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Abstract-



From Forward Prediction Error and Backward 
Prediction Error to Orthogonal Data in 

Space(Lattice Predictor) and the Origin of a 
System to Pick up Another 

Dr. Ziad Sobih 

  Abstract-

 

In this paper, we will develop another class of linear 
filter which involve order update and time update. These filters 
have the important fact of order update. We will show a 
computationally efficient modular lattice-like architecture. This 
lead to a filter with computational complexity linear with the 
order which is the length.

 
The design of order recursive adaptive filter can take 

two approaches. 

1.

 

Stochastic [16] gradient approach. This is  Wiener theory.

 
2.

 

Least squares approach. This is

 

Kalman filter theory.

 The second approach is code demanding. We will 
start with the first approach.

 
Keywords:

 

wiener theory, prediction, filters, stochastic 
gradient, learning and lattice filter.

 

 

Introduction

 he adaptive gradient lattice (GAL) filter is due to 
Griffiths (1977) and may be viewed as a natural 
extension of least mean square as they both use 

stochastic gradient [16] approach. First, we derive the 
recursive formula for order update then we find the 
updates for the desired response.

 Multistage Lattice Predictor [18]

 Figure 2 is a single stage lattice predictor. The 
input and output are characterized by a single 
parameter km. We assume that the input is wide sense 
stationary. To find km, we start with the cost function.

 

 
 

Where fm(n) is the forward prediction error and 
bm(n) is the backward prediction error and E is the 
expected value. The relation for the lattice from stage m-
1 to m is

 
(2)

 

 

(3)

 
Using equations 1 and 2 and 3 we will have for

  

  
 

 

 
(4)

 

This is a max-min problem. We want to find the 
min j as km change. Differentiating 
 

 
                        (5) 

 
Equating to zero we find that the optimum value 

of km to make j minimum. 

 
                                    (6) 

 

Figure 1: Lattice filter 

This is Burg formula (1968). 
 

 

Figure 2: Block diagram 

This formula assumes that the process is 
ergodic. This means we can use time averages. We get 

T 

Author: Northeastern University, Boston, MA. 
e-mail: Sobih84@gmail.com 

  
  
   

1

© 2017   Global Journals Inc.  (US)

  
 

(
)

G
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
II 

Is
su

e 
III

 V
er
sio

n 
I 

  
Y
e
a
r

20
17

Jfb,m=1
2
  E[|fm(n)|2 + |bm(n)|2]               

fm(n)= fm-1(n) + km
∗bm-1(n-1)  (2)

bm(n)   =  bm-1(n-1)   +   kmfm-1( n - 1 ) 

Jfb, m =
1
2

(E[|fm-1 (n)|2 ]+E[|bm-1(n-1)|2])(1+|km|2)

+k
m

E[f
m-1

(n)  b∗
m

-1
(n-1)]

+km
∗[bm-1(n-1)  f ∗

m-1(n)]

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= km(E[|fm-1(n)|2]+E[|bm-1(n-1)|2])

+2E[bm-1(n-1)f*
m-1(n)]          

km,o= - 2 E [bm-1 (n-1) f*
m-1(n)]

/ (E[|fm-1(n)|2+|bm-1(n-1)|2])

I.

II.

(1 )



for the reflection coefficient km for the m stage in the 
lattice predictor   

  

          (7)
 

 

It is clear that the estimate is data dependent. 

Equation 7 is a block estimator for the reflection 
coefficient km. It is time now to find a recursive formula 
to update km. 

First, we find 

 
 

            (8 )
 

This is the total energy of the forward and 
delayed backward error at the input of the m stage. 
Doing some math, we will have the recursive formula. 

   

 
   

 
 
              

(9)
 

At this point, we need a recursive formula for 
equation 7 and we will start by writing the top as 

  

 
 

 
(10)
 

Substituting equations 9 and 10 into 7, we will find that 

 
 

 

 
 
 

       (11)
 

Equation 11 is not a pure recursive form, so we 
need to do some more steps. 

First use km(n-1)
 
in place km in equation 2 and 

3 and write them as
 

      (12)
 

Second use equation 12 and 13 with 9 to write  

  
 

(13)
 

 
 

 

 

 

 

 

Then we use equation 7 for (n-1) to write equation 11 as 
 

 
 

 
 

This mean

 

                                             (14)

 

At this point, we will make two modification to 
equations 9 and 14. 
1.

 

We will introduce a step size parameter to control the 
adjustment.

 

  

 

 

2.

 

We introduce an averaging  filter to the energy estimator

 

 

(16)

 

Equation 16 take the fact that we are dealing 
with nonstationary environment, and we have statistical 
variation. This will equip the estimator with memory were 
the present value and immediate past is used.

 

  

Let us say we want a desired response d(n).

 

we 
consider the structure shown in figure 3 which is part of 
figure 1. We have the input vector bm(n) and the  
parameters  of the filter hm(n) which will converge with 
time to give the desired response. 

 

For the estimation of the vector h we use the 
stochastic gradient approach. We find that the order 
update for the desired response d(n) is 

 

  

  

 

The error is

 

 

Figure 3: The coefficients h 

                (18)

 

The time update for the mth coefficient of figure 3 is

 

 

The squared Euclidean norm is defined as

 
 

 

 

 

(20)
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(17)

              (19)

km(n)= - 2 ∑𝑛𝑛𝑖𝑖=1 [bm-1 (i-1) f*
m-1(i)]

/ (∑𝑛𝑛𝑖𝑖=1 [|fm-1(i)|2+|bm-1(i-1)|2])

Em-1(n)=∑𝑛𝑛𝑖𝑖=1 [|fm-1(i)|2+ | bm-1( i-1)|2 ] 

Em-1(n)=∑𝑛𝑛−1
𝑖𝑖=1 [|fm-1(i)|2+ | bm-1( i-1)|2 ] 

+[| bm-1 (n-1)|2+| f*
m-1(n)|2]

=Em-1(n-1)+| bm-1 (n-1)|2+| fm-1(n)|2]

∑𝑛𝑛𝑖𝑖=1 [bm-1(i-1) f*
m-1(i)]

= ∑𝑛𝑛−1
𝑖𝑖=1 [bm-1 (i-1) f*

m-1(i)]   +  [bm-1 (n-1) f*
m-1(n)]

km(n)  =∑𝑛𝑛−1
𝑖𝑖=1 [bm-1 (i-1) f*

m-1(i)]   +  [bm-1 (n-1) f*
m-1(n)]

/ Em-1(n-1)+ | bm-1 (n-1)|2+| fm-1(n)|2]

fm(n)  = fm-1(n) +  km(n-1) ∗bm-1(n-1)      

bm(n)   =  bm-1 ( n - 1 )   +   km(n-1) fm-1( n - 1 ) 

2bm-1(n-1)f*
m-1(n)=bm-1(n-1)f*

m-1 +f*
m-1(n)bm-1(n-1)

=bm-1(n-1)(fm(n)-k*
em(n-1)bm-1(n-1))*

+f*
m-1(n)(bm(n)-kem(n-1)fm-1(n))

=-kem(n-1)(|fm-1(n)|2+|bm-1(n-1)|2)

+(f*
m-1(n)bm(n)+bm-1(n-1)f*

m(n))

= - kem(n-1)Em-1(n)+kem(n-1)Em-1(n-1)

-1
-

+(f*
m-1(n)bm(n)+bm-1(n-1)f*

m(n))

2∑𝑛𝑛−1
𝑖𝑖=1 bm-1(i-1)fm-1

*(i)+2bm-1(n-1)f*
m-1(n)

=kem(n-1)Em-1(n-1)-kem(n-1)Em-1(n)+kem(n-1)Em-1(n-1)

+(f*
m-1(n)bm(n)+bm-1(n-1)fm

*(n))

= -kem(n-1)Em-1(n)+(fm-1
*(n)bm(n)+bm-1(n-1)f*

m(n))

kem(n)=kem(n-1)-(f*
m-1(n)bm(n)+bm-1(n-1)f*

m(n))/Em-1(n)
m=1,2,……..,M.

kem(n)=kem(n-1)-[µe/Em-1(n)](f*
m-1(n)bm(n)

+bm-1(n-1)f*
m(n))

M=1,2, …….,M. (15)

Em-1(n)=βEm-1(n-1)+(1-β)(|fm-1(n)|2+|bm-1(n-1)|2)

Em-1(n)=βEm-1(n-1)+(1-β)(|fm-1(n)|2+|bm-1(n-1)|2)

ym(n)= ∑𝑚𝑚𝜕𝜕=0 hek
*(n)bk(n)

= ∑𝑚𝑚−1
𝜕𝜕=0 hek

*(n)bk(n) +  hek
*(n)  bk(n)

=       ym-1(n)    +     hek
*(n)    bk(n)

em(n)=d(n)-ym(n)

hem(n+1)=hem(n)+[µ/||bm(n)||2]bm(n)e*
m(n)

||bm(n)||2   =∑𝑚𝑚𝜕𝜕=0 |bk(n)|2

=|bm(n)|2  +    ∑𝑚𝑚−1
𝜕𝜕=0 |bk(n)|2

= ||bm(n)||2   +   |bk(n)|2

III.. Desired Response Estimator [14]



IV.  Adaptive Forward Linear 
Prediction [17] 

Conceder the 4th order filter in figure 4 at time n. 
The forward prediction error is 

       (21) 

The forward prediction problem is to find u(i) at 
time i from the vector u(i-1)…………u(i-m) using the 
filter in figure 4 of the weight vector 
wm1(n)…………..wmm(n). 

We refer to fm(i) as the forward a posteriori 
prediction error, since its value is based on the current 
weight vector  wfm(n). We defined forward a priori 
prediction error as 

 

 

The update formula for the weights vector for 
the forward predictor is 

 

 (23) 

k is the gain vector defined by 

               ( 24) 

In equation 24 we have the inverse of the 
correlation matrix defined. 

 

Figure 4: Forward prediction 

          (25) 

At this point, we have described the adaptive 
filter forward prediction  problem and using the weight 

vector w,f,m(n). Also, the forward prediction error 
problem is important  and we are going to approach the 
solution using the knowledge we have so far.  Let us say 
we have am(n) were [15]. 
 

 

 
Table 2: Notation

 

 
Where the first element of the vector am(n) is 

one. The forward a posteriori prediction error and the 
forward a priori prediction error  

 

                              (27) 

And 

 

    
(28)
 

The input vector of size m+1 is the following, 

 

Because of orthogonality we have the condition, 

                  (29) 

The weight vector w f,m(n) can also be found by 
minimizing the sum  

 

The solution using am(n) is the solution to the 
same minimization problem using a more elegant form.  

Table 3: Forward and backward equations 
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fm(i)=u(i)-wef,m
H(n)um(i-1)

u(i-1)=[u(i-1), u(i-2),……….,u(i-m)]T

w(n) =[wf, m, 1, wf, m, 2(n),……….,wf, m, m (n)]T

ɳm(i)=u(i)-w  ef, m(n-1) um(i-1)

I  =  1, 2, …….,n.

km(n-1)=фm
-1(n-1)um(n-1)

 (22)

Фm(n-1)=∑𝒏𝒏−𝟏𝟏𝒊𝒊=𝟏𝟏 λn-1-ium(i)um
H(i)

am (n)  =  1
−𝒘𝒘        (26)

fm(i)   =   am
H(n)um+1(i)

i    =   i=1, 2,……, n,

ɳ    =    am
H(n-1)um(i)

i=1, 2, ……., n, 

um+1(i)   =   
𝑢𝑢(𝑖𝑖)

𝒖𝒖(𝒊𝒊 − 𝟏𝟏)

∑𝑛𝑛𝑖𝑖=1 λn-1u(i-1)fm
*(i)   =   0

Fm(n)   =   ∑𝑛𝑛𝑖𝑖=1 λn-1|fm(i)|2                   (30)



At this point, we use equation 21 in equation 30 
and next equation 23 and the condition of equation 29 
to get the recursion equation, 

    (31) 

In this equation the product at the end is a real 
value. 

 Adaptive Backward Linear Prediction 
[17] 

Consider the backward linear predictor of order 
m. This is in Figure 12.5(a) for operation at time n. The 
tap weight vector is optimized using least squares sense 
until time n. Let [15]. 

 
(32) 

 

Figure 5: Backward prediction 

This is the backward prediction error for the 
input vector um(i). We have 

 

And 

bm(i) is the backward a posteriori prediction 
error. It is dependent on the current value of the vector 
wb,m(n). we may define the backward a priori prediction 
error as 

 
(33) 

The computation is based on past weight vector 
wb,m(n). 

To do recursion for adaptive backward linear 
prediction, we modify the RLS algorithm. The following is 
the recursion for updating the tap weight vector. 

  

In equation 34 we have the backward priori 
prediction error and we have  

     (35) 

The matrix we have in equation 35 is the inverse 
of the correlation matrix  

(36) 

We may analyze this problem as a backward 
prediction error filter problem. In this case, the tap 
weight vector is cm(n) which we can find from figure 
12(b)as 

                                    (37) 

In this vector cm,m(n) is one and the input 
vector  u m+1(i) of size m+1. In this case, the backward 
a posteriori prediction error and  the backward a priori 
prediction error can be found as 

 

(38) 

 

(39) 

The input vector is 

 

The tap weight vector is orthogonal to the 
backward linear prediction error. This mean 

(40) 

The tap weights vector wb,m(n) may also 
beseen as minimizing the sum 

(41) 

for  
Also, we can find cm(n) as a solution to the 

same minimization problem. 
Using equation 32 in equation 41then 

equation34 and the orthogonality condition of equation 
40 we get the recursion.  

 (42) 

To end this discussion, it is important to note in 
the case of backward prediction the input vector 
um+1(n) is partitioned with the desired response u(n-m) 
as the last entry. As in the case of forward prediction, 
the input vector um+1(n) is partitioned with u(n) as the 
first entry. 

 Conversion Factor [18] 

First, we defined the vector k as 
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Fm(n)   =   λ  Fm(n-1)   +   ɳm(n)   f*
m(n)

bm(i)   =   u(i-m)   -   wH
eb, m(n)um(i)

i  =  1, 2, …., n,                                   

u(i)   =   [u(i), u(i-1), …….., u(i-m+1)]T

web, m(n)  =  [web, m, 1(n), web, m, 2(n), ……., web, m,m(n)]T

βm(i)   =    u(i-m)    -    wH
eb, m(n-1)um(i)

I     =     1,   2,   ………, n,

w eb, m(n)   =   web, m(n-1)   +   km(n)   β*
m(n)      (34)

km(n)    =   ф-1
mum(n)

фm    =∑𝒏𝒏𝒊𝒊=𝟏𝟏 λn-1um(i)um
H(i)

cm(n)   =   −𝒘𝒘1

bm(i)   =    cm
H(n)um+1(i)

i=  1, 2, …,n,

βm(i)   =   cm
H(n-1)um+1(i)

i = 1, 2, ……., n, 

um+1(i)     =      
𝒖𝒖(𝒊𝒊)

𝑢𝑢(𝑖𝑖 − 𝑚𝑚)

∑𝑛𝑛𝑖𝑖=1 λn-1um(i)bm
*(i)   =   0

Bm(n)   =   ∑𝑛𝑛𝑖𝑖=1 λn-i|bm(i)|

 1   <   i   <   n   

Βm(n)   = λ  Βm(n-1 )   +   βm(n)   bm
*(n)

km(n)   =   ф-1
m(n)   um(n)

VI.

V



km(n) is the tap weight vector of the filter that 
operates on the data u(1), u(2)……..u(n) to produce the 
special response

 
(43)

 
d(i) is an n by 1 vector, and the name of it is the 

first coordinate vector. This vector has the property that 
its dot product with any time-dependent vector is the 
last element of that vector.  

First, we have to say that things are normalized. 
Second, we define the estimation error as  

 (44)
 

Were the estimation error is the output of the 
filter with tap weights km(n) and input um(n) as in figure 
6. We can see from the equation 44 that the estimation 
error is real moreover it is between zero and one.

(45) 

Know it is time to simplify things  

    (46) 

 

 

 Figure 6: Conversion factor 

Lambda between zero and one so the 
estimation error is bounded as in equation 45. 

It is good to see that the estimation error is the 
output of the filter of figure 6 of the tap weight vector 
km(n). 

 
 
 

 Some Useful Interpretation of the 
stimation Error [14] 

Depending on the way it is used the estimation 
error can have three different interpretations  
1. The estimation error can be seen as the likelihood 

variable (Lee 1981). This is due to the statistical 
formulation of the tap input function in terms of its 
log-likelihood function. We say that the input has 
joint Gaussian distribution. 

2. The estimation error can be seen as the angle 
variable (Lee 1981). This can be seen from equation 
44.  We may say 

 

Were phi is the angle of plane rotation. 
3. The estimation error can be seen as the conversion 

factor (Carayannis 1983). It can be used to find an a 
posteriori estimation error from the a priori 
estimation error. 

It is due to the third interpretation we use the 
term conversion factor. 

 Three Kinds of Estimation Error [14] 

In linear least square estimation theory, we have 
three kinds of estimation error. The ordinary estimation 
error, the forward prediction error, and the backward 
prediction error. This means we have three interpretation 
as a conversion factor. 
1. The recursive least squares estimation 

Where we have the estimation error is equal to 
the posteriori error divided by the a priori estimation 
error. This can be seen from equation 44. 
2. For adaptive forward linear prediction  

      (48) 

This can be seen by post-multiplying the 
Hermitian transposed sides of equation 23 by um(n-1) 
and then using equations 21 and 22 and 24 and 44. 
3. For adaptive backward linear prediction 

      (49) 

As in 2 if we multiply equation 34 by um(n) and 
use equations 32 and 33 and 35 and 44 we can find 49. 
The estimation error can be seen as the multiplicative 
correction. 

As we see the estimation error is the common 
factor (either regular or delayed) in the conversion from 
a priori to a posteriori estimation error. This is in ordinary 
estimation or forward prediction or backward prediction. 
We can use this conversion factor to find em(n) or fm(n) 
or bm(n) at time n before the tap weight has been 
computed (Carayannis 1983). 
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d(i)   =    1       i  = n

               0       i  = 1, 2, ………, n-1

 γm(n)   =   1   -   kH
m(n)   um(n)

            =   1   -   uH
m(n)   фm

-1(n)   um(n)       

0   < γm(n)   <   1

 γm(n) = 1 / [1 + λ-1um
H(n)фm

-1(n-1)um(n)]

 γm
1/2  (n)  =  cosφm(m)

γm(n-1 )   =   fm(n)/ɳm(n)

γm(n )   =   bm(n)/βm(n)

VII.
E

VIII.



 Least Square Lattice Predictor [13] 

 

We see that the input vector um(n) for the 
backward linear predictor of order m-1 and the input 
vector u(m+1)(n) for the backward linear predictor of 
order m have the same m-1 input entries. Let us move 
know to the partitioned vector.  

 

The input vector um(n-1) for the forward linear 
predictor of order m-1 and the input vector u m+1 (n) 
for the forward linear predictor of order m have the same 
last m-1 entries. The question is can we carry over the 
information from stage m-1 to stage m.  

The answer to this question is yes. And it 
employs modular structure known as lattice predictor.  

To find this important filtering structure, we use 
the principle of orthogonality, and with the umbrella of 
Kalman filter theory, we find the least squares lattice 
predictor.  

 

Figure 7: Block diagram 

Let us begin with figure 7. The input is um(n). 
The upper part is a forward prediction error filter with tap 
weight vector a (m-1)(n) and output f (m-1)(i). The lower 
part is a backward prediction error filter with tap weight 
vector c (m-1)(n) and output b (m-1) (i). The problem we 
want to solve may be stated as. 

Given the forward prediction error f (m-1)(i) and 
the backward prediction error b (m-1)(i) find their order 
update value f m (i) and b m (i)  efficiently. 

 
The past sample u(i-m) needed to compute 

fm(i) can be found from b (m-1)(i-1). Thus treating this 
as input to the one tap least square filter and f (m-1)(i) 
as the desired response and f m (i) as a result from least 
square approximation we can write 

 

                     (50) 
This is Figure 8 

To find the coefficient of this filter we use the 
principal of orthogonality. According to this principal, the 

error produced by this filter f m (i)  is orthogonal to the 
input b (m-1) (i). 

(51) 

Substituting equation 50 into equation 51 and 
solving for the coefficient. 

  

 (52) 

It is clear that  

  (53) 

Where in the last line we used the fact that 

  

In equation 52 we have introduced the notation 
of exponentially weighted cross-correlation between 
forward and backward prediction error. 

 (54) 

 

Figure 8: Recursion 

Using equation 53 and equation 54 in equation 
52 we see that the coefficient is  

    (55) 

We use the same method to find the order 
update for backward prediction error b m (i). The input is  
f(m-1)(i). The filter is figure 8 (b). It is clear that  

  

(56) 

Know it is time to determine the coefficient and 
to do this we use the orthogonality principal. The error b 
m(i) has to be orthogonal to the input f (m-1) (i). Thus we 
write 

(57) 

Substituting equation 56 into equation 57 and 
solving for the coefficient. 

  

(58) 
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um+1(n)=
𝒖𝒖(𝒏𝒏)

𝑢𝑢(𝑛𝑛 −𝑚𝑚)

um+1  (n)=   
𝑢𝑢(𝑛𝑛)

𝒖𝒖(𝒏𝒏 − 𝟏𝟏)

fm(i)   =   fm-1(i)   +   k*
f, m(n) bm-1(i-1)

i= 1, 2, ……, n,

∑𝑛𝑛𝑖𝑖=1 λn-1bm-1(i-1)f*
m(i)   =0

kf, m (n) =∑𝑛𝑛𝑖𝑖=1 λn-1bm-1(i-1)f*
m=1(i)

/ [∑𝑛𝑛𝑖𝑖=1 λn-1 |bm-1(i-1)|2]

B m-1(n-1)= ∑𝑛𝑛𝑖𝑖=1 λn-1 |bm-1(i-1)|2

bm-1(0)   =   0   for all m   >   1

Δm-1 (n) =∑𝑛𝑛𝑖𝑖=1 λn-1bm-1(i-1)f*
m-1(i)        

kf, m (n)   =  Δm-1 (n)   /  B m-1(n-1)

bm(i)   =   bm-1(i-1)   +   k*
b, m(n) fm-1(i)

i= 1, 2, ……, n,                                     

∑𝑛𝑛𝑖𝑖=1 λn-1fm-1(i)b*
m(i)   =0

kb, m (n) =∑𝑛𝑛𝑖𝑖=1 λn-1fm-1(i)b*
m-1(i-1)

/ [∑𝑛𝑛𝑖𝑖=1 λn-1 |fm-1(i)|2]

IX .

Using the time shifting property of the input data 
we write the partitioned vector.

We mean by efficient manner is to use the 
information in f(m-1)(i) and b(m-1)(i) plus the input data 
is enlarged by the past sample u(i-m).



Let us put  
          (59) 

This mean equation 58 can be written as 

  (60) 

Equation 50 and 56 are the basic to lattice 
predictor. For physical interpretation we define  

Based on equation 50 and 56 we may make the 
following statements using the terminology of projection 
theory. 
1. The result of projecting the vector b (m-1) (n-1) onto 

f (m-1) (n) is represented by the vector f m(n) and 
the forward reflection coefficient is the parameter 
needed to make this projection.     

2. The result of projecting the vector f (m-1)(n) onto b 
(m-1)(n-1) is represented by the vector b(m)(n) . The 
back word reflection coefficient is the parameter 
needed to make this second projection.   

So we have the pair of interrelated order update 
recursions. 

(61) 

And 
(62) 

m is the order of the filter and n is the time 
index.  The initial condition is 

(63) 

Where u(n) is the input at time n.  And m is the 
prediction order from zero up to M. We have M stages 
least-squares lattice predictor in figure 9. An important 
feature is the lattice structure which implies linear 
complexity with the order. 

 Least Squares Lattice Version [13] 

The forward prediction error and backward 
prediction error are determined by equations 27 and 38 
as 

 

And 

 

 

 
Figure 9: Lattice predictor 

In the two equations, a m (n) and c m (n) are 
the tap weight vectors of the filters to calculate the 
backward and forward prediction error. The forward 
prediction error f (m-1)(n) and the backward prediction 
error b (m-1)(n) are defined as 

 

 

 

 

 

 

The four prediction errors just defined have the 
same input u(m+1)(n). substituting in 61 and 62 and 
comparing terms we get

 

            (64) 

And   
(65) 

Equation 64 and equation 65 might be viewed 
as the least squares version of the Levinson Durbin 
recursion. Keeping in mind that the last element c (m-
1)(n-1) and the first element a (m-1)(n) is equal to one.  
We see from 64 and 65 that

 

         (66) 

And  
            

 
 (67) 

Where a m,m(n) is the last element of the vector 
am(n) and c m,0(n) is the first element of the vector 
cm(n). we generally find. 
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Fm-1(n)   =   ∑𝑛𝑛𝑖𝑖=1 λn-1 |fm-1(i)|2

kb, m (n)   =  Δ*
m-1 (n)   /  F m-1(n)     

fm(n)   =   [fm(1), fm(2), ……., fm(n)]T

bm(n)   =   [bm(1), bm(2), ……., bm(n)]T

bm(n-1)   =   [0, bm(1), bm(2), ……., bm(n-1)]T

fm(n)   =   fm-1(n)   +   k*
f, m(n) bm-1(n-1)

bm(n)   =   bm-1(n-1)   +   k*
f, m(n) fm-1(n)

f0(n)   =   b0(n)   =   u(n)

fm(n)   =   am
H(n)um+1(n)

bm(n)    =   cH
m(n)   um+1(n)

fm(n)   =   am-1
H(n)um(n)

=   𝐚𝐚(𝐦𝐦− 𝟏𝟏)(𝐧𝐧)
0

  H      
𝐮𝐮(𝐦𝐦)(𝐧𝐧)
𝑢𝑢(𝑛𝑛 −𝑚𝑚)

=   𝐚𝐚(𝐦𝐦− 𝟏𝟏)(𝐧𝐧)
0

  H     um+1(n)

bm-1(n-1)   =   cm-1
H(n-1)um(n-1)

=   0
𝒄𝒄(𝒎𝒎− 𝟏𝟏)(𝒏𝒏 − 𝟏𝟏)  H      

u(n)
𝒖𝒖(𝒎𝒎)(𝒏𝒏 − 𝟏𝟏)

=   0
𝒄𝒄(𝒎𝒎− 𝟏𝟏)(𝒏𝒏 − 𝟏𝟏)  H     um+1(n)

am(n) = 𝐚𝐚(𝐦𝐦− 𝟏𝟏)(𝐧𝐧)
0

+kf,m(n) 0
𝒄𝒄(𝒎𝒎− 𝟏𝟏)(𝒏𝒏 − 𝟏𝟏)

cm(n) = 0
𝒄𝒄(𝒎𝒎− 𝟏𝟏)(𝒏𝒏)+kf,m(n)𝒂𝒂(𝒎𝒎− 𝟏𝟏)(𝒏𝒏)

0

kf,m(n)   =   am,m(n)

kb,m(n)   =   cm,0(n)

X.



 

The order update equations 64 and 65 show a 
very good property of the lattice predictor of order M. we 
can say such a predictor have a chain of forward 
prediction error filters  of order 1,2,………,M and a chain 
of backward prediction error filters of order 1,2,………,M 
all in one modular structure shown in figure 9. 

XI.  Time Update Recursion [17] 

From equation 55 and 60 we find that the 
reflection coefficients (backward and forward)are 
uniquely determined by three quantities. Equation 31 
and 32 provide the time update for two of them. We still 
have to find the time update equation for the third 
quantity (exponential cross-correlation). 

To proceed, we recall the two equations with 
(m-1) in place of m. 

 

 
And 

 

Substituting in equation 54 we get 

 

 

This equation simplifies as follows, 
First, the second term in the equation is zero 

using the principal of orthogonalization which states.  

 

Second, the first term inside the brackets we 
have the a priori forward prediction error.  

 

 

This mean delta is  

     (68) 

We can write this summation as 

  

 

  

 

We know that the first term is simply delta (m-1) 
(n-1) so we write.  

      (69) 

Which is the desired equation. This is similar to 
equation 31 and 42 in that of these three updates the 
correction term has the product of posteriori and a priori 
prediction errors. 

 Exact Decoupling Property of the 
east Squares Lattice Predictor [18] 

An important property of this predictor is that 
the backward prediction errors at different stages are 
uncorrelated. This is plus that they are orthogonal. Keep 
in mind that the input u(n) might be a correlated 
sequence.  This means we are transforming a correlated 
sequence to uncorrelated one. 

 

               (70) 

The transformation here is reciprocal which 
mean that this filter keeps the information content of the 
input data.  
The tap weight vector of the filter is cm(n) 

  

We want to find the backward a posteriori 
prediction error bm(i) using the input u(m+1)(i). 

 

 
We can express bm(i) as 

 

 

 

  (71) 
Let  

 

 
Be (m+1) by 1 backward a posteriori prediction 

error vector. Substituting equation 71 into this vector we 
have the transformation [19] 

(72)
 

Where the m+1 by m+1 transformation matrix 
 

             (73) 

This is a lower triangular matrix. It is an m by m 
matrix and note the following.  
1. A non zero element of row l in the matrix Lm(n) is 

the tap weight of the backward prediction filter of 
order (l-1).  2. The diagonal elements of Lm(n) are equal to unity. 
This is because the last tap weight of this filter 
equals unity. 3. The determinant of the matrix Lm(n) is one for all m. 

This mean the inverse matrix exist. This means 
that the reciprocal nature of equation 70 is confirmed. The correlation between the backward 
prediction errors of orders k and m is zero.  
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kf,m(n)   =   kb,m
*(n)

fm-1(i)   =   u(i)   -   w*
f,m-1(n)  um-1(i-1)

i   =   1, 2, ………,n,

wef,m-1(n)=wef,m-1(n-1)   +   km-1(n-1)   ɳm-1
* (n)

Δm-1(n) =∑𝑛𝑛𝑖𝑖=1 λn-1[u(i)-wef,m-1
H(n-1) um-1(i-1)]*bm-1(i-1)

               -ɳm-1(n)kT
m-1(n-1)∑𝒏𝒏𝒊𝒊=𝟏𝟏 λn-1bm-1(i-1)u*

m-1(i-1)

∑𝑛𝑛𝑖𝑖=1 λn-1um-1(i-1)b*
m(i)   =0

ɳm(i)=u(i)-w  ef, m(n-1) um(i-1)

I  =  1, 2, …….,n.                            

Δm-1 (n) =∑𝑛𝑛𝑖𝑖=1 λn-1bm-1(i-1)ɳ*
m-1(i)        

Δm-1 (n) =∑𝑛𝑛−1
𝑖𝑖=1 λn-1bm-1(i-1)ɳ*

m-1(i)        

+    bm-1(i-1)ɳ*
m-1(i)        

Δm-1 (n) =λ∑𝑛𝑛−1
𝑖𝑖=1 λn-1-I  bm-1(i-1)ɳ*

m-1(i)        

+    bm-1(i-1)ɳ*
m-1(i)        

Δm(n)   = λ  Δm(n-1 )   +   ɳ*m-1(n)   bm
*(n-1)        

[u(n), u(n-1), ………, u(n-m)]

↔ [b0(n), b1(n), …….,  bm(n)]

cm(n) = [cm,m(n),  cm,m-1(n), ……., 1]

um+1(i) =[u(i), u(i-1), ………, u(i-m)]

i>  m

bm(i)   =   cH
m(m)um-1(i)

           =   ∑𝑚𝑚𝜕𝜕=0 c*
m,k(n)u(i-m+k)

m  <i<  n

m = 1, 2, ….

bm+1(i) = [b0(n),  b1(n), ……., bm(i)]T

m  <i<  n
m = 1, 2, ….

bm+1(i)   =   Lm(n)  um+1(i)

Lm(n)  =
1 0 0

𝑐𝑐(1, 1)(𝑛𝑛) 1 0
𝑐𝑐(𝑚𝑚,𝑚𝑚)(𝑛𝑛) 𝑐𝑐(𝑚𝑚,𝑚𝑚 − 1)(𝑛𝑛) 1

XII.

L



Using the principal of orthogonality, it is clear 
that the error bm(i) is perpendicular to the input uk(i) and 
this means that the correlation is zero for m not equal k. 
This means that bm(n) and bk(n) are uncorrelated in the 
time-averaged sense. 

This property makes this system an ideal device 
for exact least squares joint process estimation.  We 
might use the sequence of bm(n) in figure 9 to perform 
the least squares estimation of the desired response as 
in figure 10. We may write 

 

                              (75) 

The initial condition of the joint process estimation is 

(76) 

The parameter h(m-1)(n) are called joint 
process estimation or regression coefficients. Thus the 
estimation of the desired response d(n) may go as a 
stage by stage basis, jointly with the linear prediction 
process.  

Equation 75 is shown in figure 8(c). We use i in 
the figure to be consistent with 8(a) and 8(b). the input is 
b(m-1)(i) and the desired response is e(m-1)(i).[18]. 
 

 

Figure 10: Correction 

It is a desire to put the lattice problem not in 
term of the posteriori or a priori errors. This introduces 
the notation of angel. 

XIII.  Simulation Results 

In this part, we will use mat lab. The desired 
response is an output of a Wiener filter of the first order 
and coefficient a=.3. The input is random signal. This 
input is given to the Wiener filter and the lattice predictor 
also first order. We feed the desired signal d(n) to the 
lattice predictor. The block diagram of the system is 
figure 11. As we can see from the simulation results, the 
coefficient h1 will pick up the value of a=.3 of the Wiener 
filter (figure 12).  
 

 

Figure 11: Mat Lab simulation 

 

Figure 12: Simulation results 
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