
© 2017. Gaurav Kulkarni. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Simplification of Internet Ossification through Software Defined
Network Approach

By Gaurav Kulkarni
Institute of Technology and Management

Abstract- Software-Defined Networking (SDN) has received a great deal of attention from both
academia and industry in recent years. Studies on SDN have brought a number of interesting
technical discussions on network architecture design, along with scientific contributions.
Researchers, network operators, and vendors are trying to establish new standards and provide
guidelines for proper implementation and deployment of such novel approach. It is clear that many of
these research efforts have been made in the southbound of the SDN architecture, while the
northbound interface still needs improvements. By focusing in the SDN northbound, this paper
surveys the body of knowledge and discusses the challenges for developing SDN software. We
investigate the existing solutions and identify trends and challenges on programming for SDN
environments.

Keywords: software defined networking, SDN programming languages, software engineering.

GJCST-C Classification: C.2.5, C.2.6

SimplificationofInternetOssificationthroughSoftwareDefinedNetworkApproach

 Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350
Publisher: Global Journals Inc. (USA)
Type: Double Blind Peer Reviewed International Research Journal
Volume 17 Issue 3 Version 1.0 Year 2017
Software & Data Engineering
Global Journal of Computer Science and Technology: C

Simplification of Internet Ossification through
Software Defined Network Approach

Gaurav Kulkarni

Abstract-

Software-Defined Networking (SDN) has received a

great deal of attention from both academia and industry in
recent years. Studies on SDN have brought a number of
interesting technical discussions on network architecture
design, along with scientific contributions. Researchers,
network operators, and vendors are trying to establish new
standards and provide guidelines for proper implementation
and deployment of such novel approach. It is clear that many
of these research efforts have been made in the southbound
of the SDN architecture, while the northbound interface still
needs improvements. By focusing in the SDN northbound, this
paper surveys the body of knowledge and discusses the
challenges for developing SDN software. We investigate the
existing solutions and identify trends and challenges on
programming for SDN environments. We also discuss future
developments on techniques, specifications, and
methodologies for programmable networks, with the
orthogonal view from the Software Engineering discipline.

 I.

Introduction

 he Internet architecture has become complex and
hard to manage. Due to its large development and
level of maturity, implementing strategies with a

high degree of innovation is risky because the success
of the Internet depends on the accurate operation of all
of its subnets. The Internet became static and difficult to
change its structure, a phenomenon known as Internet
Ossification

[1]. The need for making networks more
dynamic, robust, and able to be experimented with new
ideas and protocols in realistic scenarios brought a new
paradigm called Software-Defined Networking (SDN).
SDN enables a new network architecture that makes
possible for computer networks to be programmable
[2]. In its essence, SDN decouples the control plane
from the forwarding plane. It

enables researchers and
software developers to create and deploy network
applications, by abstracting the underlying infrastructure
and even

complex protocols present in traditional and
legacy networks. Programmable networks have been
the subject of active research in the past (e.g., Open
Signaling [7], Active Networking [8], and Ethane [9]).
However, they failed to be fully adopted by the industry
due to many reasons, such as focusing on the data
plane programmability as well as enabling
programmability for specific network devices vendors.
Although some of the SDN concepts are not new, it

integrates the concepts of programmability in the
network architecture in order to offer better network
management strategies. In this scenario, Open Flow [2]
has been considered the de facto and widely accepted
solution to implement SDN. It is worth emphasizing that
Open Flow and SDN terms cannot be used
interchangeably.

Although some previous studies [11] [12] [13]

[14] have surveyed the state-of-the-art on SDN
programmability, we take a different perspective on the
topic by describing the techniques, methodologies, and
challenges to develop and deploy SDN software
applications. We provide a unique view from the
perspective of the Software Engineering discipline in
which we present the evolution, current maturity, and
point out prospective research directions and
challenges to develop applications for SDN.

II. Software Defined Networking

The separation of the control plane from the
forwarding plane is one of the pillars of the SDN
paradigm. Its decoupled architecture enables network
programmability. Historically, the research community
made several attempts to provide network
programmability, where Active Networking (AN) and
Open Signaling (Opening) are considered the seminal
approaches [7].

a) SDN Architecture
When the control logic is decoupled from the

forwarding devices, all the network intelligence (e.g.,
decisions about routing, permissions) is moved to the
controller. The SDN controller becomes the network
component responsible for network management, as

T

25

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Author: Assistant Professor, Institute of Technology and Management
Universe, Vadodara Gujarat, India. e-mail: kulkarnigaurav@yahoo.com

Open Flow is a protocol that defines an open
standard interface for SDN, and uses a programmable
controller to communicate with the forwarding plane,
manage the network, and possibly receive instructions
from a network application. Such an interface has a low-
level implementation, which offers basic features to
developers. The complexity involved in developing
advanced SDN software applications needs to be
addressed by other means (e.g., via new programming
languages), in order to increase its level of abstraction.
In this scenario, full development and deployment of
such applications in staging and production
environments remains a challenge for network
operators [10].

Keywords: software defined networking, SDN
programming languages, software engineering.

Figure 1 depicts. Management then occurs through a
flow table present in the network switches, which receive
and register network rules defined by the controller (cf.
section II. C). In other words, the SDN controller adds
flow table entries in the switches for proper packet or
flow handling. The controller has all the necessary
network information (e.g., where the hosts are
connected, topology, and the like) that it uses to deal
with possible conflicts involving policies or to avoid
misbehaviour of network elements. As Figure 1 depicts,
the controller has two main interfaces, namely i) the
northbound interface, for higher-level elements to
support the development of network applications and
services, or to program the SDN controller through a
well-defined API and ii) the southbound interface, for the
communication between controllers and network
switches.

Figure 1: Northbound and Southbound Interfaces in an
SDN Architecture

b) Controllers in the SDN Architecture
The SDN controllers are strategic control

elements that communicate with the underlying switches
(via SI) and with applications on the top (via NI). An SDN
controller sends messages to switches disseminating
specific or general packet handling rules, which are
generally defined by a developer or administrator
through the controller’s northbound API [13] [14].

c) The open flow protocol
 The Open Flow protocol defines how the

exchange of information between control-plane and
data-plane must occur .When an Open Flow switch
receives a packet, its header fields are verified and
compared to related fields in the flow table entries. If an
entry corresponds to this packet header, the switch will
perform the set of instructions or actions related with the
flow entry.

III. Programming Paradigms, Languages
Specification, and Software

Engineering in SDN

 The paradigm for programming languages
applications development is the declarative, used in
most research papers in the literature [04] [10] [14].
Declarative programming languages have been
characterized by its extremely formal nature, often
based on logic, but without arithmetic [42]. This
paradigm allows a developer to define what action
needs to be done in the network, but not how this action
will do it. Please note that this definition applies to all
declarative programming languages. To make it
possible, a language interpreter is used to translate the
“what” into “how”. An example involving this approach in
an SDN scenario is shown below, using the Frenetic
notation [10]:

Select(packets) *

GroupBy([srcmac]) *

SplitWhen([inport]) *

Limit(1)

Figure 2: Frenetic declaration to filter packets

 The example presented in Figure 3
demonstrates a high-level declaration to filter packets in
a given flow, which does not require the programmer’s
knowledge to implement how the Select(packets) clause
will receive and direct the packets to some program or
service that is requesting it.

 Another widely used paradigm present in SDN
programming languages is the Functional Reactive

Programming (FRP). FRP is a well-suited solution for the

development of event-driven applications, such as SDN
applications, enabling programs to capture the time flow

property pertinent to SDN systems [13].The reactive
characteristic of FRP is direct related to the SDN
environment, where switches and controllers
continuously exchange information upon packet arrival
and apply rules to the corresponding flow. When an
SDN language follows the FRP paradigm, it
automatically administers the time flow and the
dependencies between data and computation.

The main idea behind FRP is to define
everything in terms of signals. A signal is an element in
which its values change in the course of time [14] (e.g.,
if a variable switch is equal to false, its value might
changes to true due to emission of a signal). Figure 4
depicts a code example in the context of FRP.

def ip_monitor():
return(Select(counts)*Where(inport_fp(1))*
GroupBy([srcip]) * Every(INTERVAL))

Figure 3:

FRP characteristic of Frenetic

26

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Simplification of Internet Ossification through Software Defined Network Approach

IV. Analysis of use Cases and
Applications for SDN Programming

Languages

 Prospective environments for SDN scenarios
drive us to analyze a number of specific applications
and use cases for SDN programmability. All the
languages analyzed in this survey have use cases and
evaluation scenarios in their respective publications.
This section then presents an overview of the SDN
programming languages and their possible applications
to be developed. Initially we describe and categorize the
applications in the use cases previously defined in this
survey. Then, we map these applications and use cases
to the SDN programming languages that may be used
by developers to write them, as shown in Table 3. This
mapping defines the lessons learned in this survey,
providing directions on what language to use in
developing SDN applications.

Admission Control:

An admission control application

enables the administrator to specify the authentication
rules for hosts and users that try to access the network.
Admission control applications can be implemented
through an SDN programming language to define what
default connectivity is allowed and which authentication
mechanisms will be used.

Load Balancing: The load balancing use case might be
seen

as a congestion-aware routing for networks [76].

With a load balancing application, the controller
prevents overload instructing the switches how to
balance the incoming traffic among the network paths.

Quality of Service (QoS):

For QoS applications,

developers

may use how resources should be allocated

to different users and flow classes. This is done by
setting some network properties, such as latency and
available bandwidth. These applications to fit in the
Applications-based Network use case. This is because
end-user software can communicate with the SDN
controller, which must be running a QoS application, to
request some network resource.

NAT Administration: The Network Address Translation

(NAT) Administration is generally used to enable multiple
machines within a private IP range to share a single
public IP address, mapping two pools of IP addresses.
This translation requires an implementation which alters
the IP and port number of each packet in the private
network. This is the basic difference between NAT and
others applications mentioned. In NAT administration,
each packet in the flow must be modified, therefore
requiring the network switches to support this
functionality. In the SDN scenario, the NAT
administration application may be executed on the
controller, which installs rules into switches to perform
the modification of headers of certain packets

corresponding to IP addresses and port numbers that
should have a specific quality [11].
 Security Rules: A typical example of security rules is the

implementation of an IP addresses black list module
that prevents a malicious IP source addresses from
sending traffic.
 Fault Tolerance: An interesting use case involves
network resilience scenarios. For instance, in the case of
a link failure, the network should be able to choose a
backup path dynamically.

Deep Packet Inspection: It is a network application
which examines packet’s payload looking for patterns,
such as from well-known applications and services,
viruses, attacks, and the like. In SDN, the controller
executes some algorithm to perform DPI. SDN
languages as Frenetic [10] and NetCore [13] have
features to implement DPI applications.

After the text edit has been completed, the
paper is ready for the template. Duplicate the template
file by using the Save As command, and use the naming
convention prescribed by your conference for the name
of your paper. In this newly created file, highlight all of
the contents and import your prepared text file. You are
now ready to style your paper; use the scroll down
window on the left of the MS Word Formatting toolbar.

Cloud Orchestrator: The Cloud Orchestration use case

needs a software orchestrator in order to manage the
network and the virtual machines. All SDN languages
partially enable the implementation of such a software,
because they only provide methods to implement a
network application, which in this case may create the
network orchestrator. The orchestrator of virtual machine
needs to be developed with third parties programming
languages or obtained from vendors.

Policy Specification: The most basic feature of an SDN

application and environment is the specification of
policies. All the analyzed SDN programming languages
enable the implementation of policies in several ways,
as well as applications to define the network behavior
through policies. However, they differ in the way of
writing and implementing these policies in practice.

Network Monitor: Foster et al. [16] argue that querying

network state is one of the fundamental elements in
programming SDNs. A Network Monitor application in
SDN can observe and request several types of
information (e.g., packet counter state in a switch). All
languages analyzed allow the implementation of
applications that monitor network states.

Correctness: The verification and validation of network

applications are desired features [14] [15]. SDN
programming languages might offer constructs that help
developers to avoid network misbehavior (i.e.,
verification), and to build correct applications (i.e.,
validation), according to the specified requirements.

27

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Simplification of Internet Ossification through Software Defined Network Approach

V. Future Work

 How to handle network failures? A recurrent
discussion on SDN research involves handling of
failures. Failures can occur in the availability of a
controller or even in wrong policy rules defined by an
SDN application. The authors of FatTire argue that
programmers do not write programs using the primitive
fast-failover OpenFlow mechanisms directly due to the
increment of complexity in failure-handling control,
which might make code more complex. In order to
handle failures in SDN programming, the language
needs to support an abstraction of the OpenFlow
forwarding table called a group table. Group table
consists of group entries. The ability for a flow entry to
point a group enables OpenFlow to represent more
methods of forwarding[16]. It enables multiple
conditional rules in OpenFlow. One of the group table
types is the fast failover (FF). The fast failover determine
that if a flow entry belongs to this group type, the first
action bucket (an ordered list of actions) will be
performed.

FatTire [14] abstracts the construction of a fast
failover group table, generating the entries in such
group table automatically. This approach avoids the
error-prone development made by programmers when
interacting with fast failover group table directly [14].

From the Software Engineering perspective, the
development of fault-tolerant applications must be
based on languages that define dependable features or
build rules created from formal methods. For instance, a
language that provides modular development may
enable an SDN application to run as redundant modules
in replicated controllers, thus improving the recovering
time of a network failure. However, synchronizing such
modules is not a trivial task [13].

How to avoid conflicting rules? This is a
challenge investigated by some research studies (e.g.,
PANE [80], Pyretic [16]). Avoiding conflicts means that a
policy rule X does not invalidate a policy rule Y, and
vice-versa, simultaneously, so that at least one policy
rule should be correctly applied. In [16], Hinrichs et al.
proposed two conflict resolution mechanisms, which we
consider a valuable path to effective SDN programming,
i.e. one has its features at the level of keywords,
identifying the conflicting policies. The other mechanism
is a schema that defines priority to each keyword (e.g.
the keyword deny has precedence over the keyword
allow). A similar approach can be also found in [15].
One possible approach to address conflicts in policies
could be based on a DSML. In such an approach,
invalid policies that result in conflicts could not be
created due to the constraints contained in an
underlying metamodel.

How can one realize automated tests? In order
to identify inconsistencies or unexpected states in an
SDN application, Canini et al. [12] and Vissichio et al.

[12] propose approaches to realize tests in SDN
applications. End-host applications and switches affect
the program running on the controller. In [10] Canini et
al. address this challenge by generating flows with
several possible events occurring in parallel. It also
enables the programmer to verify generic correctness
properties (e.g., forwarding loops or black holes) and
code validation (i.e., global system state determined by
code fragments). On the other hand, in [82] Vissichio et
al. use Test-Driven Development (TDD) to perform tests
on SDN applications.

How to abstract the complexity in SDN
development efficiently? The low level of abstraction
used by OpenFlow and its releases makes it hard to
program applications and to define a desired behavior
into the network. The studies analyzed suggest that a
decomposition of the controller, through one
relationship with the OpenFlow protocol and adding a
layer to specify policies, reduces the complexity to
develop and deploy SDN applications, mainly due to the
readiness to build applications without the need to worry
about maintaining consistency of various rules present
in an SDN environment. Therefore, such an abstraction
is more than only adding more layers for SDN
architecture or controllers; it also provides smart
structures that reduce the complexity in SDN
applications development, and not just encapsulating
the methods from the underlying structures.
Furthermore, this layering and efficient structures can be
used by some DSML, further increasing the level of
abstraction, enabling the concrete visualization of
network behavior.

Be reactive or proactive? The proactive or
reactive behavior and structure of a certain SDN
language will depend closely on the controller and how
packet handling occurs. It is worth emphasizing that one
could follow a hybrid approach, where a combination of
both strategies allows the flexibility from reactive
paradigm to particular sets of traffic control, while
proactively providing low latency routing for ordinary
traffic. Creating a framework or SDN language to
support these two main approaches seems to be the
most correct way to achieve completeness. As far as we
are concerned to create an SDN language, the
possibility of defining a DSML enables developers to
develop high-quality SDN applications. This isdue to the
ability of DSML to raise the level of abstraction in
software programming, because its visual
representations are easier to understand than the syntax
of textual programming languages.

How to improve the SDN programmability?
Although this question allows a number of answers, we
aim at presenting and discussing the four most
important issues that need improvements: i) verifying
and validating applications (e.g., consistent updates,
rules, and the like), which could be achieved by using
DSMLs or constraint checkers in compilers; ii) offering

28

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

Simplification of Internet Ossification through Software Defined Network Approach

high-level tools for developers, since there is no
widespread tool (e.g., Integrated Development
Environment – IDE, CASE tool) for creating SDN
applications; iii) providing programming languages
independent from the underlying controllers or
southbound protocols, which fortunately there are some
efforts in this direction, such as P4; and iv) writing
applications that meet network dependable
requirements.

VI. Conclusion

Some current challenges show that the
programming of SDN applications is still complex and
not completely standardize. Although there are several
abstractions at application level for SDN there are still
some issues to be addressed such as interoperability,
fault handling, conflict resolution or detection. SDN
offers the opportunity of innovative and powerful
networking scenarios, the development of correct
application with efficiency and efficacy is still work in the
progress. In particular advance study MDD/DSML is a
possible research path in order to achive correctness,
completeness and ease of use and productivity.

References Références Referencias

1. R. C. Gronback, Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit, Addison-
Wesley Professional, 2009.

2. T. Özgür, "Comparison of Microsoft DSL Tools and
Eclipse Modeling Frameworks for Domain-Specific
Modeling In the context of the Model Driven
Development," School of Engineering. Ronneby,
Sweden: Blekinge Institute of Technology, p. 56,
2007.

3. T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell
and S. Shenker, "Practical Declarative Network
Management," WREN, 21 August 2009.

4. A. Voellmy, A. Agarwal and P. Hudak, "Nettle:
Functional Reactive Programming for OpenFlow
Networks," PADL, July 2011.

5.

A. Monsanto, N. Foster,

R. Harrison and D. Walker,

"A Compiler and Run-time System for Network
Programming Languages," POPL, 25-27 January
2012.

6.

A. Monsanto, J. Reich, N. Foster, J. Rexford and D.
Walker, "Composing Software-Defined Networks,"
NSDI, 2013.

7.

N. P. Katta, J. Rexford and D. Walker, "Logic
Programming for Software-Defined Networks," ACM
SIGPLAN Workshop on Cross-Model Language
Design and Implementation, 2012.

8.

T. Koponen, K. Amidon, P. Balland, M. Casado, A.
Chanda, B. Fulton, I. Ganichev, J. Gross, P. Ingram,
E. Jackson, "Network virtualization in multi-tenant
datacenters," 11th USENIX Symposium on

Networked Systems Design and Implementation
(NSDI 14), pp. 203-216, April 2014.

9. T. Nelson, A. D. Ferguson, M. J. Scheer and S.
Krishnamurthi, "Tierless Programming and
Reasoning for Software-Defined Networks,"
Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, 2-
4 April 2014.

10. N. Foster, M. J. Freedman, A. Guha, R. Harrison, N.
K. Praveen, C. Monsanto, J. Reich, M. Reitblatt, J.
Rexford, C. Schlesinger, A. Story and D. Walker,
"Languages for Software-Defined Networks," IEEE
Communication Magazine, February 2013.

11. T. Koponen, M. Casado, N. Gude, J. Stribling, L.
Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H.
Inoue, T. Hama and S. Shenker, "Onix: A Distributed
Control Platform for Large-scale Production
Networks," USENIX OSDI, pp. 351-364, Octuber
2010.

12. M. Strembeck and U. Zdun, "An approach for the
systematic development of domain-specific
languages," Journal Software—Practice &
Experience , pp. 1253-1292, Oct 2009.

13. A. Voellmy, H. Kim and N. Feamster, "Procera: a
language for high-level reactive network control,"
HotSDN '12 Proceedings of the first workshop on
Hot topics in software defined networks, pp. 43-48,
2012.

14.

D. C. Schmidt, "Model-Driven Engineering," IEEE
Computer, 39(2) February 2006.

15.

A. Van Deursen, P. Klint and J. Visser, "Domain-
Specific Languages: An Annotated Bibliography,"
Sigplan Notices 35.6, pp. 26-36, 2000.

16.

F. Case, "Computer-aided software engineering
(CASE): technology for improving software
development productivity," ACM SIGMIS Database.
Volume 17 Issue 1, pp. 35-43, 1985.

17.

D. Frankel, Model Driven Architecture: Applying
MDA to Enterprise Computing, New York, NY, USA:
John Wiley & Sons, Inc., 2002.

18.

T. Stahl, M. Voelter

and K. Czarnecki, Model-Driven

Software Development: Technology, Engineering,
Management, John Wiley & Sons, 2006.

29

© 2017 Global Journals Inc. (US)

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

Y
e
a
r

20
17

Simplification of Internet Ossification through Software Defined Network Approach

This page is intentionally left blank

Simplification of Internet Ossification through Software Defined Network Approach

30

Y
e
a
r

20
17

(
)

C
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
III

 V
er
sio

n
I

© 2017 Global Journals Inc. (US)1

	Simplification of Internet Ossification through Software Defined Network Approach
	Author
	Keywords
	I. Introduction
	II. Software Defined Networking
	a) SDN Architecture
	b) Controllers in the SDN Architecture
	c) The open flow protocol

	III. Programming Paradigms, Languages Specification, and Software Engineering in SDN
	IV. Analysis of use Cases andApplications for SDN ProgrammingLanguages
	V. Future Work
	VI. Conclusion
	References Références Referencias

