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Abstract- Heterogeneity and different ownerships of grid 
computing resources impose complexity in evaluating the 
market value of these resources. Auction protocols are 
proposed to meet this challenge efficiently. Auction models 
are also suitable for achieving better payoff and resource 
allocation for grid providers. Grid users and providers are 
usually geographically distributed. The number of users in grid 
computing could also be very high. Hence, models provide 
seamless support to multiple users and providers would be 
useful to promote grid computing. In this paper, we implement 
a novel First Price Open Cry auction (ascending-bid auction) 
that supports for multiple users and providers simultaneously. 
We explain about (i) bundle generation (resource packages by 
providers), (ii) creating corresponding agents to bundles, (iii) 
allowing users to choose their suitable bundles, and (iv) 
clearing bundles through solving winner determination 
problem. The simulation results predict when and how to map 
providers’ private values on resource bundles, such that 
maximum revenue and better utilization of idle resources.
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I.

 

Introduction

 
rid computing is a buzzword in computational 
science, which was initiated in the mid-1990s 
[1]. The grid computing tends to aggregate 

distributed resources (storage, memory, and CPU) over 
the Internet and to provide stronger computational 
power for computationally complex applications such as 
protein analysis, weather forecasting, and image 
processing. However, multidimensionality (e.g., 

 

architecture, 

 

operational state, and ownership) of grid 
resources impose a challenge on seamless 
collaboration. Different economic models (e.g., 
commodity market, bargaining, and auction) are 
proposed to overcome the barrier

 

of resource 
coordination across multiple administrations [2]. Among 
the models, auction protocols are different regarding 
their price

 

setting and resource allocation policies. 
Additionally, auction mechanisms are suitable to 
evaluate the market value and maximize economic 
efficiency, which ultimately motivates resource providers 
to contribute their resources on the grid.

 

In a distributed self-interested agent 
environment (such as the grid), auction theory analyzes 

different protocols and agents’ behavior in auctions. An 
auction consists of an auctioneer (provider-side) and 
potential bidders (user-side). In an auction setting, the 
auctioneer tries to maximize his/her revenue through 
selling an item to the bidder, who values it the highest, 
while the bidders try to acquire the item at the lowest 
possible price. Depending on how a bidder values a 
particular item, there are three different auction settings; 
(i) private value auction states that there is a private 
value for the auctioned item, which means, the value of 
the particular item by a bidder does not depend on how 
others value the item. Each bidder has its preferences 
on the auction, (ii) common value auction describes that 
a bidder’s value of an item depends entirely on other 
agents’ values of it, (iii) correlated value auction is the 
blend of the two, that is, the value of an item by a bidder 
partly depends on its preferences and partly on others’ 
values. However, regarding grid computing, it is hard to 
comment on which setting would fit all grid scenarios, 
since in some cases, bidders have their individual 
preferences on resources and in some other cases, 
multiple bidders may impose a value on a particular 
resource. 

In this paper, we focus on provider-side and 
employ a private value auction by assuming that bidders 
have their value on resources. Based on this setting, 
different auction protocols (Dutch, First-price-sealed-
bid, Vickrey, and English) can be viewed differently in a 
grid perspective. Dutch auction model could not achieve 
much popularity in the grid environment, since it 
continuously lowers resource price until one of the 
bidders takes the resource. Hence, the auction does not 
provide sufficient incentives to providers. In the First-
price-sealed-bid auction model, each bidder submits 
one bid without knowing the others’ bids. The highest 
bidder wins the item and pays the amount of his/her bid. 
From a provider’s point of view, the auction may be 
suitable under a private value auction setting, since it is 
a single shot auction and bidders do not have a chance 
to counter bid. However, an auctioneer cannot 
guarantee that all bidders will value the auctioned item. 
Hence there is a chance that the providers may not 
maximize the revenue. The similar case happens to 
Vickrey auction, in which, the highest bidder wins the 
item and pays the amount of the second highest bidder. 
The average revenue for providers may not be 
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maximized in this model as well. The best policy for a 
provider would be First price open cry ascending-bid 
auction (English auction) model under private value 
auction setting. In such auction, each bidder is free to 
raise his/her bid and exceed others over iterations. 
When no bidder is willing to rise any more, the auction 
ends, and the highest bidder wins the item at the price 
of his/her bid. Considering English auction model under 
such a setting would be economically efficient since it 
increases the chance of extracting competitive bids from 
the bidders through iterative bidding and finally 
awarding it to the highest bidder. 

Due to the high interdependency of grid 
resources, the single-item auction may not be suitable 
for grid applications. Parkes and Ungar first propose 
combinatorial auctions, where bidders are allowed to 
bid directly for bundles of resources [3]. Parkes 
appreciates the importance of bundles to the distributed 
resource allocation problem. However, bundle 
generation in grid environment requires taking into 
consideration resource state (availability), heterogeneity 
and control over the resources at a particular time and 
location. In this paper, we explain how bundles are 
generated based on providers’ availability. After 
completion of bundle generation, bundle agents are 
created, which are delegated to offer their respective 
bundles. Each auctioneer corresponding to a particular 
bundle then invites bid from its suitable bidders. At each 
round, the ask price by an auctioneer is the highest bid 
of the previous round. When no bidder would like to 
increase their bids anymore, auction ends. The 
auctioneer then awards the bid to the highest bidder as 
long as the bid meets auctioneer’s private value for the 
bundle. The presence of the private value for a particular 
bundle by an auctioneer is important since it prevents 
the auctioneer to release the bundle with a lower price. 
We develop a two-sided grid market, where multiple 
bidders can choose their suitable bundles from any of 
the multiple providers and providers to offer their 
bundles via bundle-correspondents. Two-sided grid 
market helps us to comprehend the real picture of a 
large-scale distributed grid. We conduct the 
experiments under two cases; firstly, it considers the 
bidders with Relaxed Budgets and secondly, bidders 
with Tight Budgets. We find that, under certain 
reservation prices on bundles imposed by the 
auctioneers, achieved revenue and utilization are better 
in the relaxed case than the latter. This outcome inspires 
us to map auctioneers’ private values with bundles to 
ensure better payoff and utilization by the providers. 

We organize the remainder of the paper as 
follows: Section 2 presents related work conducted on 
different auction protocols. In Section 3, we describe our 
system architecture in details. Section 4 explains the 
implementation of our model and Section 5 shows 
experimental results. Finally, in Section 6, we conclude 
and propose some future research directions. 

II. Related Work 

Liu and Zhao propose an iterative combinatorial 
auction to facilitate resource allocation problem in grid 
environment [4]. They study preliminaries of iterative 
combinatorial auction mainly on different pricing 
functions such as ask prices by an auctioneer and price-
update methods by bidders. They compare their results 
by varying the number of resources and the number of 
single-unit auctions. However, they do not consider 
auctioneers’ reservation prices for bundles which may 
lead to less revenue for providers, since some bidders 
may not be intending to increase their bids and hence, a 
particular bidder could get that bundle at a lower price. 
In such a scenario, evaluation of true market value for a 
particular bundle becomes impossible. These bidders 
typically work for a particular group or organization. 
Hence, from an auctioneer’s point of view, it would be 
better to have some private values on bundles. Also, 
how grid resources are bundled for an auction through 
engaging suitable bidders is not clear.  

GEMSS (Grid Infrastructure for Medical Service 
Provision) has been proposed to support the provision 
of medical simulation services for clients such as 
hospitals [5]. In [5], they develop a reverse English 
auction model to harness suitable reservations available 
for clients. Reverse English auction is a type of set up, in 
which, the role of bidders and providers are reversed, 
with the primary objective to drive purchase price 
downward. However, the approach is likely to be 
suitable for client-side but not for increasing providers’ 
profits. In this paper, we focus on the provider-side and 
propose an ascending-bid auction to maximize revenue 
for providers. 

Attanasio et al. [6] investigate the co-relation 
between auction mechanism and Lagrangian-based 
scheduling mechanism. They show that their proposed 
Lagrangean-based auction heuristic outperforms 
traditionally centralized heuristics. Though, they have 
proposed several methods for updating resource prices, 
however which particular one they have applied to their 
experiments is not clear. Apart from this, some auction 
entities such as auction setting (methodology to update 
a bidder’s bid), winner determination problem and 
evaluating the market value of resources are not taken 
into consideration. Without such criteria, the market 
mechanism might lose its desired objective of 
successful resource provisioning. 

A protocol for evaluating the economic 
efficiency and how it impacts on system performance 
has been studied by Das and Grosu [7]. They analyze 
the creation of possible bundles by providers, allocation 
of computing resources to the winners and perform 
simulations regarding budget and resource utilization. 
They propose Generalized Vickrey auction where 
bidders submitted their bids only once and assumed to 
reveal their value on bundles. However, providers 
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cannot guarantee the expression of value from all 
bidders, since some bidders could participate in the 
auction only to extract the information of how other 
bidders value the bundle. Hence, from providers’ point 
of view, the chance of evaluating market value on 
bundles decreases. Nevertheless, the expected revenue 
by the providers might not be achieved by using such a 
single shot auction. A similar approach using Second-
price Sealed-bid auction (i.e., highest bidder wins the 
auction at the price of the second highest bidder) is 
proposed by Young et al. [8]. They employ a greedy 
approximation algorithm for efficient allocation among 
winners to reduce the amount of time needed to 
compute a set of winners. However, their particular 
auction setting does not consider iterative bidding, 
which reduces the chance of identifying the true market 
value. We develop an iterative combinatorial auction 
which assists in manipulating the value of resource 
bundles and hence in maximizing economic efficiency. 

By realizing the complexity of successful bundle 
formation in situations, where multidimensionality 
(distributed resource bundling) of the resources occurs, 
Peter proposes multiple single-item auctions across 
administrations rather than a combinatorial auction [9]. 
However, single-item auctions on grid applications may 
not be suitable due to the interdependency of grid 
resources. In other words, as long as the bundle 
formation through multiple single-item auctions is not 
completed, the application cannot start execution. 
Hence, from a bidder’s point of view, he/she starts 
auctioning with the uncertainty of completion his/her 
resource bundle. Also, how a bidder breaks down 
his/her budget to precede single-item auctions is not 
clear. Such an approach of using multiple single-item 
auctions would produce communication overhead and 
might create network congestion. In our work, bundles 
are formed based on providers’ availability. Bidders can 
choose and bid for their suitable bundles. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1:
 
An overview of combinatorial auction mechanism for distributed grid market

Notations: 
 

BC refers to Bundle Correspondent, where BC21 means bundle-correspondent for bundle-1 under provider-2 
             Refers to the rejection from its respective bundle-correspondent due to insufficient competitors for that 
bundle

 
             User (bidder) communication with bundle-correspondent 
             Provider communication with bundle-correspondent 
             Administrative boundary

 
III. System Model 

We propose the agent-based framework shown 
in Figure 1. This framework supports auctions 
happening with multiple providers concurrently in a 
distributed environment. We model our framework with 
three types of agents, which are bidder-agent, provider-
agent and auctioneer-agent or bundle-correspondent 
(BC). The model can be viewed as a game, where each 
of the players (agents) tries to optimize its objective. In a 
provider’s point of view, his/her agent tries for optimal 
allocation through maximizing revenue. A bundle-
correspondent aims to clear its bundle by selecting the 

highest bidder among its competitors, whereas a 
bidder-agent’s strategy is to acquire its suitable bundle 
through budget optimization. However, in this paper, we 
focus on provider strategy and employ an ascending-
bid auction to support providers’ benefit.

 a)
 

Bundle Generation
 A bundle by a grid provider typically consists of 

several distinct resources (e.g., storage, CPU, and 
operating system). Bundles, in such an environment, 
can be generated in two ways. One is decentralized, in 
which bundles are formed across multiple organizations. 
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within the same organization. However, decentralized 
bundle generation becomes challenging, when 
multidimensionality of resources occurs. In this paper, 
we consider centralized bundle formation for simplicity. 
According to our model, bundle(s) by a particular 
provider are formed dynamically based on the provider’s 
availability. Similarly, multiple providers generate their 
respective bundles and invite potential bidders to 
compete for them through BCs. 

Let Ωi 
denote the set of bundles which are 

offered by a particular provider Pi 
(i
 
= 1, …,

 
n). Let J ≡

 {1, …, j} be the set of j bidders. Bidders are free to 
choose their suitable bundles from any of the providers 
(Sji 

⊆
 
Ωi), where Sji 

denotes the bundle belonging to ith
 provider found to be suitable by the jth

 
bidder. Each 

bidder bids, which consists of a pair (S, B), where B 
refers to the budget by the bidder for the bundle S, 
which

 
he/she is willing to pay for and B ∈

 
ℝ+. In our 

model, each B can further be split into minimum budget 
Bmin 

and maximum budget Bmax 
so that minimal bid 

increment (ϵ
 
> 0) by the competitors can be applied 

during the iterative auction. Also, each bidder 
possesses a finite value, vj(Si), for any subset S 

 
and we 

may normalize, vj(∅) = 0. Bidders are assumed to have 
a quasi-linear utility function uj(S) = vj(S) –

 
B(S) for 

bundle S
 
at a price B. Once the bundle generation is 

finished, BCs is created based on available bundles, Ωi 

dynamically.
 

b) Engage Bundle Competitors 
Bundle correspondents are the most significant 

part in our model, since they (i) invite suitable bidders, 
(ii) proceed auctions by initiating an ask-bid (typically a 
value below the market price), (iii) propose a new ask-
bid in each iteration and (iv) finally release the bundle by 
selecting an appropriate winner (the highest bidder). 
The number of BCs by a provider i is equal to the length 
of Ωi which means, each BC handles only one bundle. 
Let the number of possible bundles by a particular 
provide; i is M ≡ {1, …, m} which is a function of 
resource availability by the provider. Hence, BCim refers 
to the BC of mth

 bundle belonging to the provider, i. One 
bundle is usually chosen by multiple bidders, if the 
bidders’ requirements match with the bundle items. 
However, in our system, an auction for a particular 
bundle Si is proceeded if |j| ≥ 2 for the bundle, 
otherwise auction dismisses with an auction cancelation 
message to the bidder. If cancellation occurs, the BC 
waits for other bidders (typically the failed bidders, since 
we allow them to re-negotiate with BCs corresponding 
to other bundles) to proceed with the competition. In an 
ascending-bid auction, the utility for a BC increases, if 
the number of competitors for that bundle is high. 
Moreover, the number of competitors for an auction 
depends on the total number of bundles by a provider 
as well as the number of providers in a market. 

The winner determination problem in an auction 
protocol that describes the selection of an appropriate 
bidder while ensuring maximum revenue. In an 
ascending-bid set up, when no bidders would like to rise 
their bids any more, the auction terminates, and the 
auctioneer (BC) awards the highest bidder with the price 
of his/her bid. It is BC’s responsibility to ensure that the 
appropriate bundle and no more than one bundle are 
allocated to the winner. The respective bundle is then 
removed from Ωi, and the BC is terminated.  

c) Private Value 
Once available bundles by the BCs are 

published and invited for auction; bidders select their 
suitable bundles to compete. Bidders are assumed to 
have exclusive-or bids for bundles, which means, one 
bidder can only choose either bundle S1 or bundle S2, 
but not both. The primary strategy of bidders in an 
ascending-bid auction under private value setting is to 
minimally increase (ϵ) their bids in each iteration over the 
ask-bid so that they can compete for a maximum time. 
Hence, the minimal-increment method can be used as a 
price-update-method for bidders. Each bidder starts off 
his/her competition by initiating a minimum bid Bmin 
(above the current ask-bid) and continues to increase 
the bid until it reaches Bmax or receives notification from 
the BC about the completion of winner determination. If 
a bidder reaches his/her Bmax without any notification 
from BC, he/she is removed from the potential-bidder-list 
for the bundle. The provider side, each provider has 
his/her private value or reservation price for each 
resource bundle. If the private value for a particular 
bundle is not met, it is not provisioned, which ensures 
the auction delivered with a sufficient price. However, if 
the number of competitors for a particular bundle is less 
or competitors are with Tight Budget, the reservation 
price for the auction is not likely to be achieved. 

IV. Implementation 

A simulation environment is established, and 
the proposed model is implemented using a cross-
platform multi-agent programmable modeling 
environment known as NetLogo [10], [11]. We choose 
NetLogo because, 

• NetLogo is a FIPA (Foundation for Intelligent 
Physical   Agent) conformant platform [12]. 

• It has extensive built-in models to deal with multi-
agents.  

• It can work as a ‘simulated parallel’ environment 
[10]. 

• It is platform (Mac, Windows, and Linux) 
independent [11]. 
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Bundles could form with multiple different items, 
and one bundle could typically be different from another. 
However, for grid applications, typically most bundles 
are comprised of same items (e.g., storage, CPU, and 



users are engaged to compete for these bundles. We 
implement a FIPA (Foundation for Intelligent Physical 
Agents) conformant English auction protocol [13]. In this 
protocol, the auctioneer (BC) seeks to find the market 
price of a bundle by initially announcing an ask-bid 
below the supposed market value, and gradually raising 
the ask-bid over iterations. If any bidder accepts the bid 
and declares a counter-bid which is greater than the 
ask-bid, auctioneer immediately announces the counter-
bid as a new ask-bid. The auction continues until no 
bidder is prepared to counter-bid against the ask-bid. If 
the last bid by the bidder exceeds the auctioneer’s 
reservation price, the bundle is sold. Otherwise it is not 
sold. The reservation price C of a bundle B by a 
particular provider Pi can be formalized by Equation (1). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2: A NetLogo screenshot depicts the offering of bundles by a provider and competitor engagement on 
available bundles 
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memory), which means most grid applications require 
same resources. Hence, in our simulation, we consider 
two types of resources (storage and CPU) for each 
bundle and bidders’ requirements are also assumed to 
be the two types of the resources. Figure 2 illustrates 
how available bundles by a provider are expressed and 
bidders choose their suitable bundles for competition. 
According to the figure, provider 5 has six bundles 
available to offer, whereas the first element of a bundle 
refers to storage and the second element to the number 
of processors. Bidder (user) 18 chooses bundle-1 out of 
the 6, since bundle-1 matches or exceeds the bidder’s 
requirement. However, the auction for the bundle does 
not happen, since only one bidder selects the bundle. 
The BCs corresponding to bundle-3 and bundle-5 would 
be allowed to proceed with their auctions, since multiple 

Algorithm 1: Multiple Iterative Biddings for Multiple Bundles by a Particular Provider
1.1 PROCEDURE: AUCTION_PROCESS
1.2 begin
1.3 foreach Ωi

1.4    begin 
1.5 set ask-bid price-under-the-market-value
1.6 set highest-bid 0
1.7 if (length of competitors for the bundle, Sm > 1)
1.8   [while (ask-bid > highest-bid)
1.9   [for-each competitors for the bundle, Sm

1.10 [    if (Bj > ask-bid) ;where j ∈ competitors
1.11   [set ask-bid Bj]
1.12 end
1.13 else SUB-PROCEDURE: UPDATE_COMPETITOR_BID
1.14   if (Bj > ask-bid)
1.15 [set ask-bid Bj]
1.16 end
1.17 end
1.18 if (Bj < ask-bid and length of competitors for the bundle, Sm > 1)
1.19 [remove the competitor from the available competitors
1.20 set the competitor’s bid to its initial bid]
1.21 end
1.22 ]
1.23 if (length of competitors for the bundle, Sm = 1)
1.24 [set highest-bid ask-bid]
1.25 end     
1.26   ]
1.27   ]
1.28 end
1.29   end
1.30 end



         
       
      
    
    
   
  

 

𝐶𝐶(𝐵𝐵𝑖𝑖) = �𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 × 𝑈𝑈𝑟𝑟(𝑖𝑖)
𝑅𝑅

𝑟𝑟=1

    

Where, r

 

refers to a particular resource element in the bundle. Typically, this can be storage, CPU, or 
memory.

 

q

 

is the total number of elements in the bundle, Reqr

 

refers to the resource amount of type r

 

in the bundle

 

U
r 
is the unit price (e.g., price/GB for storage) of resource type r. This function is for a provider, i

 

We develop an algorithm supporting auctions to be conducted with multiple bundles. Algorithm 1 explains 
the details. 

 

Figure 3 presents a screenshot illustrating the 
multiple auctions for multiple bundles. This also includes 
the history for multiple providers. The variation of 
reservation price (provider demand) indicates that there 
are different reservation prices for different bundles. If a 
reservation price for a bundle is under the bidders’ bids, 

the bundle is provisioned. If it is above the bidders’ bids, 
the bundle is not provisioned. When there are no 
potential providers, our two-sided market

 

is terminated. 
A provider is taken out from the potential-provider-list 
dynamically, if the provider does not receive sufficient 
bidders to compete for at least one bundle.

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:

 

A NetLogo

 

screenshot describing auction history for multiple bundles

 

V.

 

Experimentation 

Table 1 presents the resource configuration we 
use to conduct our experiments. Column 1 of Table 1 
represents different parameters that a bidder and a 
provider use to set their respective agents. In our 
simulation environment, one can accommodate a large 
number of bidders as well as providers. In this paper, 
we examine 5000 bidders and 200 providers. To set this 
large number of bidders and providers with different 
requests and offers respectively, we use ranges of 
values, so that each participant can select

 

a value from 
its respective range. All bidders’ requests are set using 
the Column 2 ranges, and all providers’ offers are set 
using the Column 3 ranges automatically. Resource 
bundles are then generated based on the providers’ 
offers. We conduct our experiments in two scenarios - 
bidders with Relaxed Budgets and bidders with Tight 
Budgets. Then we investigate the system performance 
in both cases. Typically, the reservation price for a 

  
  
 

  

50

Y
e
a
r

20
18

  
 

(
)

B
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
III

 I
ss
ue

 I
 V

er
sio

n 
I 

© 2018   Global Journals 1

Iterative Combinatorial Auction for Two-Sided  Grid Markets: Multiple users and Multiple
Providers

bundle is manipulated using the maximum demand 
range [6-10] (Ustorage for equation-1), which refers to the 
price for 1 GB storage and [20-30] (UCPU for equation 1) 

refers to the price for the processor of 1 MIPS (Million 
Instructions Per Second) capacity. For simplicity, we 
consider all the processors identical. We use maximum 
demand for the reservation price so that maximum 
revenue can be achieved. However, we find that using 
maximum demand as reservation price may work well 
for the scenario when bidders come with Relaxed 
Budgets but not when bidders come with Tight Budgets. 
Experiment-1 and 2 explain in details. Also, we assume 
concurrent arrival of different requests and offers.

(1)



 
 

 

 

Table 1: Resource configuration

 

User/provider-
level 

parameter

 

User-level-range

 

Provider-
level-range

 

Number of 
participants

 

5000

 

200

 

Storage/disk-
space (GB)

 

400-600

 

6000-10000

 

Number of 
CPUs (MIPS 

per CPU)

 

20-30

 

500-700

 

Minimum 
Budget/deman

d ($)

 

Relaxe
d 

Tight

 

1-5 (/GB), 12-
16 (/MIPS)

 

800-
1500

 

500-
1000

 

Maximum 
Budget/deman

d($)

 

4000-
6000

 

2500-
4000

 

6-10 (/GB), 20-
30 (/MIPS)

 

Experiment 1 - Bidders with Relaxed and Tight Budgets:

 

In our first experiment, we consider the bidders with 
relaxed and Tight Budgets separately. Results are 
evaluated and compared regarding revenue and 
resource utilization. Revenue, E

 

earned by a particular 
provider, i is given by,

 

𝐸𝐸𝑖𝑖 =  �𝑍𝑍𝑙𝑙

𝑡𝑡

𝑙𝑙=1

   

 

Where

 

l denotes the number of the bundle that 
is sold, t

 

denotes the total number of sold bundles, and 

Zl

 

defines the highest bid by a bidder for the sold 
bundle. The solid trend in Figure 4 illustrates the revenue 
($160×105) in combination with all providers in the 
market. The X-axis shows the total number of auctions 
that are successful in the market. This number is high 
(3037) for relaxed budget due to certain reasons. Firstly, 
the number of providers and the number of bundles are 
high, since under a single provider there could be a lot 
of bundles to offer. Secondly, it also depends on the 
number of bidders. There are 5000 bidders in our 
system. Due to this large quantity, the competition for a 
particular bundle increases and thus the possibility of 
the bundle being sold also increases. Thirdly, because 
of Relaxed Budgets by the bidders, the chance of 
meeting a bundle’s reservation price is increased. The 
trends are straight, since we only consider successful 
auctions to calculate the revenue, and each successful 
auction brings some revenue, which is added 
immediately to the total revenue. Regarding the scenario 
with Tight Budget, the number of successful auctions is 
significantly low. Hence, the total revenue achieved, in 
this case, is remarkably lower than that for the Relaxed 
Budget. Due to Tight Budget, at most times, bidders 
could not reach the expected reservation prices 
imposed by the respective providers. This scenario 
yields fewer successful auctions on bundles. 

 

The second evaluation criteria, resource 
utilization, R for a resource of type, r by a particular 
provider, i can be formalized using the following 
equation,

 

𝑅𝑅r(𝑖𝑖) = �
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙

 

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟

 

𝑜𝑜𝑜𝑜

 

𝑟𝑟 − 𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙𝑅𝑅

 

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟

 

𝑜𝑜𝑜𝑜

 

𝑟𝑟
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙

 

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟

 

𝑜𝑜𝑜𝑜

 

𝑟𝑟
� (𝑖𝑖) ∗ 100                                             

 

For resource utilization, we obtain similar 
patterns for both disk-space and processors. Hence, we 
explain the utilization for processors only in Figure 5. 
The figure demonstrates utilization pattern for 200 
providers (along X-axis). Figure 5 describes the 

computational analysis of the two scenarios. Providers 
in the Relaxed Budget

 

scenario can utilize their 
resources massively, whereas, in the Tight Budget 
scenario, resource utilization by the providers is 
significantly lower.
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Figure 4: Comparison of revenue under two different scenarios
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Figure 5:

 

Computational analysis under two different scenarios

 

We can explain this difference using the same 
explanation we used regarding revenue. Due to Tight 
Budgets of the bidders, providers are most often unable 
to sell their bundles. On the other hand, for the same 
reservation prices, providers perform better with Relaxed 
Budget. Now, a question arises, what is the need for 
reservation price during the Tight Budget? As mentioned 
earlier in Section 3.3, the significance of reservation 
price in an agent-oriented environment is that, bidders 
cannot win a bundle without much competition. One 
could often receive such a scenario when participant 
engagement to auctions is free of cost, and some 
participants are intended to participate only to retrieve 
the market value of a bundle through lying the 
auctioneer (counter-speculation). Hence, a need arises 
to map reservation prices for a particular scenario (Tight 
Budget) dynamically so that maximum revenue and 
better utilization can be achieved. However, there is one 
question about how to recognize whether the bidders 
are coming with Relaxed Budgets or Tight Budgets. To 
answer this question, we define a parameter, Q

 

that is 
used to obtain runtime auction success rate by a 
particular provider, i. We define Q as, 

𝑄𝑄𝑖𝑖 =
𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑙𝑙

 

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟

 

𝑜𝑜𝑜𝑜

 

𝑠𝑠𝑜𝑜𝑙𝑙𝑠𝑠

 

𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠
𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑙𝑙

 

𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑟𝑟

 

𝑜𝑜𝑜𝑜

 

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙

 

𝑛𝑛𝑛𝑛𝑖𝑖𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠
  

  

The value of Q

 

ranges from 0 to 1. An agent 
(BC) is now able to sense whether the bidders are 
coming with Relaxed Budgets or Tight Budgets based 
on Q

 

and map the reservation price accordingly. To 
map the reservation price, a BC

 

can dynamically switch 
between the provider’s minimum demand and the 
maximum demand (Table 1). If the value of Q tends to 
lower, BCs change the reservation prices to lower, so 
that the value of Q can be high again.

 

However, in order to define that at which value 
of Q, a BC

 

needs to lower the reservation price, we 
define another parameter called threshold success rate, 
Qth

 

of Q. We experiment with different threshold values 

(ranging from 0 to 1) under Tight Budget

 

condition and 
find that, Qth

 

= 1 yield better results than other values.

 

Experiment 2 - Bidders with Tight Budgets (Traditional 
versus Optimized):

 

We repeat the experiment under 
Tight Budget, where reservation prices are changed 
based on the success factor, Q

 

dynamically during the 
runtime. We compare the results with the same results 
obtained for Tight Budget

 

without considering Q. Figure 
6 shows the comparison of revenue. Because of 
sensing success rate and mapping reservation prices 
accordingly, even under the same scenario (Tight 
Budget), our strategy performs better ($129.52×105) 
than the traditional one ($44.74×105). The number of 
successful auctions increases from 1173 to 3846. Figure 
7 presents the comparison of utilization of the two 
cases. Due to high success rate, the mechanism even 
at the Tight Budget

 

condition utilizes more resources 
than the former Tight Budget condition. The average 
utilization is improved by 56%.
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Figure 6: Revenue comparison (before optimization and after optimization) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:

 

Computational analysis (before optimization and after optimization)

 

VI.

 

Conclusions

 

The evolution of distributed collaboration is 
hindered due to insufficient incentives to providers to 
contribute their resources on the grid. Hence, economic 
models are proposed to successfully collaborate 
resources. English auction is well known due to its 
strengths of evaluating market price and maximizing 
revenue. In this paper, we developed an English auction 
interaction protocol supporting multiple users and 
providers to exhibit the performance pattern of a large 
scale distributed grid environment. Resources are 
bundled to facilitate auction process. We explained 
details regarding bundle generation, participant 
engagement, bundle correspondence generation, 
auction process and finally provision of bundle 
allocation through solving winner determination 
problem. We analyzed our two-sided grid markets under 
two different scenarios - Relaxed Budget

 

and Tight 
Budget. To overcome the exhibited variation in 
performance, we defined a new parameter to 
manipulate runtime success rate. Our proposed 
methodology provides competitive performance even 
under the Tight Budget

 

scenario regarding revenue and 
utilization.

 

In future, we would like to vary resource supply 
and demand to analyze the system performance further 

and investigate suitable values for threshold success 
rate. The bundle generation presented in this paper is 
currently centralized. Future work would investigate the 
suitability of our work in a decentralized environment.
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