
© 2017. Igor N. Skopin. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: A
Hardware & Computation
Volume 17 Issue 1 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Tool Support of Developing Systems Simulation with Active Elements
By Igor N. Skopin

Abstract- In this paper we propose and discuss a new approach to the simulation of developing
systems is proposed and discussed. The base of the approach is idea of independent
development of the so-called aspect models, whose interconnections are provided by
computational environment toolkit. The main feature of the approach is the abandonment of
postulate of the deterministic behavior of systems if they develop due the activity of event-driven
elements behavior. We discuss their initial requirements for the tool support of the proposed
approach.
Keywords: developing systems, active element, attributive representation, the aspect model,
simulation, multi-aspect, multidimensional nature, multiple structures, tool support.

GJCST-A Classification: I.6.1, I.6.6, I.6.7

ToolSupportofDevelopingSystemsSimulationwithActiveElements

Tool Support of Developing Systems Simulation
with Active Elements

Igor N. Skopin

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

45

Y
e
a
r

20
17

 (

)
A

Author: Institute of Computational Mathematics and Mathematical
Geophysics of SB RAS. e-mail: iskopin@gmail.com

Abstract- In this paper we

Keywords: developing systems, active element,
attributive representation, the aspect model, simulation,
multi-aspect, multidimensional nature, multiple
structures, tool support.

propose and discuss a new
approach to the simulation of developing systems is proposed
and discussed. The base of the approach is idea of
independent development of the so-called aspect models,
whose interconnections are provided by computational
environment toolkit. The main feature of the approach is the
abandonment of postulate of the deterministic behavior of
systems if they develop due the activity of event-driven
elements behavior. We discuss their initial requirements for the
tool support of the proposed approach.

I. Introduction

he study of developing systems, whose behavior
depends on the individual activity of their elements,
is urgent for a wide range of research. From a

practical point of view, it is important to have such
control over the behavior of the system, which allows
you to direct development to the right conditions for
development and to limit undesirable ones. However, in
most approaches to the study and design of systems, it
is difficult to take into account the individual activity of
the elements. This is due to the fact that the main focus
of the developers is to search for a common
deterministic development principle, whereas such
principles are not reflected in the individual activities of
the elements.

A problem in research into developing systems
with active elements is the accounting for the behavior
of elements not only in this system but also in other
important aspects. This multi-aspect activity may
contradict the object model of a system, and developers
usually regard it as external non-controllable impact.
Objectives of the behavior of an element rarely
correspond to the system development objectives, and
so it is difficult to reflect the involvement of the element
in other activities in the model of the system. But this
changes the activity of the element. Trying to avoid the
complexity of multi-aspect properties one can build
different models for different aspects. However, this way

T

brings about no less complicated problem of adjoining
models.

The proposed approach is intended to
overcome both a postulate of determinism and
difficulties of multidimensional nature. One can consider
it as a version of the discrete-event simulation proposed
in the 1960s by J. Gordon [1]. In the most developed
form it is presented in the programming methodology in
Simula [2] and Simula 67 [3] languages. Unlike a
traditional to use the global (linear) ordering of events in
controlling a computation, we refuse from this
determination that mostly admitted to optimize
computer cost. We consider the support of autonomous
modeling of aspects as another feature of our approach
thus making it associated with the so-called aspect-
oriented programming [4]. In this case, the difference is
that following our proposals, one should provide the
support of aspect features by a specialized design and
computation environment as well as the pre-fixed
representation of model elements.

Conceptually close to our approach is the
development of the so-called multi-agent systems
(MAS) [5]. One of the Russian researchers and
developers in this area P.O. Sobolev says: “The key
element of these systems is a program agent that can
perceive the situation, to make decisions, and to
communicate with other agents. These capabilities
dramatically distinguish MAS from existing rigidly
organized systems providing them with such an
important new feature as self-organization. In this case,
separate parts of the program can agree on how a
problem should be solved. The parts acquire their
activity and can initiate a dialogue with the user in
advance at not prescribed times. They can work in
conditions of uncertainty and offer clarification and
reformulation of tasks, etc.” [6]. The abandonment to
find a deterministic principle, which allows identification
of the best solution, the agent’s activity with their
purposeful behavior, the focus on operations with
developing systems are a common concept for both
approaches.

However, outside the multi-agent approach,
there remains a problem of supporting the mutual
influence aspects. The information affecting the behavior
of an agent came from its environment and transferred
for the use by other agents. But this is not an
independent construction of mutually depended aspect
models supported by tools. We declare this position in

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

46

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Tool Support of Developing Systems Simulation with Active Elements

our approach as one of the main requirements. At the
same time, methods of constructing multi-agent
systems are applicable in our case, especially in
defining the behavior of agents. For our approach, there
is a very valuable information about organizing the
functioning of the agent computing environment and
support toolkit (an example of this kind of a system is
REPAST [7]).

In the first part of this paper, we present
characteristic features of the approach and show how
one can attain the declared capacities. The second part
discusses the requirements for the toolkit support of the
approach. The desired tool should be appropriate to
develop and to perform simulations of models, data
collection, storage, and processing of information in the
course of studying a system.

II. Characteristic Features of the
Approach

a) Model System, Simulation, and Events
We are speaking about a model of the system

as an abstract notion, without being tied to any
meaningful interpretation. The system consists of
elements whose actions change some characteristics of
the elements themselves and the system as a whole.
This is the behavior of the real system. In the model
system, we represent these characteristics as attributes
of elements. Their change in the course of calculation
one can interpret as the model simulation of the system
behavior or functioning of the system.

A value of element attribute is modified only as
a result of program action execution if the operational
context of a program includes a mutable attribute. We
postulate that all actions are methods of elements (in
the sense of object-oriented programming [8]), and
operational contexts form from all available elements
and their attributes. The action-method which carries out
an element is the manifestation of its activity in the
simulation system through the model calculations. We
do not impose restrictions on how described the
programs of element actions, and the only thing that we
require is a single unified attributive representation of all
elements as common basis of description of action.

Elements can be linked, which is understood as
the presence of binary relationship (of any nature),
reflecting the relations in the real system. Due to the
links a set of all elements of the model system receives
the network structure. The links are a kind of attributes:
they allow the element methods to access to the
attributes associated with this element. This provides the
opportunity to use and modify the attribute values
(including links) and to influence the actions of the
elements available by the links. An element can give rise
to other ones, associated with the parent element, add
relationship ties, or remove them according to
requirements of modeling. It may deny all links of an

element, that one can interpret as destruction of the
latter. All these activities develop a network of the model
system.

It is convenient to assume that there is allotted
element for indicating the system as a whole. It has the
especial attributive representation which allows one to
distinguish between the external impacts and changes
of attributes of the system. The allotted element receives
ties with all other elements of the system. It is not
necessary that allotted element had its prototype in a
real system.

Any action of the model system runs as a
response to some event that occurs during the
simulation. The event-driven mechanism, used in the
approach proposed, reflects Hoare’s conception [9],
according to which any change in the model system is
an event if there are elements that recognize it. If this is
true for such an element, one of its actions executes.
Execution of this action is called the reaction to the
event.

The types of all events are determined in
advance, but a set of event types to which the element
can react is formed in the dynamics of calculations
(while carrying out this or other element action). A
current set of the types of recognizable events is called
status of the element. We consider that the status of the
element is set as a particular attribute that coding the
set of the types of events. Knowing the value of this
attribute, one can always find all types of the events that
the element can recognize. In the correctly constructed
attributive representation opposite is truth too. If this
condition fails, then it is deemed to have violated the
integrity of the attributive representation of the element.
Response to a joint event that is recognized by several
elements is executed jointly and asynchronously. This
allows demarcating parallel execution of actions. They
execute as usual parallel processes in own threads.
Processes management of threads uses conventional
means. They coordinate several reactions of elements.
Following Hoare [9], we consider that the recognition of
an event is an instant action, but in the reaction
execution, it is possible that other events may occur to
which the element should respond.

In the event-driven mechanism we can define a
protocol of element behavior as a sequence of triples:
(<element status>, <event to which it responds>,
<element reaction>). In such a notion, we define the
behavior of the model system as a collection of all
protocols of elements glued on the joint recognized
events. This set determines a partial order on all the
events occurred, where each included protocol is a
linear chain. It is natural to consider a protocol of an
element (more precisely, a sequence of its events) as
element local time. In this case, we offer the mentioned
partial order on all events to consider as a correctly
determined global time of the model system. Here, by
correctness we mean the most accurate information

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

47

Y
e
a
r

20
17

 (

)
A

Tool Support of Developing Systems Simulation with Active Elements

about relations for events earlier, later, unknown when. In
the concept of model time there is no inaccuracy, which
is typical for the commonly used time. Instead of the
desired accuracy, the temporal relations are usually
determined arbitrarily. We do not exclude the possibility
of such a refinement, but we always insist that
simulation of developing systems requires an accurate
definition of the concept of time. Details on the local and
global time one can found in [10]. Note that our
understanding of time differs from that used in discrete
events and multi-agent systems.

b) Multi-aspects, Structure of a System, and Attribute
Representation of Elements

The behavior of elements in a real system
involves the activities in various aspects of functioning.
On the model level describe this, one can build models
of all important aspects. They are the so-called aspect
models. However, because of the problems of
harmonizing the aspect models, developers are often
limited to building a common model of the system. In
our approach, we offer the support for independent
aspect modeling and dynamics of mutual influence of
aspect models in the simulation calculations that are
common to all or several of these models.

The aspect model defines the structure of a set
of elements, and their relations called the aspect
structure. It is a part of the model system network. The
model system We consider the modeling system as the
union of all its aspect structures. When constructing
aspect models is provided a joint and equitable co-
existence of aspect structures (we call this feature
multiplicity of system structures [11]), it is possible to co-
operate all or selected aspect models (including one
model). To ensure such an operation with aspect
structures, we consider it necessary to use a
standardized format for attributive representation of
elements. This format provides for splitting the
representation into blocks related to each of the aspect
structures. These blocks are called the aggregate of
aspect attributes. Each aggregate contains the data
assigned to this structure, current status, as well as
methods of aspect actions. The combination of all
aggregates contains all information about any of the
aspect models.

The necessity to distinguish between the
aggregate of attributes related to different aspects
follows from requirements to the standardized attribute
representation of elements. These requirements also
mean that the activity of an element is an aspect
property: ability to affect the system as a whole through
the actions related to an aspect. In our approach, the
construction of aspect models takes into account the
fact that a user operating on some element has access
to others only through references to them, and access
to attributes of other aspects is allowed for the type of

this element. This limitation leads to independence of
constructing each aspect model from its environment.

c) Horizontal and Vertical Modeling of a System
As a model of a system, we consider a set of all

aspect models whose joint simulation forms the
characteristics of a system represented among the
attributes of an indicating element. To test various
hypotheses concerning the control of the simulated
system, one can use the truncated joint simulation. In
this case, he chooses for calculations not all possible
models and establishes the lack of influence on their
behavior through external actions. This use of aspect
models is called horizontal modeling of the system.

From the standpoint of horizontal modeling,
implementing the behavior of all aspect models is not
necessary. For all unrealized aspect models, you need
to present elements that replace missing
implementations. Each such element must ensure the
generation of events adequate to the required behavior
of the aspect model. Thus, the replacement element will
create conditions for the functioning of other aspect
models. It would be naive to expect that the model of
the system, constructed using replacement elements for
aspects, will be adequate to the real simulated
processes. But due to the addition of the replacement
elements with programs reflecting real aspect behavior,
the quality of modeling will grow. Note that in this way it
is possible to build various versions of aspect programs,
and, as a consequence, to test different versions of
modeling the real system for selecting the best of them.
In particular, when modeling aspects, the developer can
use concepts that are different from the agreements of
our approach. In this case, she/he must ensure that the
proposed development of the model system is
coordinated only at the interface level. Otherwise, it will
be necessary to ascertain the conceptual incompatibility
of approaches. In fulfilling this condition, one can pose
the problem of replacement of aspectual models with
real data from external sources. This brings our concept
to the level of real-time systems for making
management decisions. Leaving out details, let us note
that the widespread use of a similar approach in
practical applications of multi-agent systems (see, for
instance, [6]) indicates to its effectiveness in our case as
well.

The element representing the model of the
system as a whole differs from the other elements only
in that it alone interacts with the external environment of

The event generation is global in the sense that
a created event is accessible for the response of
elements in any aspect models. The recognition of an
event and the response of an element to it are local, i.e.
they are represented in a certain aspect model. It is
possible that the element response to one event in
several models, but this means only the occurrence of
several independent reactions.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

48

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Tool Support of Developing Systems Simulation with Active Elements

the model. The environment affects the system,
generating corresponding events, to which only it
responds, and receives information about the model
behavior only from it. We can consider the environment
of our model as a some supersystem in which our
system is an integral part. And for this additional
modeling, the element representing our system, is a
usual an active element in its horizontal model, i.e., in
the new model of a higher level. To meet different needs,
one can build different supersystems, which in turn, one
can use as active elements of models of even higher
levels. Thus, the multilevel modeling can be a source of
aggregated data for the hierarchical control in various
areas. Such a kind of modeling is called vertical. As in
the case of the horizontal modeling, this approach
allows for the replacement of models with real data.

d) Groups of Elements, Subsystems, and Operation
with Groups

One can distinguish meaningfully related groups
of elements in the model system, which sometimes it is
convenient to consider as independent ones.
Sometimes one can consider a set of attribute
descriptions of the elements of the group as the model
of a subsystem, but it is not quite accurate: a system
(and a subsystem) is not reduced to a sum of its parts.
So, it is needed to speak about own attributes of a
subsystem, i.e., the subsystem receives the status of the
element affecting the behavior of the system as a whole.
This formal status we may regrade as a definition: an
element indicating a group (i.e., it is linked with all the
group elements by a specifically prescribed relation,
called grouping) and all elements of the group are called
subsystem. The grouping relation is dynamic because
the element belonging to a group, as well as its
connection with the element indicating the subsystem
can vary.

Attributes of a subsystem are formed both by
their behavior (actions of its elements) and under the
influence of the behavior of other elements that provide
an external information for the subsystem. In particular,
the links occurring in a subsystem as relations with
external elements are set for the subsystem as a whole,
and it can re-direct them to their elements. At the same
time, this does not exclude the possibility of
independent recognition of events using its elements.
On a set, consisting of groups, including also the
groups composed of all the elements of each aspect
structure we define set-theoretic operators: intersection,
union and supplement. Their results can be considered
as groups. They are sometimes interpreted in terms of
their behavior.

We formally introduce the operator called
convolution of subsystem. Its performance is the
replacement of the interaction of the subsystem
elements with the environment by the interaction of
element indicating the group (subsystem). In this case

generation of events to them are transferred from the
subsystem elements to the element indicating the
subsystem. A convolution subsystem can be considered
as a black box, whose inputs provide information
produced by the subsystem reactions to events and
outputs are presented by generation of events from the
subsystem, providing information for the environment.
But such a consideration is not quite correct: every
subsystem, being formed in some aspect, cannot
screen from its elements belonging to other aspect
models.

Convolution can be used in the top down
construction of models, starting with the upper level,
gradually refining the models by revealing the
subsystem-elements structure. It fits for localization of
models that are beyond our approach developed, but
adequate for certain processes and can be coordinated
with events of the system. However, it is should be
noted that convolution is applicable only in the cases
when there is not information about the individual
behavior of the subsystem elements.

III. Initial Requirements of Tools

The approach proposed to studying or
developing systems is aimed at designing the
supporting toolkit. We present it as a software package,
whose facilities are referred to the three categories:

• Ensuring the dynamic simulation;
• Control of simulation, collection and processing of

simulation results;
• Facilities for models development.

The simulation of every aspect model can be
implemented with the use of a variety of algorithm,
including external ones for our toolkit. Therefore, it is
necessary that our toolkit be an open software system.
Only incompatibilities of interfaces can prevent the use
of external computational models. This is a common
requirement for all the three categories.

a) Ensuring the Dynamic Simulation
Active elements and the autonomy of their

behavior in each aspect model, as well as the mutual
effect of models require that each element should be
defined as a separate computational process that is
running in a separate thread. Each process has a local
memory, which is filled up with data of attributive
representations of the element. In our approach the
event-driven technique does not require the shared
memory of different processes. If a shared memory is
necessary, one can provide auxiliary elements, whose
processes are responsible for the delivery of information
to basic processes on demand. Of course, this does not
exclude the possibility of optimizing the main
mechanism on the system level: for statically computed
cases of operations with events, it is possible to replace
reactions by a direct call of the respective methods (this

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

49

Y
e
a
r

20
17

 (

)
A

Tool Support of Developing Systems Simulation with Active Elements

optimization technique is discussed in Section 3.5
of [12]).

The event-driven communication of processes
(methods of elements) ensures the transfer of
information between processes through the messages
associated with events. The messages contain data
formed by the elements that generate the events. Using
messages, it is possible to transmit specific data as well
as links to the attributive representations of various
elements. Thus, there is a possibility of the direct effects
of elements on each other. Such effects, generally
speaking, may be incorrect if one does not take care of
matching synchronization. On the attributive
representations level there should be an access system
enabling/disabling flags, dynamic priorities, and other
well known features to support the matching of
communicating processes [9].

Thus, the parallel and asynchronous execution
of processes of elements of the model is realized, if
necessary, they coordinate and synchronize the joint
reactions controlled by a conventional technique of
parallel computing. A specific feature of the simulation
requires that the number of threads involved in the
simulation, be sufficiently large. Therefore, our support
toolkit requires of the modern high performance
hardware architecture. On the other hand, at least for
the first versions of the system, whose one of the main
objectives should be working out the methodology of
modeling, it is reasonable to choose an existing
universal system with parallel computing as the
technical and program environment of the simulation.
So, it is sensible to develop our toolkit as a specific
amplification of the chosen system. Promising in this
regard is the system [13], whose users are provided
with the opportunity to adapt algorithms to specific
features.

b) Control of Simulation, Collection and Processing of
Simulation Results

The control of simulations is used to give the
user feature to influence the calculations in order
understanding the significance of model factors. Such
control is considered as a part of an event-driven
technique. We establish that all elements recognize a
special event of simulation named as pause and may
response to it, maintaining their status for re-starting the
activity in the future. A pause allows one to receive the
current information about calculation, to change some
parameters of models, to add or to delete elements and
to specify their relationships. At the time of pause, to all
elements is assigned a special state in which they
respond to a single event named as resumption of
modeling.

Through a series of pauses, monitoring of
system behavior can be arranged, i.e. user can obtain
information about changes in the structure, build of
element protocols, and collect integral characteristics.

This information may be used for the results processing.
For comparison of the simulation versions options for
saving the suspended configurations of the simulated
system in the repository are provided. Standard facilities
of version control (see, for example, [14]) are
supplemented with options selection according to
integral characteristics.

There is no need to develop special means for
the simulation results processing, because today the
software market offers a variety of advanced products
for this purpose (see, for example, [15]). A good
solution is to focus on the features associated with
potentiality of the above mentioned support system of
parallel programming [13].

c) Facilities for Models Development
The proposed toolkit should provide tools for

building and editing models. First, there are editors for
adding and deleting elements of the model, modifying
their attributes, etc. Editing should be followed by
validation. In preparing the initial configuration of a
model system or its modification during a pause, as well
as in the course of the simulation calculation, we need
integrity control of models, which prohibits an incorrect
configuration of simulation. In particular, the initial
configuration should be realistic. If an algorithmic
verification of the tolerance of simulation is not possible,
we provide the user control of configurations.

Modeling and support of simulation are based
on appropriate means to visualize structures. Different
structures of a set of elements should be coordinated. In
the model design and monitoring of simulations, an
element should be shown jointly in all the structures. The
choice between the removal and preservation of
elements in different structures should be known for the
correct decision-making. Structures of different aspect
models should be highlighted in different colors.
Visualization of a modeling process must support the
correctness of constructions.

A set of development tools to support different
strategies for modeling should support different
strategies of design. In particular, we offer the support of
bottom-up and top-down modeling strategies.

In the bottom-up strategy, building of each
aspect model is started from construction of a primary
set of basic elements. Each type of elements is provided
with a certain attribute representation. At first, methods
of element actions are given as dummy routines. Later
on should be refined in developing the aspect model.
Specifying the links is needed to determine their
properties as relations and permissions of an access of
element to other ones. In this case it may be required to
add new types of elements, for instance, in forming
subsystems.

In the top-down strategy, development of an
aspect model begins with subsystems and their
elements indicating the subsystems. The subsystems

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

50

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Tool Support of Developing Systems Simulation with Active Elements

are supplemented with new basic elements or a set of
already-prepared elements. The new or refined existing
elements are described in the same manner as just as in
the bottom-up strategy.

In both cases, the development of models
should be supported by tools of tracing the life cycles of
elements, reflecting the degree of readiness of their
attribute representation. The life cycle of an element
class is considered complete when the path from the
original class to its readiness to use to generate the
elements is traversed, and all conditions for the
correctness of the descriptions of each aspect model
are provided.

After the aspect models are constructed, are
coordinated the influences of the aspect actions on the
behavior of other models. This process can result to the
identification of classes, refinement of the behaviors of
aspect models, and other modifications of the
descriptions of classes, that aimed at ensuring the
correctness of the horizontal model of the system.

The process of designing and using model
systems should be provided by system-wide means of
supporting development, as well as managing model
calculations. Discussion of this aspect of the proposed
toolkit is beyond the scope of this paper. Nevertheless,
it should be noted the main requirement for a set of
developer tools, without which the expectation of the
advantages of using the concept presented above will
not justify itself. This is the fullness and integrity of
support for user activity. The requirement concerns both
the functionality of the software system and its interface:
it should be ensured adequate reflection in the interface
of all the features associated with the creation and using
of models. The problems associated with the
requirement of interface completeness and the
possibilities for their solution were discussed in [16]. In
[17] we proposed a technique that can be used to
create interfaces that meet the requirement of fullness
and integrity.

IV. Conclusion

The proposed approach for studying
developing systems is aimed at supporting the
development of models and fulfillment of a series of
simulations for obtaining information useful in study the
real systems. The work related with this processes is
very laborious. It requires analysis of input data and
different variants of system behavior, the identification of
significant aspects and the construction of aspect
models. So we propose the approach to creation of a
tool support to ensure the development of models,
carrying out calculations, performance control,
management of simulations, collecting and processing
of results. Depending on the purpose of such tools, its
architecture and modeling support capabilities can be
very different. Therefore, we confine ourselves to

discussing only key concepts. Nevertheless, it is
appropriate to note a number of aspects of developing
the toolkit to support the development of models, as a
software system, the quality of implementation of which
essentially affects its usefulness. These issues are
discussed in detail in [18], where, in particular, we point
out the need for instrumental support for the
development and use at all stages of setting and solving
the problem of mathematical modeling.

In this paper, we did not dwell on issues of the
input and output of information, and only in passing
discussed outlined the mechanism for monitoring the
simulation pauses. These are important points for the
real use of model complexes and they should be solved
at the next stage of design. In principle, these problems
are solvable, but it seems reasonable to give concrete
proposals for these issues based on a detailed analysis
of subsequent further requirements.

We should mention the issues of computational
complexity of simulation, which are associated with our
approach as applied to practical tasks. Multithread
execution of the elements actions, event-driven
technique, etc. require high performance computing. In
this regard, our project should incorporate the use of
existing general means as well as development of
special facilities of the architecture-dependent
optimization. To improve the performance of the
simulation, the adaptive software platform should be
used. Although this task is beyond the scope of our
discussion, we note that it must be solved in a more
general context, implying the organization of parallel
computations. In this connection, the use of the above-
mentioned system [13] seems a reasonable solution.

Acknowledgment

The article presents the work that is supported
by the grant RF RSF № 14 11 00485 “High-performance
methods and technologies of electro physical processes
and devices modeling”.

References Références Referencias

1. T. J. Schriber. Simulation using GPSS. — New York,
Wiley. 1974.

2. O.J. Dahl and K. Nygaard. SIMULA – A language for
programming and description of discrete event
systems. Introduction and user's manual. NCC, Sept.
1967.

3. O.J. Dahl, B. Myhrhaug and K. Nygaard. SIMULA 67
Common Base Language. NCC, May 1968.

4. G. Kiczales, О. Lamping, A. Mendhekar and other.
Aspect-oriented programming http://citeseerx.ist.
psu.edu/viewdoc/similar?doi=10.1.1.115.8660&type
=ab

5. M. Wooldridge, An Introduction to Multi-Agent
Systems. — John Wiley & Sons Ltd, 2002,
paperback, 366 pages, ISBN 0-471-49691-X.

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

51

Y
e
a
r

20
17

 (

)
A

Tool Support of Developing Systems Simulation with Active Elements

6. P.O. Skobelev. Holistic approach to the creation of
open multi-agent systems — Proceedings of the 3rd
International Conference on control and modeling of
complex systems, Samara: SSN RAS, 2001, p.
147 – 160 (in Russian).

7. REPAST: Recursive Porous Agent Simulation Toolkit.
http://repast.sourceforge.net/.

8. G. Booch. Object-Oriented Analysis and Design with
Applications. Addison-Wesley. 2007. ISBN 0-201-
89551-X

9. C. A. R. Hoare. Communicating Sequential
Processes. — Prentice-Hall International.
Englewood Cliffs, New Jersey, 1985.

10. I.N. Skopin. Local and global time in modeling
developing systems. — In Proceedings of the 7th
Ershov International Conference “Perspectives of
System Informatics”, Workshop on Science
Intensive Applied Software. Novosibirsk, 2009,
p. 254–259 (in Russian).

11. I.N. Skopin. Hierarchy and developing simulation
systems. In Problems of System Informatics.
Novosibirsk: Ltd. “Siberian Scientific Publishers”,
2010. — p. 188-214 (in Russian).

12. N.N. Nepeivoda, I.N. Skopin. The Foundation of
Programming. — Moscow, Izhevsk: Institute of
Computer Sciences Reseaching, 2003 (in Russian).

13. V.Malyshkin. Assembling of Parallel Programs for
Large Scale Numerical Modeling. – In the Handbook
of Research on Scalable Computing Technologies.
IGI Global, USA, 2010, 1021 pp, Chapter 13, pp.
295 – 311. ISBN 978-1-60566-661-7

14. Ben Collins-Sussman, Brian W. Fitzpatrick, C.
Michael Pilato Version Control with Subversion.Next
Generation Open Source Version Control. — O'Reilly
Media, 2004, 320 p.

15. S.V. Maklakov C.B. BPwin and ERwin CASE-tools of
developing information systems. — Moscow: Dialog-
MIPR, 2001. — 340 с.

16. I.N. Skopin. Development of software systems
interfaces. — In System Informatics, issue 6 “The
problems of architecture, analysis and software
development”. Novosibirsk: Nauka, 1997, p. 34-96
(in Russian).

17. I.N. Skopin. An approach to the design of application
interfaces. — In joint issue of the book “Computing
technology” v. 20 and “Bulletin of Al-Farabi KazNU.
Series Mathematics, Mechanics, Computer
Science” № 3 (86), 2015. — Novosibirsk, Almaty. —
p. 332 – 345. ISSN 1560-7534, 1563-0285 (in
Russian).

18. V.P. Il’in, I.N. Skopin. About Performance and
Intellectuality of Supercomputer Modeling. -
Programming and Computer Software, 2016, Vol.
42, No. 1, pp. 5–16.

	Tool Support of Developing Systems Simulation with Active Elements
	Author
	Keywords
	I. Introduction
	II. Characteristic Features of theApproach
	a) Model System, Simulation, and Events
	b) Multi-aspects, Structure of a System, and Attribute Representation of Elements
	c) Horizontal and Vertical Modeling of a System
	d) Groups of Elements, Subsystems, and Operationwith Groups

	III. Initial Requirements of Tools
	a) Ensuring the Dynamic Simulation
	b) Control of Simulation, Collection and Processing ofSimulation Results
	c) Facilities for Models Development

	IV. Conclusion
	Acknowledgment
	References Références Referencias

