
© 2013. K. Srikala & S. Ramachandram. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Cloud and Distributed
Volume 13 Issue 2 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Fault Tolerant Scheduling of Partitioned and Grouped Jobs in
Grid Computing (FTPG)

 By K. Srikala & S. Ramachandram
Osmania University, India

Abstract - Computational grids have the potential for solving scientific and large - scale problems
using heterogeneous and geographically distributed resources. In addition to the challenges of
managing and scheduling resources reliable challenges arise because the grid infrastructure is
unreliable. There are two major problems in Scheduling the Grid 1) Efficient Scheduling of jobs,
2) Providing fault tolerance in a reliable manner. Most of the existing strategies do not provide fault
tolerance. There are some algorithms which provide fault tolerance but, they do a large amount of
redundant computation to provide fault tolerance. This paper addresses this issue and minimizes
redundant work by using a group level table of data. This technique is suitable for partitioning and
group scheduling of jobs.
Keywords : grid computing, grid scheduling, fault tolerance, redundant computation and group result
table.
GJCST-B Classification : C.2.1

Fault Tolerant Scheduling of Partitioned and Grouped Jobs in Grid Computing FTPG

Strictly as per the compliance and regulations of:

Fault Tolerant Scheduling of Partitioned and
Grouped Jobs in Grid Computing (FTPG)

K. Srikala α & S. Ramachandram σ

Abstract - Computational grids have the potential for solving
scientific and large - scale problems using heterogeneous and
geographically distributed resources. In addition to the
challenges of managing and scheduling resources reliable
challenges arise because the grid infrastructure is unreliable.
There are two major problems in Scheduling the Grid
1) Efficient Scheduling of jobs, 2) Providing fault tolerance in a
reliable manner. Most of the existing strategies do not provide
fault tolerance. There are some algorithms which provide fault
tolerance but, they do a large amount of redundant
computation to provide fault tolerance. This paper addresses
this issue and minimizes redundant work by using a group
level table of data. This technique is suitable for partitioning
and group scheduling of jobs.
Keywords : grid computing, grid scheduling, fault
tolerance, redundant computation and group result
table.

I. Introduction

nternet computing has become popular and its
popularity is growing with the emerged infrastructure
such as web services and computational grids. It is

possible to develop applications that support various
Internet wide collaborations through seamlessly
harnessing appropriate Internet resources. Grid
computing is different from distributed computing as
grid computing is concerned with large-scale resource
sharing, innovative applications and the orientation is
high – performance. Therefore, it is important to provide
fault tolerant scheduling of jobs.

In this paper we propose a fault tolerant
scheduling algorithm for partitioning and group
scheduling of jobs, i.e., partitioning a Heavy Weight job
into a group of Light Weight Jobs and Scheduling Light
Weight Jobs as a group.

There are three categories of fault tolerant
approaches proposed for Grids. They are Job
replication, Check pointing and rollback and Adaptive
fault tolerance.

a) Job Replication
In Job replication the same job is replicated to

be executed on multiple, not dependable resources to

Author

: Offshore Faculty, TutorVista Global Pvt. Ltd., Hyderabad,
Andhra Pradesh, India.

E-mail : kesreekala@gmail.com

Author

: PROFESSOR,

UCE,

Computer Science Department,
Osmania University, Hyderabad, Andhra Pradesh, India.

E-mail : schandram@gmail.com

replicas could be generated statically or dynamically
using the history of failure percentage of a node.

b)

Check Pointing and Rollback

 In this the state of the running job saved at
some fixed points called

check points. This state used

for recovery of the job in case of a resource failure.

c)

Adaptive Fault Tolerance
 This is the approach where Job replication

combines with Check pointing. Here, only one replica
will be executing and all other replicas updated
periodically, so that if active replica is not available
during the recovery of a resource failure we use other
replicas.

 In First two Categories of Fault Tolerance
mechanisms there is so much redundant computation
involved which leads to high overhead. Though the
redundant computation minimized in adaptive fault
tolerance communication overhead is still there in this.

 FTPG provides Fault tolerant scheduling of jobs
by maintaining a group table of values for Orphan jobs
(Jobs not able to reach Parent Job

because of failure of

processor at Parent Job). M. Amoon et al [1] developed
Design of a Fault –

Tolerant Scheduling for Grid

Computing using Job replication. This uses a fixed
number of replicas. Ming Tao et al [2] developed a New
Replication Strategy for Grid Workflow Applications.
They conclude that their strategy optimizes the
replication phase in terms of the characteristics of the
workflow applications. J.H. Abawahy et al[3] developed
Fault Tolerant Scheduling Policy for Grid Computing
Systems. This uses job replicas. Malarvizhi et al [4]
developed Fault Tolerant Strategy for Computational
Grid Environment.

 This Scheme uses history of fault occurrence of
nodes. August´_n Caminero et al [5] developed
Extending

GridSim with architecture for Failure

Detection. In all these Schemes the main drawback is
redundant computation and some techniques are not
able to complete the jobs within the deadlines as a
result there is no Quality of Service provided. These are
the observations that bring new challenges

in designing

Fault tolerant Scheduling of jobs, That allows application
to continue execution in case of a resource failure. The
FTPG addresses all the issues mentioned above.

I

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

39

(
DDDD DDDD

)
Y
e
a
r

01
3

2
B

guard the job against a resource failure. Number of

α

σ

II. Related Work

Review of literature reveals that grid
environments are more failure prone as the resources
may come and go at any time. The most popular fault
tolerant mechanism is check pointing. Check pointing is
used in Grid computing by systems such as Condor
and Cactus. Writing the state of process to a stable
storage is the main overhead of this technique. As
discussed in the previous section creating greater
number of replicas and starting them altogether causes
Overhead because of redundant computation.

FTPG is different from other fault-tolerance
algorithms. This technique is suitable for partitioned and
grouped gridlets. That is Heavy weight gridlets are
partitioned into a group of Light weight gridlets and Light
weight gridlets are scheduled as a group.

FTPG based on redoing work lost in crashes.
FTPG eliminates the common problem of most fault
tolerant algorithms that is redundant computation done

by a live processor as a result of crash of its parent
processor. This happens in case of Orphan gridlets.
Therefore, the Overhead in FTPG is very less. In most of
the existing fault tolerant algorithms the processor which
has finished working of an Orphan gridlet must discard
the result of this gridlet because it does not know where
to return that result.
The main objectives of FTPG technique are

• Reduce the amount of redundant computations.
• Providing Fault tolerant service within deadlines

imposed by the user.

III. Fault Tolerant Scheduling
Algorithm

In this section the fault tolerant scheduling
algorithm for a group of light weight jobs presented and
shown in Figure 1.

IV. Process

FTPG is suitable for Scheduling a group of light
weight jobs. That is when user submits a Heavy Weight
Job that is partitioned into Light Weight Jobs and these
Light Weight Jobs are scheduled as a group. Or if the
user generates Light Weight Jobs they are scheduled as
a group. FTPG is based on storing a table of values for
the Orphan Jobs. Suppose that a grouped job is sent for
execution. All the members of a group has access to
group result table designed for this group. This table is
used during the crash recovery procedure for
storing/reusing the Partial results of Orphan job. (A
job/gridlet becomes Orphan when it is not able to send
its result back to the parent job.) . Each job can be
identified by using its group id, job id and other
parameters. When the light weight job’s processor is not
able to locate its grouped job processor each of the
light weight gridlet becomes an orphan and its results
are stored in group result table. This table is replicated
on all the processors of the group members. The
replicas of the table do not have to be strongly
consistent because if the processor is not able to find a
job it can be recomputed quickly since we are using
Light weight jobs here. So updates of the table are

propagated asynchronously (for ex:

after a fixed amount

of time). Since the table stores only Orphan jobs,
number of jobs stored is very less. Therefore, the
overhead by using the table is very less.

 With the use of a group table we are storing
only the results of finished jobs. They are

very easy to

store at the same time redundant computation exists
only for partially executed light weight jobs. Though this
computation is redundant as the gridlet is light weight
gridlet it can be computed very quickly and it is possible
to finish the jobs within the deadlines imposed by the
user.

 Figure 2 and Figure 3 demonstrates an example
of before the crash and after the crash of group level
processor GJ2.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

40

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
B

Fault Tolerant Scheduling of Partitioned and Grouped Jobs in Grid Computing (FTPG)

The crash recovery procedure for a live processor Figure 1 :

Figure 2 : Before the crash of GJ2’s Processor Figure 3 : After the crash of GJ2’s Processor

As shown above when the Parent processor is
crashed Orphan jobs store the output of finished job in
Group result table (GRT). If the processor of Light weight
job that is under computation is crashed it can be
recomputed as the job is a Light weight job and it takes
less time for executing it.

Replicas of the table are maintained at each of
the processor of Light weight jobs in a group. Update
propagation is Asynchronous, The replica’s need not be
strongly consistent because all the jobs are light weight
jobs , So if the finished job’s entry is not found in a table
it can be computed again in a short period.

In this technique very less amount of redundant
computation is there after a crash and adds very little
overhead. This Technique is suitable where the jobs are
partitioned and a grouped job is sent for execution. In
this way redundant computation is minimized that is
present in other schemes like check pointing and job
replication.

V. Simulation Environment and
Results

The Algorithms for comparison (Check pointing
(CP),Fixed number of job replicas (4 replicas) FJR
(4),Adopted job replication AJR, and fault tolerant
Scheduling of Partitioned and grouped jobs FTPG) are
implemented on a machine based on Pentium 1.6GHz
with 120GB HDD and RAM of 1GB on Microsoft
Windows XP. This experiment is carried out on a
simulated grid environment provided by Gridsim.

The Simulation environment consists of 6
resources. These 6 resources have 25 PE’s in total
having different processing capabilities in terms of
Millions of Instructions per Second (MIPS).Further it is
assumed that there are 8 users with 12 to 30 jobs.

FTPG is compared with CP, JR (4) and AJR and
the results are recorded on graphs.

The parameters used for performance
comparison are explained below.

a) Redundant Computations

Calculations that are carried out by more than
one processor.

b) Processing time of gridlet

The amount of time taken by the processor to
finish execution of gridlet.

c) Fault tolerant Service

Fault-tolerant service describes a technique that
is used in case of a processor failure, a backup
component or procedure can immediately take its place
with no loss of data.

The following are the graphs drawn for comparison.

Figure4 shows the number of gridlets
completed within the deadlines when 20% faults are
injected. We can see that a good percentage of gridlets
are completed by using FTPG when compared to AJR,
FJR (4) and CP. As the deadline is increased number of
jobs completed is also increased. Where as it is not true
in case of CP and FJR (4). When the Fixed number of
replicas is used as the number of replicas increases the
number of jobs executed will be less because of the less
availability of resources. FTPG reduces resource
wastage and increases user benefit.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

41

(
DDDD DDDD

)
Y
e
a
r

01
3

2
B

Fault Tolerant Scheduling of Partitioned and Grouped Jobs in Grid Computing (FTPG)

Figure 4 : Graph between the number of gridlets
completed within deadlines when 20% faults are

injected

The number of gridlets and their execution time
is plotted in the graph as shown in Figure 5. These
values are measured when 30% of the
processors/resources are failed. It can be observed that
as the number of gridlets is increased there is a very
little increase in the execution time by using FTPG
whereas in the other techniques AJR, FJR (4) and CP as
the gridlets are increased their execution time increases
drastically.

Figure 5

: Graph between number of gridlets and the

time taken for execution when 30% faults are injected

The number of redundant computations when
30% of the resources failed is measured using CP, AJR,
FJR (4) and FTPG and recorded on a pie chart. The

results are recorded in figure 6. Figure 6 demonstrates
that by using FTPG number of redundant computations
were very less in percentage. This improves resource
owner benefit by utilizing the resources properly.
Therefore, it is good to use FTPG for fault tolerant
Scheduling.

 Figure 6

:

Redundant computations because of 30% of
the resources are failed

 VI.

Conclusions and Future Work

 The FTPG algorithm provides QoS to the user at
a good level of acceptance. It uses very less storage for
Group Result Table and redundant computations are
greatly reduced. The Overhead in this technique is very
less.

 This technique improves user benefit by
providing Quality of Service and improves resource
owner benefit by minimizing the wastage of resources.
This technique can be extended to include network
failure, data and service resource failures.

 References Références Referencias

 1.

M. Amoon, “Design of a fault tolerant Scheduling
system for Grid Computing” IEEE Computer Society
2011 Second International conference on
Networking and Distributed Computing © 2011
IEEE DOI 10.1109/ICNDC.2011.29.

 2.

Ming Tao, Shoubin Dong and Kejing He, “A New
Replication Scheduling Strategy for Grid workflow
Applications,” IEEE@Computer Society 2011 Sixth
Annual China Grid Conference.

 3.

J. H. Abawajy, “Fault-Tolerant Scheduling Policy for
Grid Computing Systems” Proceedings of the 18th
International Parallel and Distributed Processing
Symposium (IPDPS’04) (C) 2004 IEEE.

 4.

MALARVIZHI NANDAGOPAL, “FAULT TOLERANT
SCHEDULING STRATEGY FOR COMPUTATIONAL
GRID

ENVIRONMENT” Malarvizhi Nandagopal et.
al. / International Journal of Engineering Science
and Technology Vol.

2(9), 2010,

4361-4372.

 5.

August´_n Caminero Anthony Sulistio, Blanca
Caminero, Carmen Carri´on and Rajkumar Buyya,

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
II

 V
er
sio

n
I

42

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
B

Fault Tolerant Scheduling of Partitioned and Grouped Jobs in Grid Computing (FTPG)

“Extending GridSim with an Architecture for Failure
Detection".

Global Journals Inc. (US)

Guidelines Handbook

www.GlobalJournals.org

	Fault Tolerant Scheduling of Partitioned and Grouped Jobs in Grid Computing (FTPG)
	Author's
	Keywords
	I. Introduction
	a) Job Replication
	b) Check Pointing and Rollback
	c) Adaptive Fault Tolerance

	II. Related Work
	III. Fault Tolerant SchedulingAlgorithm
	IV. Process
	V. Simulation Environment andResults
	a) Redundant Computations
	b) Processing time of gridlet
	c) Fault tolerant Service

	VI. Conclusions and Future Work
	References Références Refer encias

