex Computer Systems770
(ICECCS’96), (the 2 nd IEEE International Conference on Engineering of Complex Computer Systems771
(ICECCS’96)) 1996.772

[Sun et al. ()] ‘An Endto-End Approach to Schedule Tasks with Shared Resources in Multiprocessor Systems’.773
Jun Sun , Riccardo Bettati , Jane W S Liu . Proceedings of the 11 th IEEE Workshop on Real-Time Operating774
Systems and Software, (the 11 th IEEE Workshop on Real-Time Operating Systems and Software) 1994.775

[Davari and Dhall ()] ‘An On Line Algorithm for Real-Time Tasks Allocation’. S Davari , S K Dhall . IEEE776
Real-Time Systems Symposium, 1986.777

[Lehoczky and Ramos-Thuel ()] ‘An Optimal Algorithm for Scheduling soft-Aperiodic Tasks in Fixed-Priority778
Preemptive Systems’. John P Lehoczky , Sandra Ramos-Thuel . Proceedings 13 th Real-Time Systems779
Symposium, (13 th Real-Time Systems Symposium) 1992. p. .780

17

36 IV. SUMMARY AND CONCLUSION

[Dhiman et al. ()] ‘Analysis of Dynamic voltage scaling for system level energy management’. G Dhiman , K K781
Pusukuri , T Rosing . Proc. UNISEX Workshop Power Aware Comput. Syst, (UNISEX Workshop Power782
Aware Comput. Syst) 2008.783

[Ghazalie and Baker ()] ‘Aperiodic servers in deadline scheduling environment’. T M Ghazalie , T P Baker .784
Real-Time Systems Journal 1995. 9 (1) p. .785

[Sprunt et al. ()] ‘Aperiodic task scheduling for hard real-time systems’. B Sprunt , L Sha , J P Lehoczky .786
Real-Time Systems Journal 1989. 1 (1) p. .787

[Audsley et al. ()] ‘Applying new scheduling theory to static priority pre-emptive scheduling’. N Audsley , A788
Burns , M Richardson , K Tindell , A J Wellings . Software Engineering Journal 1993.789

[Shin and Hou ()] ‘Design and evaluation of effective load sharing in distributed real-time systems’. K G Shin , C.790
-J Hou . Proc. IEEE Symp. On Parallel and Distributed Processing, (IEEE Symp. On Parallel and Distributed791
essing) 1991.792

[Burns and Wellings ()] ‘Dual Priority Assignment: A Practical Method for Increasing Processor Utilization’. A793
Burns , A J Wellings . Real-Time Systems Symposium, 1993.794

[Davis and Wellings ()] ‘Dual Priority Scheduling’. Robert Davis , Andy Wellings . IEEE Real-Time Systems795
Symposium, 1995.796

[Homayoun and Ramanathan ()] ‘Dynamic A Scheduling Techniques for Operating Systems for Medical and IoT797
Devices: A Review priority scheduling of periodic and aperiodic tasks in hard real-time systems’. N Homayoun798
, P Ramanathan . Real-Time Systems Journal 1994. 6 (2) p. .799

[Silly-Chetto (1999)] ‘Dynamic Acceptance of Aperiodic Tasks with Periodic Tasks Under Resource Sharing800
Constraints’. M Silly-Chetto . IEEE Proc. On Software Engg Apr. 1999. 146 (2) .801

[Chen and Lin (1990)] ‘Dynamic priority ceiling: A concurrency control protocol for realtime systems’. M I Chen802
, K J Lin . Real-Time System Journal Dec. 1990. 2 (4) p. .803

[Schawan and Zhou (1992)] ‘Dynamic Scheduling of Hard Real-Time Tasks and Real-Time Threads’. K Schawan804
, H Zhou . IEEE Trans. Software Eng Aug. 1992. 18 p. .805

[Hamidzadeh and Atif ()] ‘Dynamic Scheduling of Real-Time Tasks, by Assignment’. Babak Hamidzadeh , Yacine806
Atif . IEEE Concurrency 1998.807

[Plata and Rivera (1995)] Dynamic Scheduling on Distributed-Memory Multiprocessors, O Plata , F F Rivera .808
No: UMA-DAC-95/12. June 1995. University of Malaga (Technical Report)809

[Hamidzadeh et al. (2000)] ‘Dynamic Task Scheduling Using Online Optimization’. Babak Hamidzadeh , Ying810
Lau , David J Kit , Lilja . IEEE Transactions on parallel and distributed systems, Nov. 2000. 11.811

[Spuri and Buttazzo ()] ‘Efficient Aperiodic Service under Earliest Deadline Scheduling’. M Spuri , G C Buttazzo812
. Proc. IEEE Real-Time Systems Symp, (IEEE Real-Time Systems Symp) 1994.813

[Ramamritham et al. (1989)] Efficient scheduling algorithms for real-time multiprocessor systems, K Ramam-814
ritham , J A Stankovic , P Shiah . 89-37. April 13. 1989. (Technical Report)815

[Bettati ()] End-to-end scheduling to meet deadlines in distributed systems, R Bettati . 1994. Department of816
Computer Science, University of Illinois at Urbana-Champaign (Ph.D. thesis)817

[Lehoczky and Sha (1987)] ‘Enhancing aperiodic responsiveness in hard realtime environment’. J P Lehoczky ,818
L Sha , JK . IEEE Proc. Real-Time systems Symp, Dec 1987.819

[Euromicro Conference on Real-Time Systems ()] Euromicro Conference on Real-Time Systems, 1999.820

[Sprunt et al. (1988)] ‘Exploiting Unused Periodic Time for Aperiodic Service Using the Extended Priority821
Exchange Algorithm’. B Sprunt , J P Lehoczky , L Sha . Proceedings IEEE Real-Time Systems Symposium,822
(IEEE Real-Time Systems Symposium) Dec 1988.823

[Sanjay and Baruah ()] ‘Fairness in periodic real-time scheduling’. K Sanjay , Baruah . Proceedings of 16 th824
Real-Time Systems Symposium, (16 th Real-Time Systems Symposium) 1995.825

[Baruah et al. (1995)] ‘Fast scheduling of periodic tasks on multiple resources’. S Baruah , J Gehrke , C G826
Plaxton . Proceedings of the 9th International Parallel Processing Symposium, (the 9th International Parallel827
Processing Symposium) April 1995. p. .828

[Liberto et al.] ‘Fault Tolerant Real-Time Global Scheduling on Multiprocessors’. F Liberto , S Lauzac , R829
Melhem , D Mosse . IEEE Proceedings of the 11th,830

[Ghosh et al. ()] ‘Fault-Tolerance Through Scheduling of Aperiodic Tasks on Hard Real-Time Multiprocessor831
Systems’. S Ghosh , R Melhem , D Mosse . IEEE Trans. On Parallel and Distributed Systems 1997. 8 (3) .832

[Pradhan ()] Fault-Tolerant Computing: Theory and Techniques, D K Pradhan . 1986. Englewood Cliffs, N.J:833
Prentice Hall.834

18

[Ghosh et al. ()] ‘Fault-Tolerant Scheduling on a Hard Real-Time Multiprocessor System’. S Ghosh , R Melhem835
, D Mosse . International Parallel Processing Symp, 1994.836

[Joseph and Pandya ()] ‘Finding response times in a real-time systems’. M Joseph , P Pandya . Computing837
Journal 1986.838

[Lehoczky ()] ‘Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines’. John P Lehoczky .839
Proceedings of the Real-Time Systems Symposium, (the Real-Time Systems Symposium) 1990. p. .840

[Mok ()] Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment, A K Mok841
. 1983. (Ph.D. Thesis, MIT)842

[Audsley et al. ()] ‘Hard Real-Time Scheduling: The Deadline-Monotonic Approach’. N C Audsley , A Burns ,843
M F Richardson , A J Wellings . Proceedings of the 8 th IEEE Workshop on Real-time Operating Systems844
and Software, (the 8 th IEEE Workshop on Real-time Operating Systems and Software) 1991. p. .845

[Micheli and Gupta (1997)] ‘Hardware/Software Codesign’. G D Micheli , R K Gupta . Proceedings of the IEEE846
March, 1997. 85 (3) p. .847

[Triki et al. ()] Hierarchical power management of a system with autonomously power-managed components using848
reinforcement learning, M Triki , Y Wang , A Ammari , M Pedram . 2015. Elsevier.849

[Liu et al. (1991)] J W S Liu , K. -J Lin , W. -K Shih , A C S Yu , C Chung , J Yao , W Zhao . ?Algorithms for850
Scheduling Imprecise Computations, May 1991. 24 p. .851

[Shin and Chang ()] ‘Load Sharing in distributed real-time systems with state change broadcasts’. K G Shin ,852
Y. -C Chang . IEEE Trans. On Computers 1989. 38 (8) .853

[Hou et al. ()] ‘Load Sharing with Consideration of Future Task Arrivals in Heterogeneous Distributed Real-Time854
Systems’. Chao-Ju Hou , G Kang , Shin . IEEE Trans. Computers 1991. 43 (9) p. .855

[Sigmetrics (1993)] Measurement and Modeling of Computer Systems, Acm Sigmetrics , Conf . May 1993. p. .856

[Buttazzo (1999)] ‘Minimizing Aperiodic Response Times in a Firm Real-Time Environment’. Giorgio C Buttazzo857
. IEEE Transactions On Software Engineering January/February 1999. 25 (1) .858

[Shih et al. (1993)] ‘Modified Rate-Monotonic Algorithm for Scheduling Periodic Jobs with Deferred Deadlines’.859
W K Shih , J W S Liu , C L Liu . IEEE Transactions on Software Engineering Dec 1993. 19 (12) .860

[Kwon et al. (2015)] ‘Multicore scheduling of parallel real-time tasks with multiple parallelization options’. J861
Kwon , K.-W Kim , S Paik , J Lee , C.-G Lee . IEEE 21 st Real-Time and Embedded Technology and862
Applications Symposium (RTAS), April 2015. p. .863

[Dertouzos and Mok (1989)] ‘Multiprocessor On-Line Scheduling of Hard Real-Time Tasks’. M L Dertouzos , A864
K Mok . IEEE Trans. Software Eng Dec. 1989. 15 (12) p. .865

[Oh and Son ()] ‘Multiprocessor Support for Real-Time Fault Tolerant Scheduling’. Y Oh , S Son . Proc. IEEE866
1991 Workshop Architectural Aspects of Real-Time Systems, (IEEE 1991 Workshop Architectural Aspects of867
Real-Time Systems) 1991.868

[Dhall and Liu ()] ‘On a Real-Time Scheduling Problem’. S K Dhall , C L Liu . Operations Research 1978. 26869
(1) .870

[Davari and Dhall ()] ‘On a Real-Time Task Allocation Problem’. S Davari , S Dhall . Proc. of 19 th Annual871
International Conference on System Sciences, (of 19 th Annual International Conference on System Sciences)872
1986.873

[Jeffay et al. ()] ‘On Non-Preemptive Scheduling of Periodic and Sporadic Tasks’. Kevin Jeffay , Donald F Stanat874
, Charles U Martel . Proceedings of the 12 th IEEE Symposium on Real-Time Systems, (the 12 th IEEE875
Symposium on Real-Time Systems) 1991. p. .876

[Leung and Whitehead ()] ‘On the complexity of fixed-priority scheduling of periodic real-time tasks’. J Y T877
Leung , J Whitehead . Performance Evaluation 1982. 2 p. .878

[Gutierrez et al. (1997)] ‘On the schedulability analysis for distributed hard real-time systems’. J C P Gutierrez879
, J J G Garcia , M G Harbour . Proceedings of Euromicro Workshop on Real-Time Systems, (Euromicro880
Workshop on Real-Time Systems) June 1997. p. .881

[Ramos-Thuel and Lehoczky ()] ‘On-line Scheduling of Hard Deadline Aperiodic Tasks in Fixed-Priority Sys-882
tems’. Sandra Ramos-Thuel , John P Lehoczky . Proceedings of 1 4 th Real-Time Systems Symposium, (1 4883
th Real-Time Systems Symposium) 1993. p. .884

[Kwang et al. ()] ‘On-line Scheduling of Real-Time Tasks’. S Kwang , Hong , Y-T Joseph , Leung . IEEE885
Transactions on Computers 1998. 41.886

[Dey et al. (1996)] ‘On-line scheduling policies for a class of IRIS (Increasing Reward with Increasing Service)887
real-time tasks’. J K Dey , J Kurose , D Towsley . IEEE Transactions on Computers July 1996. 45 (7) .888

19

36 IV. SUMMARY AND CONCLUSION

[Buttazzo and Sensini ()] ‘Optimal Deadline Assignment for Scheduling Soft Aperiodic Tasks in Hard Real-889
Time Environment’. Giorgio C Buttazzo , F Sensini . Proceedings of 3 rd IEEE Conference on Engineering890
of Complex Computer Systems (ICECCS’97), (3 rd IEEE Conference on Engineering of Complex Computer891
Systems (ICECCS’97)) 1997. p. .892

[Buttazzo and Sensini (1999)] ‘Optimal deadline assignment for scheduling soft aperiodic tasks in hard real-time893
environments’. G C Buttazzo , F Sensini . IEEE Transactions on Oct. 1999. (10) p. .894

[Aydin et al. (2001)] ‘Optimal Reward-Based Scheduling of Periodic Real-Time Tasks’. Haken Aydin , Rami895
Melhem , Daniel Mosse , Pedro Mejia-Alvarez . IEEE Transactions on Computers Feb. 2001. 50 (2) .896

[Rajkumar et al. (1999)] ‘Priority Inheritance Protocols: An Approach to Real-Time Synchronization’. ShaL ,897
R Rajkumar , J P Lehoczky ; Hui , Zhou . Satoshi Fujita, Sep. 1999. 32. 2000. IEEE. 39. (Multiprocessor898
Scheduling Problem with Probabilistic Execution Costs)899

[Baruah et al. ()] ‘Proportionate Progress: A Notion of Fairness in Resource Allocation’. S K Baruah , N K900
Cohen , C G Plaxton , D A Varvel . ACM Symposium on Theory of Computing, 1994.901

[Goodenough ()] ‘Real-Time Scheduling Theory and Ada’. ShaL , J B Goodenough . IEEE Computer 1990.902

[Rajkumar et al. ()] ‘Real-Time Synchronization Protocols for Multiprocessors’. Ragunathan Rajkumar , Lui Sha903
, John P Lehoczky . Proceedings of the, (the) 1988.904

[Real-Time Systems Symposium ()] Real-Time Systems Symposium, 1988.905

[Yue et al. ()] ‘Reinforcement Learning Based Dynamic Power Management with a Hybrid Power Supply’. S Yue906
, D Zhu , Y Wang , M Pedram . IEEE 30th International Conference, 2012. 2012. p. . (Computer Design907
(ICCD))908

[Trikil et al. ()] ‘Reinforcement Learning-Based Dynamic Power Management of a Battery-Powered System909
Supplying Multiple Active Modes’. M Trikil , A C Ammari , Y Wang , M Pedram . European Modelling910
Symposium (EMS), 2013. p. .911

[Spuri et al.] Robust Aperiodic Scheduling under Dynamic Priority Systems, Marco Spuri , Fiorgio Buttazzo ,912
Fabrizio Sensini . IEEE Real-Time Systems913

[Ramamritham and Stankovic] Scheduling algorithms and operating systems support for Real-Time Systems, K914
Ramamritham , J A Stankovic . University of Massachusetts915

[Liu et al. (1991)] ‘Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment’. Layland ;916
Liu , Philip J Christopher , Apostolos Dollas . 1973. 10. Proceedings of the IEEE, (the IEEE) Nov. 1991.917
(Knowledge Based Process Scheduling on Symmetric Multiprocessors)918

[Spuri and Buttazzo ()] ‘Scheduling Aperiodic Tasks in Dynamic Priority Systems’. M Spuri , G C Buttazzo .919
Journal on Real-Time Systems 1996. 10 (2) .920

[Kim et al. ()] Scheduling of hard Aperiodic Requests in Dynamic Priority Systems, H I Kim , S Y Lee , J W Lee921
. 1995. IEEE.922

[Sanjay and Baruah ()] ‘Scheduling Periodic Tasks on Uniform Multiprocessors’. K Sanjay , Baruah . Proceedings923
of the 12 th Euromicro Conference on Real-Time Systems, (the 12 th Euromicro Conference on Real-Time924
Systems) 2000. 2000.925

[Xu and Parnas (1990)] ‘Scheduling Processes with Release Times, Deadlines, Precedence, and Exclusion926
Relations’. J Xu , L Parnas . IEEE Trans. Software Eng Mar. 1990. 16 (3) p. .927

[Davis et al. ()] ‘Scheduling Slack Time in Fixed Priority Pre-emptive Systems’. R I Davis , K W Tindell , A928
Burns . Proceedings of Real-Time Systems Symposium, (Real-Time Systems Symposium) 1993.929

[Jeffay (1992)] ‘Scheduling sporadic tasks with shared resources in hard real-time systems’. K Jeffay . Proceedings930
of the 13th IEEE Real-Time Systems Symposium, (the 13th IEEE Real-Time Systems SymposiumPhoenix,931
AZ) December 1992. p. .932

[Singh] Scheduling Techniques for Real-Time Application Consisting of Periodic Task Sets, H Singh . (IEEE933
1994)934

[Caccamo et al.] ‘Sharing Resources among Periodic and Aperiodic Tasks with Dynamic Deadlines’. M Caccamo935
, G Lipari , G Buttazzo . Proceedings of the 20 th IEEE Real-Time Systems Symposium, (the 20 th IEEE936
Real-Time Systems Symposium)937

[Chetto and Chetto (1989)] ‘Some results of the earliest deadline scheduling algorithm’. H Chetto , M Chetto .938
IEEE Transactions on Software Engineering October 1989. 15 (10) p. .939

[Gajski and Vahid ()] Specification and Design Design and Test of Computers, D D Gajski , F Vahid . 1994. 11940
p. .941

[Sun and Liu ()] ‘Synchronization Protocols in Distributed Real-Time Systems’. J Sun , J Liu . 16 th International942
Conference on Distributed Computing Systems, 1996.943

20

[Too-Seng Tia and Liu ()] Task and Resource Assignment in Distributed Real-Time Systems, Jane W S Too-Seng944
Tia , Liu . 1994. Parallel and Distributed Real-Time Systems945

[Strosnider and Sha (1995)] ‘The deferrable server algorithm for enhanced aperiodic responsiveness in hard real-946
time environments’. Lehoczky Strosnider , L Sha . IEEE Transactions on Computers Jan 1995. 44 (1) .947

[Lehoczky et al. ()] ‘The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average Case948
Behavior’. J P Lehoczky , L Sha , Y Ding . Proceedings of the 10 th IEEE Symposium on Real-Time Systems,949
(the 10 th IEEE Symposium on Real-Time Systems) 1989. p. .950

[Zeng et al. ()] ‘Towards the design of fault-tolerant mixed-criticality systems on multicores’. L Zeng , P Huang ,951
L Thiele . Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded952
Systems, CASES ’16, (the International Conference on Compilers, Architectures and Synthesis for Embedded953
Systems, CASES ’16New York, NY, USA) 2016. 6 p. .954

[Audsley (1990)] ‘University of York, Dec. 91. 58. Rajkumar R, ”Real-Time Synchronization Protocols for Shared955
Memory Multiprocessors’. N C Audsley . IEEE Proc. on Dist. Computing systems Jun 1990. 164. (Dept. of956
Comp. Sci.)957

[Lin et al. (1987)] ‘Utilizing Partial Computations in Real-Time Systems’. K. -J Lin , S Natarajan , J W S Liu ,958
Results . Proc. Eighth IEEE Real-Time Systems Symp, (Eighth IEEE Real-Time Systems Symp) Dec. 1987.959
p. .960

[Lopez et al. ()] ‘Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor Systems’. J M961
Lopez , M Garcia , J L Diaz , D F Garcia . Proceedings of the 12 th Euromicro Conference on Real-Time962
Systems, (the 12 th Euromicro Conference on Real-Time Systems) 2000. 2000.963

21

	1 Introduction
	2 ii. Scheduling in Different
	3 I
	4 a) Real-time System
	5 b) Characteristics of the Real-Time Tasks
	6 Response time:
	7 Slack time: Time difference between execution time and the deadline ii. Periodic Task Model
	8 iii. Aperiodic and Sporadic Tasks
	9 c) Process Scheduling Techniques
	10 c. Feasible Schedule
	11 d. Optimal Scheduling or Scheduler
	12 e. Static Scheduling Algorithm
	13 f. Dynamic Scheduling Algorithm
	14 g. Mixed Scheduling Algorithm
	15 ii. Definition of Scheduling Problem
	16 a. Schedulability Analysis
	17 b. Performance Analysis of Scheduling Algorithms
	18 d) Approaches Taken to Real-Time Scheduling
	19 i. Static and Dynamic Task Scheduling
	20 ii. Preemptive vs. Non-preemptive Scheduling
	21 iii. Clock-driven Scheduling
	22 iv. Weighted Round Robin Scheduling
	23 Non-preemptive scheduling algorithms are
	24 v. Priority Driven Scheduling
	25 vi. Static or Fixed Priority Scheduling Algorithms
	26 b. Deadline Monotonic Priority Assignment
	27 Computation time <= deadline <= period
	28 c. Related Work
	29 d. Scheduling Non-Periodic Tasks in Fixed Priority
	30 vii. Dynamic Priority Scheduling Algorithms: EDF, LST
	31 b. Scheduling Problem Definition for Multiprocessor Systems
	32 c. Inter-Processor Synchronization Protocols
	33 d. Load Sharing Algorithms
	34 e. Fault Tolerant Scheduling
	35 f. Related Work
	36 iv. Summary and Conclusion

