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6

Abstract7

Heterogeneity and different ownerships of grid computing resources impose complexity in8

evaluating the market value of these resources. Auction protocols are proposed to meet this9

challenge efficiently. Auction models are also suitable for achieving better payoff and resource10

allocation for grid providers. Grid users and providers are usually geographically distributed.11

The number of users in grid computing could also be very high. Hence, models provide12

seamless support to multiple users and providers would be useful to promote grid computing.13

In this paper, we implement a novel First Price Open Cry auction (ascending-bid auction)14

that supports for multiple users and providers simultaneously. We explain about (i) bundle15

generation (resource packages by providers), (ii) creating corresponding agents to bundles, (iii)16

allowing users to choose their suitable bundles, and (iv) clearing bundles through solving17

winner determination problem. The simulation results predict when and how to map18

providers? private values on resource bundles, such that maximum revenue and better19

utilization of idle resources. K20

21

Index terms— grid computing; economic models; auction; bid; profit; tight budget.22

1 Introduction23

rid computing is a buzzword in computational science, which was initiated in the mid-1990s [1]. The grid24
computing tends to aggregate distributed resources (storage, memory, and CPU) over the Internet and to25
provide stronger computational power for computationally complex applications such as protein analysis, weather26
forecasting, and image processing.27

However, multidimensionality (e.g., architecture, operational state, and ownership) of grid resources impose a28
challenge on seamless collaboration. Different economic models (e.g., commodity market, bargaining, and auction)29
are proposed to overcome the barrier of resource coordination across multiple administrations [2]. Among the30
models, auction protocols are different regarding their price setting and resource allocation policies. Additionally,31
auction mechanisms are suitable to evaluate the market value and maximize economic efficiency, which ultimately32
motivates resource providers to contribute their resources on the grid.33

In a distributed self-interested agent environment (such as the grid), auction theory analyzes different protocols34
and agents’ behavior in auctions. An auction consists of an auctioneer (provider-side) and potential bidders (user-35
side). In an auction setting, the auctioneer tries to maximize his/her revenue through selling an item to the bidder,36
who values it the highest, while the bidders try to acquire the item at the lowest possible price. Depending on37
how a bidder values a particular item, there are three different auction settings; (i) private value auction states38
that there is a private value for the auctioned item, which means, the value of the particular item by a bidder39
does not depend on how others value the item. Each bidder has its preferences on the auction, (ii) common value40
auction describes that a bidder’s value of an item depends entirely on other agents’ values of it, (iii) correlated41
value auction is the blend of the two, that is, the value of an item by a bidder partly depends on its preferences42
and partly on others’ values. However, regarding grid computing, it is hard to comment on which setting would43
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3 RELATED WORK

fit all grid scenarios, since in some cases, bidders have their individual preferences on resources and in some other44
cases, multiple bidders may impose a value on a particular resource.45

In this paper, we focus on provider-side and employ a private value auction by assuming that bidders have their46
value on resources. Based on this setting, different auction protocols (Dutch, First-price-sealedbid, Vickrey, and47
English) can be viewed differently in a grid perspective. Dutch auction model could not achieve much popularity48
in the grid environment, since it continuously lowers resource price until one of the bidders takes the resource.49
Hence, the auction does not provide sufficient incentives to providers. In the Firstprice-sealed-bid auction model,50
each bidder submits one bid without knowing the others’ bids. The highest bidder wins the item and pays the51
amount of his/her bid. From a provider’s point of view, the auction may be suitable under a private value auction52
setting, since it is a single shot auction and bidders do not have a chance to counter bid. However, an auctioneer53
cannot guarantee that all bidders will value the auctioned item. Hence there is a chance that the providers54
may not maximize the revenue. The similar case happens to Vickrey auction, in which, the highest bidder wins55
the item and pays the amount of the second highest bidder. The average revenue for providers may not be G56
maximized in this model as well. The best policy for a provider would be First price open cry ascending-bid57
auction (English auction) model under private value auction setting. In such auction, each bidder is free to raise58
his/her bid and exceed others over iterations. When no bidder is willing to rise any more, the auction ends,59
and the highest bidder wins the item at the price of his/her bid. Considering English auction model under such60
a setting would be economically efficient since it increases the chance of extracting competitive bids from the61
bidders through iterative bidding and finally awarding it to the highest bidder.62

Due to the high interdependency of grid resources, the single-item auction may not be suitable for grid63
applications. Parkes and Ungar first propose combinatorial auctions, where bidders are allowed to bid directly64
for bundles of resources [3]. Parkes appreciates the importance of bundles to the distributed resource allocation65
problem. However, bundle generation in grid environment requires taking into consideration resource state66
(availability), heterogeneity and control over the resources at a particular time and location. In this paper,67
we explain how bundles are generated based on providers’ availability. After completion of bundle generation,68
bundle agents are created, which are delegated to offer their respective bundles. Each auctioneer corresponding69
to a particular bundle then invites bid from its suitable bidders. At each round, the ask price by an auctioneer70
is the highest bid of the previous round. When no bidder would like to increase their bids anymore, auction71
ends. The auctioneer then awards the bid to the highest bidder as long as the bid meets auctioneer’s private72
value for the bundle. The presence of the private value for a particular bundle by an auctioneer is important73
since it prevents the auctioneer to release the bundle with a lower price. We develop a two-sided grid market,74
where multiple bidders can choose their suitable bundles from any of the multiple providers and providers to75
offer their bundles via bundle-correspondents. Two-sided grid market helps us to comprehend the real picture76
of a large-scale distributed grid. We conduct the experiments under two cases; firstly, it considers the bidders77
with Relaxed Budgets and secondly, bidders with Tight Budgets. We find that, under certain reservation prices78
on bundles imposed by the auctioneers, achieved revenue and utilization are better in the relaxed case than the79
latter. This outcome inspires us to map auctioneers’ private values with bundles to ensure better payoff and80
utilization by the providers.81

We organize the remainder of the paper as follows: Section 2 presents related work conducted on different82
auction protocols. In Section 3, we describe our system architecture in details. Section 4 explains the83
implementation of our model and Section 5 shows experimental results. Finally, in Section 6, we conclude84
and propose some future research directions.85

2 II.86

3 Related Work87

Liu and Zhao propose an iterative combinatorial auction to facilitate resource allocation problem in grid88
environment [4]. They study preliminaries of iterative combinatorial auction mainly on different pricing functions89
such as ask prices by an auctioneer and priceupdate methods by bidders. They compare their results by varying90
the number of resources and the number of single-unit auctions. However, they do not consider auctioneers’91
reservation prices for bundles which may lead to less revenue for providers, since some bidders may not be92
intending to increase their bids and hence, a particular bidder could get that bundle at a lower price. In such93
a scenario, evaluation of true market value for a particular bundle becomes impossible. These bidders typically94
work for a particular group or organization. Hence, from an auctioneer’s point of view, it would be better to have95
some private values on bundles. Also, how grid resources are bundled for an auction through engaging suitable96
bidders is not clear.97

GEMSS (Grid Infrastructure for Medical Service Provision) has been proposed to support the provision of98
medical simulation services for clients such as hospitals [5]. In [5], they develop a reverse English auction model99
to harness suitable reservations available for clients. Reverse English auction is a type of set up, in which, the role100
of bidders and providers are reversed, with the primary objective to drive purchase price downward. However,101
the approach is likely to be suitable for client-side but not for increasing providers’ profits. In this paper, we102
focus on the provider-side and propose an ascending-bid auction to maximize revenue for providers.103

Attanasio et al. [6] investigate the co-relation between auction mechanism and Lagrangian-based scheduling104
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mechanism. They show that their proposed Lagrangean-based auction heuristic outperforms traditionally105
centralized heuristics. Though, they have proposed several methods for updating resource prices, however which106
particular one they have applied to their experiments is not clear. Apart from this, some auction entities such107
as auction setting (methodology to update a bidder’s bid), winner determination problem and evaluating the108
market value of resources are not taken into consideration. Without such criteria, the market mechanism might109
lose its desired objective of successful resource provisioning.110

A protocol for evaluating the economic efficiency and how it impacts on system performance has been studied111
by Das and Grosu [7]. They analyze the creation of possible bundles by providers, allocation of computing112
resources to the winners and perform simulations regarding budget and resource utilization. They propose113
Generalized Vickrey auction where bidders submitted their bids only once and assumed to reveal their value on114
bundles. However, providers 46 Year 2018 cannot guarantee the expression of value from all bidders, since some115
bidders could participate in the auction only to extract the information of how other bidders value the bundle.116
Hence, from providers’ point of view, the chance of evaluating market value on bundles decreases. Nevertheless,117
the expected revenue by the providers might not be achieved by using such a single shot auction. A similar118
approach using Secondprice Sealed-bid auction (i.e., highest bidder wins the auction at the price of the second119
highest bidder) is proposed by Young et al. [8]. They employ a greedy approximation algorithm for efficient120
allocation among winners to reduce the amount of time needed to compute a set of winners. However, their121
particular auction setting does not consider iterative bidding, which reduces the chance of identifying the true122
market value. We develop an iterative combinatorial auction which assists in manipulating the value of resource123
bundles and hence in maximizing economic efficiency.124

By realizing the complexity of successful bundle formation in situations, where multidimensionality (distributed125
resource bundling) of the resources occurs, Peter proposes multiple single-item auctions across administrations126
rather than a combinatorial auction [9]. However, single-item auctions on grid applications may not be suitable127
due to the interdependency of grid resources. In other words, as long as the bundle formation through multiple128
single-item auctions is not completed, the application cannot start execution. Hence, from a bidder’s point of129
view, he/she starts auctioning with the uncertainty of completion his/her resource bundle. Also, how a bidder130
breaks down his/her budget to precede single-item auctions is not clear. Such an approach of using multiple131
single-item auctions would produce communication overhead and might create network congestion. In our work,132
bundles are formed based on providers’ availability. Bidders can choose and bid for their suitable bundles.133

4 System Model134

We propose the agent-based framework shown in Figure 1. This framework supports auctions happening with135
multiple providers concurrently in a distributed environment. We model our framework with three types of136
agents, which are bidder-agent, provideragent and auctioneer-agent or bundle-correspondent (BC). The model137
can be viewed as a game, where each of the players (agents) tries to optimize its objective. In a provider’s point138
of view, his/her agent tries for optimal allocation through maximizing revenue. A bundlecorrespondent aims to139
clear its bundle by selecting the highest bidder among its competitors, whereas a bidder-agent’s strategy is to140
acquire its suitable bundle through budget optimization. However, in this paper, we focus on provider strategy141
and employ an ascendingbid auction to support providers’ benefit.142

5 a) Bundle Generation143

A bundle by a grid provider typically consists of several distinct resources (e.g., storage, CPU, and operating144
system). Bundles, in such an environment, can be generated in two ways. One is decentralized, in which bundles145
are formed across multiple organizations. Another is centralized, which refers to bundle generation within the146
same organization. However, decentralized bundle generation becomes challenging, when multidimensionality of147
resources occurs. In this paper, we consider centralized bundle formation for simplicity. According to our model,148
bundle(s) by a particular provider are formed dynamically based on the provider’s availability. Similarly, multiple149
providers generate their respective bundles and invite potential bidders to compete for them through BCs.150

Let ? i denote the set of bundles which are offered by a particular provider P i (i = 1, ?, n). Let J ? {1, ?,151
j} be the set of j bidders. Bidders are free to choose their suitable bundles from any of the providers (S ji ? ? i152
), where S ji denotes the bundle belonging to i th provider found to be suitable by the j th bidder. Each bidder153
bids, which consists of a pair (S, B), where B refers to the budget by the bidder for the bundle S, which he/she154
is willing to pay for and B ? ? + . In our model, each B can further be split into minimum budget B min and155
maximum budget B max so that minimal bid increment (? > 0) by the competitors can be applied during the156
iterative auction. Also, each bidder possesses a finite value, v j (S i ), for any subset S and we may normalize, v157
j (?) = 0. Bidders are assumed to have a quasi-linear utility function u j (S) = v j (S) -B(S) for bundle S at a158
price B. Once the bundle generation is finished, BCs is created based on available bundles, ? i dynamically.159

6 b) Engage Bundle Competitors160

Bundle correspondents are the most significant part in our model, since they (i) invite suitable bidders, (ii)161
proceed auctions by initiating an ask-bid (typically a value below the market price), (iii) propose a new askbid162
in each iteration and (iv) finally release the bundle by selecting an appropriate winner (the highest bidder). The163
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9 IMPLEMENTATION

number of BCs by a provider i is equal to the length of ? i which means, each BC handles only one bundle. Let the164
number of possible bundles by a particular provide; i is M ? {1, ?, m} which is a function of resource availability165
by the provider. Hence, BC im refers to the BC of m th bundle belonging to the provider, i. One bundle is usually166
chosen by multiple bidders, if the bidders’ requirements match with the bundle items. However, in our system,167
an auction for a particular bundle S i is proceeded if |j| ? 2 for the bundle, otherwise auction dismisses with an168
auction cancelation message to the bidder. If cancellation occurs, the BC waits for other bidders (typically the169
failed bidders, since we allow them to re-negotiate with BCs corresponding to other bundles) to proceed with the170
competition. In an ascending-bid auction, the utility for a BC increases, if the number of competitors for that171
bundle is high. Moreover, the number of competitors for an auction depends on the total number of bundles by172
a provider as well as the number of providers in a market.173

The winner determination problem in an auction protocol that describes the selection of an appropriate bidder174
while ensuring maximum revenue. In an ascending-bid set up, when no bidders would like to rise their bids any175
more, the auction terminates, and the auctioneer (BC) awards the highest bidder with the price of his/her bid.176
It is BC’s responsibility to ensure that the appropriate bundle and no more than one bundle are allocated to the177
winner. The respective bundle is then removed from ? i , and the BC is terminated.178

7 c) Private Value179

Once available bundles by the BCs are published and invited for auction; bidders select their suitable bundles to180
compete. Bidders are assumed to have exclusive-or bids for bundles, which means, one bidder can only choose181
either bundle S 1 or bundle S 2 , but not both. The primary strategy of bidders in an ascending-bid auction182
under private value setting is to minimally increase (?) their bids in each iteration over the ask-bid so that they183
can compete for a maximum time. Hence, the minimal-increment method can be used as a price-update-method184
for bidders. Each bidder starts off his/her competition by initiating a minimum bid B min (above the current185
ask-bid) and continues to increase the bid until it reaches B max or receives notification from the BC about the186
completion of winner determination. If a bidder reaches his/her B max without any notification from BC, he/she187
is removed from the potential-bidder-list for the bundle. The provider side, each provider has his/her private188
value or reservation price for each resource bundle. If the private value for a particular bundle is not met, it is not189
provisioned, which ensures the auction delivered with a sufficient price. However, if the number of competitors190
for a particular bundle is less or competitors are with Tight Budget, the reservation price for the auction is not191
likely to be achieved.192

8 IV.193

9 Implementation194

A simulation environment is established, and the proposed model is implemented using a crossplatform multi-195
agent programmable modeling environment known as NetLogo [10], [11]. We choose NetLogo because,196

? NetLogo is a FIPA (Foundation for Intelligent Physical Agent) conformant platform [12]. ? It has extensive197
built-in models to deal with multiagents. ? It can work as a ’simulated parallel’ environment [10]. ? It is platform198
(Mac, Windows, and Linux) independent [11].199

users are engaged to compete for these bundles. We implement a FIPA (Foundation for Intelligent Physical200
Agents) conformant English auction protocol ??13]. In this protocol, the auctioneer (BC) seeks to find the market201
price of a bundle by initially announcing an ask-bid below the supposed market value, and gradually raising the202
ask-bid over iterations. If any bidder accepts the bid and declares a counter-bid which is greater than the ask-bid,203
auctioneer immediately announces the counterbid as a new ask-bid. The auction continues until no bidder is204
prepared to counter-bid against the ask-bid. If the last bid by the bidder exceeds the auctioneer’s reservation205
price, the bundle is sold. Otherwise it is not sold. The reservation price C of a bundle B by a particular provider206
P i can be formalized by Equation (1).207

Figure ??: A NetLogo screenshot depicts the offering of bundles by a provider and competitor engagement on208
available bundles memory), which means most grid applications require same resources. Hence, in our simulation,209
we consider two types of resources (storage and CPU) for each bundle and bidders’ requirements are also assumed210
to be the two types of the resources. Figure ?? illustrates how available bundles by a provider are expressed211
and bidders choose their suitable bundles for competition. According to the figure, provider 5 has six bundles212
available to offer, whereas the first element of a bundle refers to storage and the second element to the number213
of processors. Bidder (user) 18 chooses bundle-1 out of the 6, since bundle-1 matches or exceeds the bidder’s214
requirement. However, the auction for the bundle does not happen, since only one bidder selects the bundle.215

The BCs corresponding to bundle-3 and bundle-5 would be allowed to proceed with their auctions, since216
multiple Where, r refers to a particular resource element in the bundle. Typically, this can be storage, CPU, or217
memory. q is the total number of elements in the bundle, Req r refers to the resource amount of type r in the218
bundle U r is the unit price (e.g., price/GB for storage) of resource type r. This function is for a provider, i219

We develop an algorithm supporting auctions to be conducted with multiple bundles. Algorithm 1 explains220
the details.221

Figure 3 presents a screenshot illustrating the multiple auctions for multiple bundles. This also includes the222
history for multiple providers. The variation of reservation price (provider demand) indicates that there are223
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different reservation prices for different bundles. If a reservation price for a bundle is under the bidders’ bids,224
the bundle is provisioned. If it is above the bidders’ bids, the bundle is not provisioned. When there are no225
potential providers, our two-sided market is terminated. A provider is taken out from the potential-provider-list226
dynamically, if the provider does not receive sufficient bidders to compete for at least one bundle.227

10 V. Experimentation228

Table 1 presents the resource configuration we use to conduct our experiments. Column 1 of Table 1 represents229
different parameters that a bidder and a provider use to set their respective agents. In our simulation environment,230
one can accommodate a large number of bidders as well as providers. In this paper, we examine 5000 bidders and231
200 providers. To set this large number of bidders and providers with different requests and offers respectively, we232
use ranges of values, so that each participant can select a value from its respective range. All bidders’ requests are233
set using the Column 2 ranges, and all providers’ offers are set using the Column 3 ranges automatically. Resource234
bundles are then generated based on the providers’ offers. We conduct our experiments in two scenariosbidders235
with Relaxed Budgets and bidders with Tight Budgets. Then we investigate the system performance in both236
cases. Typically, the reservation price for a Iterative Combinatorial Auction for Two-Sided Grid Markets: Multiple237
users and Multiple Providers bundle is manipulated using the maximum demand range [6][7][8][9][10] (U storage238
for equation-1), which refers to the price for 1 GB storage and [20-30] (U CPU for equation 1)239

refers to the price for the processor of 1 MIPS (Million Instructions Per Second) capacity. For simplicity,240
we consider all the processors identical. We use maximum demand for the reservation price so that maximum241
revenue can be achieved. However, we find that using maximum demand as reservation price may work well for242
the scenario when bidders come with Relaxed Budgets but not when bidders come with Tight Budgets.243

Experiment-1 and 2 explain in details. Also, we assume concurrent arrival of different requests and offers.244
(1) Where l denotes the number of the bundle that is sold, t denotes the total number of sold bundles, and245

Z l defines the highest bid by a bidder for the sold bundle. The solid trend in Figure 4 illustrates the revenue246
($160×10 5 ) in combination with all providers in the market. The X-axis shows the total number of auctions247
that are successful in the market. This number is high (3037) for relaxed budget due to certain reasons. Firstly,248
the number of providers and the number of bundles are high, since under a single provider there could be a lot of249
bundles to offer. Secondly, it also depends on the number of bidders. There are 5000 bidders in our system. Due250
to this large quantity, the competition for a particular bundle increases and thus the possibility of the bundle251
being sold also increases. Thirdly, because of Relaxed Budgets by the bidders, the chance of meeting a bundle’s252
reservation price is increased. The trends are straight, since we only consider successful auctions to calculate253
the revenue, and each successful auction brings some revenue, which is added immediately to the total revenue.254
Regarding the scenario with Tight Budget, the number of successful auctions is significantly low. Hence, the255
total revenue achieved, in this case, is remarkably lower than that for the Relaxed Budget. Due to Tight Budget,256
at most times, bidders could not reach the expected reservation prices imposed by the respective providers. This257
scenario yields fewer successful auctions on bundles.258

The second evaluation criteria, resource utilization, R for a resource of type, r by a particular provider, i can259
be formalized using the following equation, For resource utilization, we obtain similar patterns for both disk-260
space and processors. Hence, we explain the utilization for processors only in Figure 5. The figure demonstrates261
utilization pattern for 200 providers (along X-axis). Figure 5 describes the computational analysis of the two262
scenarios. Providers in the Relaxed Budget scenario can utilize their resources massively, whereas, in the Tight263
Budget scenario, resource utilization by the providers is significantly lower.264

(3) We can explain this difference using the same explanation we used regarding revenue. Due to Tight Budgets265
of the bidders, providers are most often unable to sell their bundles. On the other hand, for the same reservation266
prices, providers perform better with Relaxed Budget. Now, a question arises, what is the need for reservation267
price during the Tight Budget? As mentioned earlier in Section 3.3, the significance of reservation price in an268
agent-oriented environment is that, bidders cannot win a bundle without much competition. One could often269
receive such a scenario when participant engagement to auctions is free of cost, and some participants are intended270
to participate only to retrieve the market value of a bundle through lying the auctioneer (counter-speculation).271
Hence, a need arises to map reservation prices for a particular scenario (Tight Budget) dynamically so that272
maximum revenue and better utilization can be achieved. However, there is one question about how to recognize273
whether the bidders are coming with Relaxed Budgets or Tight Budgets. To answer this question, we define a274
parameter, Q that is used to obtain runtime auction success rate by a particular provider, i. We define Q as,??275
?? = ?????????? ???????????? ???? ???????? ?????????????? ?????????? ???????????? ???? ??????????????276
??????????????277

The value of Q ranges from 0 to 1. An agent (BC) is now able to sense whether the bidders are coming with278
Relaxed Budgets or Tight Budgets based on Q and map the reservation price accordingly. To map the reservation279
price, a BC can dynamically switch between the provider’s minimum demand and the maximum demand (Table280
1). If the value of Q tends to lower, BCs change the reservation prices to lower, so that the value of Q can be281
high again.282

However, in order to define that at which value of Q, a BC needs to lower the reservation price, we define283
another parameter called threshold success rate, Q th of Q. We experiment with different threshold values (ranging284
from 0 to 1) under Tight Budget condition and find that, Q th = 1 yield better results than other values.285
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11 VI. CONCLUSIONS

Experiment 2 -Bidders with Tight Budgets (Traditional versus Optimized): We repeat the experiment under286
Tight Budget, where reservation prices are changed based on the success factor, Q dynamically during the287
runtime. We compare the results with the same results obtained for Tight Budget without considering Q. Figure288
6 shows the comparison of revenue. Because of sensing success rate and mapping reservation prices accordingly,289
even under the same scenario (Tight Budget), our strategy performs better ($129.52×10 5 ) than the traditional290
one ($44.74×10 5 ). The number of successful auctions increases from 1173 to 3846. Figure 7 presents the291
comparison of utilization of the two cases. Due to high success rate, the mechanism even at the Tight Budget292
condition utilizes more resources than the former Tight Budget condition. The average utilization is improved293
by 56%.294

11 VI. Conclusions295

The evolution of distributed collaboration is hindered due to insufficient incentives to providers to contribute296
their resources on the grid. Hence, economic models are proposed to successfully collaborate resources. English297
auction is well known due to its strengths of evaluating market price and maximizing revenue. In this paper,298
we developed an English auction interaction protocol supporting multiple users and providers to exhibit the299
performance pattern of a large scale distributed grid environment. Resources are bundled to facilitate auction300
process. We explained details regarding bundle generation, participant engagement, bundle correspondence301
generation, auction process and finally provision of bundle allocation through solving winner determination302
problem. We analyzed our two-sided grid markets under two different scenarios -Relaxed Budget and Tight303
Budget. To overcome the exhibited variation in performance, we defined a new parameter to manipulate runtime304
success rate. Our proposed methodology provides competitive performance even under the Tight Budget scenario305
regarding revenue and utilization.306

In future, we would like to vary resource supply and demand to analyze the system performance further and307
investigate suitable values for threshold success rate. The bundle generation presented in this paper is currently308
centralized. Future work would investigate the suitability of our work in a decentralized environment.

1

Figure 1: Figure 1 :
309
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Figure 2:

1

User/provider-level parameter User-level-range Provider-
level-range

Number of participants 5000 200
Storage/disk-space (GB) 400-600 6000-10000
Number of
CPUs (MIPS 20-30 500-700
per CPU)
Minimum Budget/deman d ($) Relaxe d

800-1500
Tight
500-
1000

1-5 (/GB),
12-16
(/MIPS)

Maximum Budget/deman d($) 4000-6000 2500-
4000

6-10
(/GB),
20-30
(/MIPS)

Experiment 1 -Bidders with Relaxed and Tight Budgets:
In our first experiment, we consider the bidders with
relaxed and Tight Budgets separately. Results are
evaluated and compared regarding revenue and
resource utilization. Revenue, E earned by a particular
provider, i is given by,

??
?? ?? = ? ?? ??
??=1

Figure 3: Table 1 :
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11 VI. CONCLUSIONS
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