
© 2018. Malgorzata Sadowska & Zbigniew Huzar. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

The Method of Normalizing OWL 2 DL Ontologies
By Malgorzata Sadowska & Zbigniew Huzar

 Wroclaw University of Science and Technology

Abstract- The paper proposes a method of normalizing OWL 2 DL ontologies. The method introduces
rules aimed at refactoring OWL 2 constructs. The proposed transformations only use a subset of
OWL 2 constructs and enable to present an input OWL 2 ontology in a new but semantically
equivalent form. The normalization is motivated by the fact that normalized OWL 2 DL ontologies
have a unified structure of axioms so that they can be compared in an algorithmic way.

Keywords: OWL 2, normalization.

GJCST-C Classification: H.3.5

TheMethodofNormalizingOWL2DLOntologies

 Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Type: Double Blind Peer Reviewed International Research Journal

Software & Data Engineering
Global Journal of Computer Science and Technology: C

Volume 1 Issue 2 Version 1.0 Year 2018

Publisher: Global Journals

8

The Method of Normalizing OWL 2 DL
Ontologies

Małgorzata Sadowska α & Zbigniew Huzar σ

Abstract -

The paper proposes a method of normalizing OWL 2
DL ontologies. The method introduces rules aimed at
refactoring OWL 2 constructs. The proposed transformations
only use a subset of OWL 2 constructs and enable to present

an input OWL 2 ontology in a new but semantically equivalent
form. The normalization is motivated by the fact that
normalized OWL 2 DL ontologies have a unified structure of
axioms so that they can be compared in an algorithmic way.

Keywords: OWL 2, normalization.

I.

Introduction

WL 2 Web Ontology Language (OWL 2) [1]

is a
language of knowledge representation used for
defining ontologies. The ontologies which satisfy

syntactic conditions listed in the specification in
Section

3 of [2]

are called OWL 2 DL

ontologies and
have their semantics expressed in SROIQ description
logic [1]. SROIQ

was designed to provide additions to
OWL-DL to guarantee decidability in reasoning [3,

4].

The

domain ontologies are

expected to provide
a knowledge base about specific application area.
Therefore they should be consistent. An ontology
consistency check [5]

is one of the reasoning problems
that can be answered with the use of inference engines.

In our work, we would like to take advantage of
and reuse the existing OWL 2 DL domain ontologies. We
assume that the selected OWL 2 DL

domain ontology is
syntactically correct, consistent and adequately
describes the notions from the needed domain. One
can successfully conduct reasoning over the ontology
with the use of one of the reasoning engines available.
However, it is not obvious or conclusive

how to
effectively process other useful operations on
ontologies, for example how to compare two or more
ontologies. The problem of comparing two ontologies
with the agreed vocabulary was faced in [6]

in a method
of semantic validation of UML class diagrams. In [6], in
the beginning, the UML class diagram is transformed
into an ontology expressed in OWL 2. Next, the two
ontologies-the domain ontology and the ontological
representation of the UML diagram-need to be
compared against each other.

The question arises: how to correctly and
automatically find out whether one ontology is compliant
or contradictory concerning another one

? For the
purpose of answering the question, we introduce such a

form of normalization that allows for unifying the
structure of axioms in the ontologies so that it is
possible to automatically compare them. The method of
normalization of ontologies and the method of semantic
validation of UML class diagrams has been
implemented in the prototype tool [8]. This paper
presents the details of conducting the transformation of
OWL 2 ontology to its normalized form. The important
fact is that the presented transformations only change
the structure but do not affect the semantics of axioms
or expressions in the OWL 2 ontology.

We propose the following groups of
transformations of OWL 2 constructs:
Group I. Extraction of declarations of entities: A
declaration in OWL 2 associates an Entity with its type. If
a declaration axiom for the selected Entity is missing
from the ontology, it can be retrieved based on the
usage of the Entity. In OWL 2, the declaration axiom can
be specified for all types of entities: Class, Datatype,
ObjectProperty, DataProperty, AnnotationProperty and
NamedIndividual.
Group II. Removal of duplicates in data ranges,
expressions, and axioms: Following [2], sets written in
one of the exchange syntaxes (e.g., XML or RDF/XML)
may contain duplicates. Therefore, duplicates (if
applicable) are eliminated from axioms (e.g.
EquivalentClasses), data ranges (e.g. DataUnionOf) and
expressions (e.g. DataUnionOf).
Group III. Restructuration of data ranges and
expressions: The proposed restructurations are intended
(1) to flatten the nested structures of the data ranges
and expressions, (2) to eliminate the weakest cardinality
restrictions included in the data ranges or expressions,
and (3) to refactor the data ranges and expressions
which are connected with union, intersection and
complement constructors, based on the rules of the De
Morgan's laws.
Group IV. Removal of syntactic sugar in axioms: OWL 2
offers the so-called syntactic sugar [4]. The syntactic
sugar makes some axioms easier to write and read for
humans (e.g., DisjointUnion axiom) but does not lend
itself so easily to processing conducted by tools. Due to
this fact, the removal of syntactic sugar allows e.g.,
easier comparison of axioms expressing the same
semantics but written with a different syntax.
Group V. Restructuration of axioms: Most of OWL 2
axioms which contain several class expressions can be

O

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 1

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Author α σ: Faculty of Computer Science and Management, Wroclaw
University of Science and Technology.
e-mails: m.sadowska, zbigniew.huzar@pwr.edu.pl

restructured into several axioms containing only two
class expressions each, e.g., DisjointClasses and
EquivalentClasses axioms. This is only worth to be
applied for axioms whose order of internal expressions
is not important.
Group VI. Removal of duplicated axioms: A correctly
specified OWL 2 ontology cannot contain two identical
axioms (see Section 3). However, duplicated axioms
may appear as a result of applying transformations from
groups IV and V. Therefore, the last step of the
normalization algorithm is to remove all duplicate
axioms from the output ontology.

We define ontology normalization as a process
of transforming the input ontology into the ontology in its
refactored form. In Section 4, we presented replacing
and replaced OWL 2 constructs used in the process of
normalizing OWL 2 DL ontologies. The details of the
ontology normalization algorithm are presented in
Section 5. The process consists of four phases, which
are executed in the following order in the algorithm:

1. Extraction of declarations (group I).
2. Refactorization of data ranges and expressions

through applying transformations from group II.
3. Restructuration of expressions and data ranges

through applying transformations from group III.
4. Refactorization of axioms through applying

transformations from groups II, IV, V and VI.
We consider the output ontology (obtained as a

result of conducting the algorithm) as normalized.
Because all transformations (of the replaced OWL 2
constructs to the replacing OWL 2 constructs) preserve
semantics, the semantics of the normalized ontology is
the same as the semantics of the input ontology.

In this paper, OWL 2 constructs are written with
the use of functional-style syntax [2]. Additionally, the
following convention is used:

•

C − indicates a class,

•

CE (possibly with an index) − indicates a class
expression,

•

OP −

indicates an object property,

•

OPE (possibly with an index) − indicates an object
property expression,

•

DP −

indicates a data property,

•

DPE (possibly with an index) − indicates a data
property expression,

•

DR − indicates a data range,

•

a −

indicates an individual,

•

lt −

indicates a literal,

•

α

= β – means the textual identity of α and β

OWL 2

constructs.

II.
 Related Work

According to our investigation, a similar concept
of normalization of OWL 2 ontologies has not yet been

proposed. In this paper, the normalization is aimed at
unifying the structure of axioms in the ontologies
allowing for automatic processing of the ontologies. A
different purpose (as well as a different kind of) ontology
normalization has been proposed in [9], where ontology
normalization was suggested to be a pre-processing
step that aligns structural metrics with intended
semantic measures. Additionally, in [10] and [11],
normalization has been proposed as an aspect of
ontology design that provides support for ontology
reuse, maintainability, and evolution. In [10] and [11] the
criteria for normalization are focused on engineering
issues that make ontologies modular and
understandable for knowledge engineers.

III. OWL 2 Ontology as a Set of Axioms

The structural specification of OWL 2 [2] is
defined with the use of Unified Modeling Language (UML)
[7], and the notation is compatible with Meta-Object
Facility (MOF) [12]. OWL 2 ontologies consist of entities
(classes, datatypes, object properties, data properties,
annotation properties and named individuals),
expressions (class expressions, data and object
property expressions) and axioms (e.g., subclass
axioms).

The main component of OWL 2 ontologies is
axioms (see fig.1) which specify what is true in a specific
domain. The expressions are used to represent complex
notions in the described domain. Textually, expressions
can be seen as components of axioms, for example, two
or more class expressions are needed to specify
DisjointClasses axiom (see fig. 2). Finally, entities
constitute the vocabulary of an ontology.

Fig.1: A relation between OWL 2 ontology and axioms
(extract from Figure 1 of OWL 2 specification [2]).

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 2

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

Fig.2: A relation between the selected class axiom, relevant expressions and entities (by OWL 2 specification [2]).

Because the association end named axioms
(see fig. 1) is specified with the use of UML Multiplicity
Element and a Set collection type (is Ordered=false and
is Unique=true), a correct OWL 2 ontology cannot
contain two axioms that are textually equivalent. In the
normalization method, it is assured through applying the
transformations from group VI.

Nevertheless, the ontology may have axioms
which contain the same information. For example, it
may include the following two axioms: DisjointUnion
(:Child :Boy :Girl) and DisjointClasses(:Boy: Girl). The
semantics of DisjointUnion [2] states that Child class is

a disjoint union of Boy

and Girl

class expressions
which are pairwise disjoint. Therefore, the additional
information specified by DisjointClasses

can be seen

as redundant and will be refactored with the proposed
transformation rules (here from groups II and IV).

The structural specification of OWL 2 [2]

defines

an abstract class Axiom

(see fig. 3). The abstract class

Axiom

is specialized by the following classes:
ClassAxiom

(abstract), ObjectPropertyAxiom

(abstract),

DataPropertyAxiom (abstract), Declaration,

Datatype

Definition (abstract), HasKey, Assertion

(abstract) and
AnnotationAxiom (abstract).

Fig. 3: The axioms of OWL 2 [2]and the tables which specify the proposed replacement rules.

AnnotationAxiom [2] axioms are mainly used to
improve readability for humans. The axioms do not
affect the semantics [2]. Therefore, they are not further
restructured in this paper.

Declaration [2] axioms specify that entities are
part of the vocabulary in ontology and are of a specific
type, e.g., class, datatype, etc. OWL 2 DL ontology must
explicitly declare all datatypes that occur in datatype
definition, although in general, it is advisable to declare
all entities for verification of the correctness of the usage
of the entity based on its type. In the normalization
method, if a declaration axiom is missing from the
ontology, it is automatically retrieved based on the entity
usage (transformation from the group I). This is applied
toall types of entities but AnnotationProperty, because

AnnotationProperty is only used to provide annotation
and has no effect on the semantics.

Datatype Definition [2] axiom defines a new
datatype as being semantically equivalent to a unary
data range. The Datatype Definition axiom is defined in
the form that does not need to be restructured.
Nonetheless, the data ranges included in other axioms
or expressions may require refactoring (transformation
from group III). The replacement rules for data ranges
are presented in Table 5.

HasKey[2] axiom states that each named
instance of the specified class expression is uniquely
identified by the specified object property and/or data
property expressions. It is useful in querying about
individuals which are uniquely identified. The HasKey

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 3

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

axiom itself is defined in the form that does not need to
be restructured, but the class expression and object
property expressions included in the axiom are
restructured by the transformations presented in Tables
6 and 7 (transformation from group III).

To summarize, Section 4 presents replacement
rules for Class Axioms in Table 1, for Object Property
Axioms in Table 2, for Data Property Axioms in Table 3 and
Assertion axioms in Table 4, Table 5 presents replacement
rules for data ranges, Table 6 - for class expressions and
Table 7 for object property expressions. Each row in Tables
1-7 contains the number of the transformation group (by
Groups I-VI defined in Introduction). Additionally, all the
transformations from Group III are marked with the sub-
number (1)-(3) which defines a concrete refactorization
within the group.

IV. OWL 2 Construct Replacements

Each replaced OWL 2 construct is semantically
equivalent to the defined replacing construct(s). Most of

the proposed transformations are our original proposals,
but some of them come from the OWL 2 specification
[2]. The specification defines the so-called syntactic sugar
for selected axioms in more detail. This is for ease of
writing of some popular patterns for humans. It is cited,
where applicable, separately in each table.

a)

Class expression axioms

 OWL 2 class expression axioms define the
relationships between class expressions. The abstract
class ClassAxiom

is specified by the following concrete

classes: SubClassOf, EquivalentClasses, DisjointClasses
and DisjointUnion. In Table 1, transformations of IDs: 3, 6
and 8 are defined in [2], the other transformations are
proposed by us. The replacing axioms

in ID 6 are

semantically equivalent.

Table 1: Replaced and replacing class expression axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II

2 V

3 IV

4 II

5 V

6

IV

7 II

8

IV

b) Object property axioms

OWL 2 object property axioms define the
relationships between property expressions. The
abstract class ObjectPropertyAxiom is specified by the
following concrete classes: SubObjectPropertyOf,
EquivalentObjectProperties, Disjoint Object Properties,
InverseObjectProperties, ObjectPropertyDomain, Object

PropertyRange, ReflexiveObjectProperty, Irreflexive

ObjectProperty, FunctionalObjectProperty, Inverse

FunctionalObjectProperty, SymmetricObjectProperty,
AsymmetricObjectProperty and TransitiveObjectProperty. In
Table 2, transformations of IDs: 3 and 6-14 are defined in
[2], the other transformations are proposed by us. The
replacing axioms in ID 6 are semantically equivalent.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 4

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

EquivalentClasses(CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentClasses (CEi CEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf(CE1 CE2)
SubClassOf(CE2 CE1)
DisjointClasses(CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointClasses(CEi CEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf
 (CE1 ObjectComplementOf(CE2))
SubClassOf
 (CE2 ObjectComplementOf(CE1))
DisjointUnion(C CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentClasses(C
ObjectUnionOf (CE1 ... CEN))
DisjointClasses(CE1 ... CEN)
and N ≥ 2

EquivalentClasses(CE1 ... CEi ... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

EquivalentClasses(CE1 ... CEN)
and 1 ≤ i ≤ N and N ≥ 2

EquivalentClasses(CE1 CE2)

DisjointClasses(CE1 ... CEi... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointClasses(CE1 ... CEN)
and N ≥ 2

DisjointClasses(CE1 CE2)

DisjointUnion(C CE1 ... CEi ... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointUnion(C CE1 ... CEN)
and N ≥ 2

Table 2: The replaced and replacing object property axioms.
ID Group Replaced axiom Replacing axiom(s)

1 II

2 V

3 IV

4 II

5 V

6

IV

7 IV

8 IV

9 IV

10

IV

11 IV

12 IV

13 IV

14 IV

c) Data property axioms
OWL 2 data property axioms define the

relationships between property expressions. The
abstract class DataProperty Axiom is specified by the
following concrete classes: SubDataProperty Of,

EquivalentDataProperties, DisjointDataProperties, Data

PropertyDomain, DataPropertyRange, and Functional

DataProperty.In Table 3, transformations of IDs: 3 and 6-8
are defined in [2], the remaining transformations are
proposed by us.

Table 3: The replaced and replacing data properties axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II

 EquivalentDataProperties

 DPE1 ... DPEi... DPEj ... DPEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi

 = DPEj

2 V
EquivalentDataProperties(DPE1

 ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2

3 IV
 EquivalentDataProperties(DPE1

 DPE2)

4 II
 DisjointDataProperties(

 DPE1 ... DPEi... DPEj ... DPEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi

 = DPEj

5 V
DisjointDataProperties(DPE1

 ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2

6 IV
 DataPropertyDomain(DPE CE)

7 IV
 DataPropertyRange(DPE DR)

8 IV
 FunctionalDataProperty(DPE)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 5

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

EquivalentObjectProperties(OPE1 ... OPEi ...
OPEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentObjectProperties(OPEi OPEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubObjectPropertyOf(OPE1 OPE2)
SubObjectPropertyOf(OPE2 OPE1)
DisjointObjectProperties(OPE1 ... OPEi ...
OPEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointObjectProperties(OPEi OPEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
EquivalentObjectProperties(OPE1

 ObjectInverseOf(OPE2))
EquivalentObjectProperties(OPE2

 ObjectInverseOf(OPE1))
SubClassOf (Object Some Values From(OPE
owl:Thing) CE)
SubClassOf(owl:Thing
 ObjectAllValuesFrom(OPE CE))
SubClassOf(owl:Thing
 ObjectMaxCardinality(1 OPE))
SubClassOf
 (owl:Thing ObjectMaxCardinality(
 1 ObjectInverseOf(OPE)))
SubClassOf(owl:Thing
 ObjectHasSelf(OPE))
SubClassOf(ObjectHasSelf(OPE)
 owl:Nothing)
SubObjectPropertyOf(OPE
 ObjectInverseOf(OPE))
SubObjectPropertyOf
 (ObjectPropertyChain(OPE OPE) OPE))

EquivalentDataProperties
 (DPE1 ... DPEi ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentDataProperties(DPEi DPEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubDataPropertyOf(DPE1 DPE2)
SubDataPropertyOf(DPE2 DPE1)
DisjointDataProperties
 (DPE1 ... DPEi ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointDataProperties(DPEi DPEj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf(DataSomeValuesFrom
 (DPE rdfs:Literal) CE)
SubClassOf(owl:Thing
 DataAllValuesFrom(DPE DR))
SubClassOf(owl:Thing
 DataMaxCardinality(1 DPE))

EquivalentObjectProperties(OPE1 ... OPEi ... OPEj

... OPEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi = OPEj

EquivalentObjectProperties(OPE1 ... OPEN)
and 1 ≤ i ≤ N and N ≥ 2

EquivalentObjectProperties(OPE1 OPE2)

DisjointObjectProperties(OPE1 ... OPEi... OPEj

... OPEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi = OPEj

DisjointObjectProperties(OPE1 ... OPEN)
and 1 ≤ i ≤ N and N ≥ 2

InverseObjectProperties(OPE1 OPE2)

ObjectPropertyDomain(OPE CE)

ObjectPropertyRange(OPE CE)

FunctionalObjectProperty(OPE)

InverseFunctionalObjectProperty(OPE)

ReflexiveObjectProperty(OPE)

IrreflexiveObjectProperty(OPE)

SymmetricObjectProperty(OPE)

TransitiveObjectProperty(OPE)

d) Assertion axioms
OWL 2 Assertion[2] axioms are used to state facts

about individuals. Following structural specification [2], the
abstract class Assertion is specified by the following

concrete classes: SameIndividual, DifferentIndividuals, Class
Assertion, ObjectPropertyAssertion, NegativeObjectProperty
Assertion, DataPropertyAssertion, NegativeDataProperty
Assertion. In Table 4, all transformations are proposed by us.

Table 4: The replaced and replacing assertion axioms.

ID Group Replaced axiom Replacing axiom(s)

1 II
 SameIndividual(a1 ... ai ... aj ... aN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj
SameIndividual(a1 ... ai ... aN)
and 1 ≤ i ≤ N and N ≥ 2

2 V
SameIndividual(a1 ... aN)
and 1 ≤ i ≤ N and N ≥ 2

SameIndividual(ai aj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2

3 II
 DifferentIndividuals(a1 ... ai ... aj ... aN)

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj
DifferentIndividuals(a1 ... ai ... aN)
and 1 ≤ i ≤ N and N ≥ 2

4 V
DifferentIndividuals(a1 ... aN)
and 1 ≤ i ≤ N and N ≥ 2

DifferentIndividuals(ai aj)
and i,j ∈ {1,N} and i ≠ j and N ≥ 2

e) Data ranges
OWL 2 data ranges [2] are used in restrictions on

data properties. The abstract class DataRange is
specified by the following concrete classes:

DataComplementOf, DataUnionOf, DataOneOf, Datatype,
DatatypeRestriction

and DataIntersectionOf. In Table 5, all

transformations are our own proposals.

Table 5: The replaced and replacing data ranges.

ID Group Replaced data range Replacing data range(s)

1 III (3)

2 II

3 III (1)

4 II

5 III (1)

6 III (3)

7 III (3)

8 II

f) Class expressions

OWL 2 class expressions are constructed of
classes and properties. In structural specification [2] class
expressions are represented by the ClassExpression

abstract class. The abstract class ClassExpression is
specified by the following concrete classes: Class,
ObjectIntersectionOf, ObjectUnionOf, ObjectComplement

Of, ObjectOneOf, ObjectSomeValuesFrom, ObjectAllValues

From, ObjectHasValue, ObjectHasSelf, ObjectMin

Cardinality, ObjectMaxCardinality, ObjectExactCardinality,
DataSomeValuesFrom, DataAllValuesFrom, DataHasValue,
DataMinCardinality, DataMaxCardinality

and DataExact

Cardinality. In Table 6, the transformations of IDs: 9-14 and
19 are defined in [2], the other transformations are our
proposal.

We exclude two general cases from further
considerations - those of the existential and universal
class expressions:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 6

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

DR

DataUnionOf(DR1 ... DRi ... DRN)
and 1 ≤ i ≤ N and N ≥ 2

DataUnionOf
 (DR1 ... DRAi ... DRAN ... DRBj ... DRBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

DataIntersectionOf(DR1 ... DRi ... DRN)
and 1 ≤ i ≤ N and N ≥ 2

DataIntersectionOf
 (DR1 ... DRAi ... DRAN ... DRBj ... DRBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

DataComplementOf
 (DataUnionOf(DR1 ... DRN))
and 1 ≤ i ≤ N and N ≥ 2

DataComplementOf
 (DataIntersectionOf(DR1 ... DRN))
and 1 ≤ i ≤ N and N ≥ 2

DataOneOf(lt1 ... lti ... ltN)
and 1 ≤ i ≤ N and N ≥ 1

DataComplementOf
 (DataComplementOf(DR))
DataUnionOf(DR1 ... DRi... DRj ... DRN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi = DRj

DataUnionOf
 (DataUnionOf(DR1 ... DRAi ... DRAN)
 ... DRBj ... DRBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
DataIntersectionOf
 (DR1 ... DRi... DRj ... DRN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi = DRj

DataIntersectionOf
 (DataIntersectionOf(DR1 ... DRAi ... DRAN)
 ... DRBj ... DRBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
DataIntersectionOf
 (DataComplementOf(DR1)
 ... DataComplementOf(DRN))
and 1 ≤ i ≤ N and N ≥ 2
DataUnionOf
 (DataComplementOf(DR1)
 ... DataComplementOf(DRN))
and 1 ≤ i ≤ N and N ≥ 2
DataOneOf(lt1 ... lti ltj ... ltN)
and 1 ≤ i ≤ j ≤ N and N ≥ 1 and lti = ltj

• DataSomeValuesFrom(DPE1 ... DPEN DR), where N
≥ 2 and

• DataAllValuesFrom(DPE1 ... DPEN DR), where N ≥ 2.
The reason is that in both class expressions the

data range DR arity MUST be N (N ≥ 2). However, the
current version of OWL 2 specification [2] does not

provide any constructor, which may be used to define
data ranges of arity more than one (see Section 7 of
[2]). If a future version of the specification provides such
a constructor, one can consider removal of duplicates
and further restructuration of the mentioned class
expressions.

Table 6: The replaced and replacing class expressions.

ID Group Replaced class expression Replacing class expression(s)

1 III (3)

2 II

3 III (1)

4 II

5 III (1)

6 III (3)

7 III (3)

8 II

9 IV

10

IV

11

IV

12 IV

13

IV

14

IV

15

III (2)

16

III (2)

17

III (2)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 7

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

CE

ObjectUnionOf(CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2

ObjectUnionOf
 (CE1 ... CEAi ... CEAN ... CEBj ... CEBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

ObjectIntersectionOf(CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2

ObjectIntersectionOf
 (CE1 ... CEAi ... CEAN ... CEBj ... CEBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

ObjectComplementOf
 (ObjectUnionOf(CE1 ... CEN))
and 1 ≤ i ≤ N and N ≥ 2

ObjectComplementOf
 (ObjectIntersectionOf(CE1 ... CEN))
and 1 ≤ i ≤ N and N ≥ 2

ObjectOneOf(a1 ... ai ... aN)
and 1 ≤ i ≤ N and N ≥ 1
ObjectMinCardinality(1 OPE CE)
ObjectMaxCardinality
 (0 OPE ObjectComplementOf(CE))
ObjectSomeValuesFrom
 (OPE ObjectOneOf(a))
DataMinCardinality(1 DPE DR)
DataMaxCardinality
 (0 DPE DataComplementOf(DR))
DataSomeValuesFrom
 (DPE DataOneOf(lt))

ObjectUnionOf
 (ObjectMinCardinality(n1 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2 and n1≥ 0

ObjectIntersectionOf
 (ObjectMinCardinality(n2 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2 and n2≥ 0

ObjectUnionOf
 (ObjectMaxCardinality(m2 OPE CE)

ObjectComplementOf
 (ObjectComplementOf(CE))
ObjectUnionOf(CE1 ... CEi ... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectUnionOf
 (ObjectUnionOf(CE1 ... CEAi ... CEAN)
 ... CEBj ... CEBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
ObjectIntersectionOf
 (CE1 ... CEi... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectIntersectionOf
 (ObjectIntersectionOf)
 (CE1 ... CEAi ... CEAN)
 ... CEBj ... CEBM))
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
ObjectIntersectionOf
 (ObjectComplementOf(CE1)
 ... ObjectComplementOf(CEN))
and 1 ≤ i ≤ N and N ≥ 2
ObjectUnionOf
 (ObjectComplementOf(CE1)
 ... ObjectComplementOf(CEN))
and 1 ≤ i ≤ N and N ≥ 2
ObjectOneOf(a1 ... ai... aj ... aN)
and 1 ≤ i ≤ j ≤ N and N ≥ 1 and ai = aj

ObjectSomeValuesFrom(OPE CE)

ObjectAllValuesFrom(OPE CE)

ObjectHasValue(OPE a)

DataSomeValuesFrom(DPE DR)

DataAllValuesFrom(DPE DR)

DataHasValue(DPE lt)

ObjectUnionOf
 (ObjectMinCardinality(n1 OPE CE)
 (ObjectMinCardinality(n2 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectIntersectionOf
 (ObjectMinCardinality(n1 OPE CE)
 ObjectMinCardinality(n2 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectUnionOf
 (ObjectMaxCardinality(m1 OPE CE)

18

III (2)

19

IV

20

III (2)

21

III (2)

22

III (2)

23

III (2)

24

IV

g) Object property expressions
The following OWL 2 structural specification [2]

object property expressions are represented by
ObjectPropertyExpression abstract class. The abstract

class ObjectPropertyExpression is specified by the
following concrete classes: ObjectProperty and

InverseObjectProperty. In Table 7, the transformation is our
proposal.

Table 7: The replaced and replacing object property expressions.

ID Group Replaced object property expression Replacing object property expression

1 III (3)
 ObjectInverse of(

ObjectInverse

Of (OP))

 OP

V. Ontology Normalization Algorithm

The following is an outline of the algorithm
which transforms the syntactically correct and consistent
OWL 2 DL ontology selected by the user − denoted by
OWLONT − into the normalized ontology. The OWLONT'
and OWLONT'' are intermediate ontologies required to
process the input ontology into the output ontology. In
the beginning, both OWLONT' and OWLONT'' are empty. On
completion of the algorithm, the OWLONT'' represents the
normalized ontology.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 8

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2 and m2≥ 0

ObjectIntersectionOf
 (ObjectMaxCardinality(m1 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2
and m1≥ 0

ObjectIntersectionOf
 (ObjectMinCardinality(n OPE CE)
 ObjectMaxCardinality(n OPE CE))

ObjectUnionOf
(DataMinCardinality(n1 DPE DR)
CEi... CEN)

and 1 ≤ i ≤ N and N ≥ 2 and n1≥ 0

ObjectIntersectionOf
(DataMinCardinality(n2 DPE DR)

 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2
and n2≥ 0

ObjectUnionOf
 (DataMaxCardinality(m2 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2 and m2≥ 0

ObjectIntersectionOf
 (DataMaxCardinality(m1 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 2 and m1≥ 0

ObjectIntersectionOf
 (DataMinCardinality(n DPE DR)
 (DataMaxCardinality(n DPE DR))

 ObjectMaxCardinality(m2 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectIntersectionOf
 (ObjectMaxCardinality(m1 OPE CE)
 ObjectMaxCardinality(m2 OPE CE)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectExactCardinality(n OPE CE)
and n ≥ 0

ObjectUnionOf
 (DataMinCardinality(n1 DPE DR)
 DataMinCardinality(n2 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3 and n1 ≤ n2

and n1≥ 0 and n2≥ 0
ObjectIntersectionOf
 (DataMinCardinality(n1 DPE DR)
 DataMinCardinality(n2 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectUnionOf
 (DataMaxCardinality(m1 DPE DR)
 DataMaxCardinality(m2 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectIntersectionOf
 (DataMaxCardinality(m1 DPE DR)
 DataMaxCardinality(m2 DPE DR)
 CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

DataExactCardinality(n DPE DR)
and n ≥ 0

Algorithm: Outline of the ontology normalization algorithm

Input: Syntactically correct and consistent OWL 2 DL ontology
Output: Normalized OWL 2 DL ontology
BEGIN
1. Take the first axiom from OWLONT.
2. Take the first entity from the selected axiom.
3. If the entity is declared, add the declaration axiom to OWLONT'.If the entity is not declared, extract

the declaration axiom for the entity based on its usage and add the new declaration axiom to
OWLONT'.

4. Take the next entity from the selected axiom.
5. Repeat steps 3-4 until no more entities in the selected axiom are available.
6. Apply to the selected axiom allapplicable replacement rules defined in Tables 5-7, receiving a

modified axiom.
7. Add the modified axiom to OWLONT'.
8. Take the next axiom from OWLONT.
9. Repeat steps 2-8 until no more axioms in OWLONT are available.
10. Take the first axiom from OWLONT'.
11. Apply to the axiom allapplicable replacement rules defined in Tables 1-4.
12. If transformations result in only one axiom, add the axiom to OWLONT''. Otherwise, if as a result of

transformations the axiom splits into two or more axioms, repeat step 11 for each split axiom
independently.

13. Take the next axiom from OWLONT'.
14. Repeat steps 11-13 until no more axioms in OWLONT' are available.
15. Eliminate any of the duplicated axioms from OWLONT'' ontology.
16. Return the OWLONT'' as a normalized ontology.
END

Comments to the algorithm:

1. OWL 2 ontologies are built of axioms which may
contain some expressions. Data ranges are
contained in two axioms: DatatypeDefinition and
DataPropertyRange, as well as in some expressions,
e.g.,DataAllValuesFrom, DataMinCardinality, etc.
Therefore, to perform fewer iterations of the
normalization algorithm, first, we conduct all the
transformations of the data ranges in axioms and
expressions, as well as the expressions in axioms,
and later on of the axioms themselves.

2.

If the input ontology does not contain any
duplicated axioms, the resulting ontology will
contain at least the same number of axioms as the
input ontology.

3.

The order of the conducted transformations is not
important because the resulting ontology

will always

be semantically equivalent. However, depending on
the selected order, the resulting ontology may have
a different textual form. The possible textual
differences in the output ontology include: (1) the
order of axioms and (2) the order of expressions in
axioms (only if the order of expressions in the
selected axiom is not important).

4.

The resulting ontology may contain fewer kinds of
axioms and expressions. In particular, the ontology
will not contain the below-mentioned list of axioms
and expressions because they are refactored and

reduced in accordance with the presented
transformations:

•

Class axioms:

EquivalentClasses, DisjointClasses,
DisjointUnion,

•

Object property axioms: EquivalentObjectProperties,
InverseObjectProperties, ObjectPropertyDomain,
ObjectPropertyRange, InverseFunctionalObject

Property, FunctionalObjectProperty, ReflexiveObject

Property, IrreflexiveObjectProperty, SymmetricObject

Property,TransitiveObjectProperty,

•

Data property axioms:

EquivalentDataProperties,
DataPropertyDomain, DataPropertyRange, Functional

DataProperty,

•

Class expressions:

ObjectSomeValuesFrom, Object

AllValuesFrom, ObjectHasValue, ObjectExact
Cardinality, DataSomeValuesFrom, DataAllValues
From, DataHasValue, DataExactCardinality.

5.

The method of normalization and the defined
transformations are unidirectional, which means that
it is not possible to retrieve the original ontology
from the normalized ontology.

VI.

Example of Single Normalization

The example presents transformations
conducted with the use of the normalization algorithm.
The following is an input ontology, which contains one
axiom:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 9

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

EquivalentClasses(:FourLeafClover: FourLeafClover ObjectIntersectionOf(
 ObjectMinCardinality(3: hasLeaf:Leaf) ObjectMaxCardinality(7 :hasLeaf :Leaf)
 ObjectExactCardinality(4 :hasLeaf :Leaf)))

Steps 1-5 of the algorithm extract declarations of entities:
Declaration(Class (:FourLeafClover)) (1)
Declaration(Class (:Leaf)) (2)
Declaration(ObjectProperty (:hasLeaf)) (3)

Steps 6-9 of the algorithm result in the following transformations:

Rule 19 from Table 6 applied on the given axiom
EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(
 ObjectMinCardinality(3 :hasLeaf :Leaf)
ObjectMaxCardinality(7 :hasLeaf :Leaf)
 ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(4)

Rule 5 from Table 6 applied on (4)
EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(
 ObjectMinCardinality(3 :hasLeaf :Leaf)
ObjectMaxCardinality(7 :hasLeaf :Leaf)
 ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(5)

Rule 20 from Table 6 applied on (5)
EquivalentClasses(:FourLeafClover :FourLeafClover
ObjectIntersectionOf(ObjectMaxCardinality(7 :hasLeaf :Leaf)
ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(6)

Rule 23 from Table 6 applied on (6)
EquivalentClasses(:FourLeafClover :FourLeafClover
ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)
ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(7)

Steps 10-15 of the algorithm result in the following transformations:

Rule 1 from Table 1 applied on (7)
EquivalentClasses(:FourLeafClover ObjectIntersectionOf(
ObjectMinCardinality(4 :hasLeaf :Leaf)
ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(8)

Rule 2 from Table 1 applied on (8)
SubClassOf(:FourLeafClover ObjectIntersectionOf(
ObjectMinCardinality(4 :hasLeaf :Leaf)
ObjectMaxCardinality(4 :hasLeaf :Leaf)))
SubClassOf(ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)) :FourLeafClover)

(9)

Steps 16-17 of the algorithm return the normalized ontology:
Declaration(Class (:FourLeafClover)) (1)
Declaration(Class (:Leaf)) (2)
Declaration(ObjectProperty (:hasLeaf)) (3)
SubClassOf(:FourLeafClover ObjectIntersectionOf(
ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)))

(9A)

SubClassOf(ObjectIntersectionOf(ObjectMinCardinality(4 :hasLeaf :Leaf)
 ObjectMaxCardinality(4 :hasLeaf :Leaf)) :FourLeafClover)

(9B)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 10

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

VII. Proofs of the Correctness of the
OWL 2 Construct Replacements

This section aims at presenting proofs of
correctness of the OWL 2 construct replacements
presented in tables in Section 4. The replacing language
constructs (right column in tables) are semantically
equivalent to the replaced language constructs (left
column in tables).

The proofs are based on direct model-theoretic
semantics [13]for OWL 2, which is compatible with the
description logic SROIQ. The following convention is
used:
1. VC is a set of classes containing at least the owl:

Thing and owl: Nothing classes.
2. VOP is a set of object properties containing at least

the object properties owl: topObjectProperty and
owl: bottomObjectProperty.

3. ΔI is a nonempty set called the object domain.
4. ()C is the class interpretation function that assigns

to each class C ∈ VC a subset (C)C⊆ΔI such that
(owl: Thing)C = ΔI and (owl: Nothing)C = ∅

5. ()OP is the object property interpretation function that
assigns to each object property OP ∈ VOPa subset
(OP)OP⊆ΔI × ΔI such that (owl:topObjectProperty)OP
= ΔI × ΔI and (owl: bottomObjectProperty)OP = ∅

6. 𝛼𝛼 = 𝛽𝛽means semantic equivalence of 𝛼𝛼 and 𝛽𝛽sets.
7. 𝛼𝛼 ⊨ 𝐵𝐵 means that𝛼𝛼 formula is the semantic

consequence of 𝐵𝐵 set of formulas.
Proving equivalence comes down to the use of

the interpretation definition and the rules of set theory.
We selected two replacement rules for the proofs; all
other ones could be proved analogically.

Proof 1 for construct replacements from Table 1 ID 6:
We have to prove that the interpretation of
 DisjointClasses(CE1 CE2)
is equivalent to the interpretation of
 SubClassOf(CE1 ObjectComplementOf(CE2))
The interpretation of
 DisjointClasses(CE1 CE2)
is (1) [13]:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶 = ∅ (1)
The interpretation of
 ObjectComplementOf(CE2)
is (2) [13]:
 △𝐼𝐼 \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (2)
The interpretation of
 SubClassOf(CE1 CE3)
is (3) [13]:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊆ (𝐶𝐶𝐶𝐶3)𝐶𝐶 (3)
Based on (2) and (3) the interpretation of
 SubClassOf(CE1 ObjectComplementOf(CE2))
is (4):
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊆ △𝐼𝐼 \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (4)
We have to show that (4) is correct.
If we assume that (4) is false, it means that (5) is true:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊈ △𝐼𝐼 \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (5)
It means that there exist:
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∧ 𝑥𝑥 ∉ △𝐼𝐼 \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⟺
 𝑥𝑥 ∉ △𝐼𝐼 \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⇒ 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶2)𝐶𝐶
Then:
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∧ 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⟺
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶
It means that:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ≠ ∅
We have received contradiction, which had to be proved.
Proof 2 for construct replacements from Table 6 ID 7:
We have to prove that the interpretation of
 ObjectUnionOf(
 ObjectComplementOf(CE1)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 11

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

 ...
 ObjectComplementOf(CEN))
where 1 ≤ i ≤ N and N ≥ 2 is equivalent to the interpretation of
 ObjectComplementOf(ObjectIntersectionOf(CE1 ... CEN))
where 1 ≤ i ≤ N and N ≥ 2.

The interpretation of
 ObjectUnionOf(CE1 ... CEN)
is (14) [13]:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∪ … ∪ (𝐶𝐶𝐶𝐶𝑛𝑛)𝐶𝐶 (14)
The interpretation of
 ObjectIntersectionOf(CE1 ... CEn)
is (15) [13]:
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑛𝑛)𝐶𝐶 (15)
Based on De Morgan's law for sets, (2) and (14) the interpretation of
 ObjectUnionOf(
 ObjectComplementOf(CE1)
 ...
 ObjectComplementOf(CEN))
is (16):
 (△𝐼𝐼 \ (𝐶𝐶𝐶𝐶1)𝐶𝐶) ∪ … ∪ (△𝐼𝐼 \ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (16)
(17) is a result of application of (16) to (17):
 △𝐼𝐼 \ ((𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (17)
Based on (2) and (15) interpretation of
 ObjectComplementOf(ObjectIntersectionOf(CE1 ... CEN))
is (18):
 △𝐼𝐼 \ ((𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (18)
The equations (17) and (18) are equal, which had to be proved.

VIII. Conclusions

The paper introduces the concept of ontology
normalization as a process of transforming the input
OWL 2 ontology into the ontology in its refactored form.
The process is defined through a group of OWL 2
construct replacements. Because all individual replacing
constructs preserve the semantics of the replaced
constructs, the resulting ontology does not change the
semantics of the original ontology.

Thanks to the presented approach, users obtain
the possibility to automate the processing of ontologies
because the normalized ontologies have the structure of
axioms unified. However, the normalized ontology has
reduced readability from the point of view of human
readers, which is caused especially by the
transformations from the group IV, which remove the
syntactic sugar from the ontology.

The presented normalization algorithm is
implemented in a prototype tool [8] which additionally
allows for comparing two ontologies with the agreed
vocabulary. More specifically, the tool states whether or
not two ontologies are compliant or contradictory by the
method outlined in [6].

References Références Referencias

1.

OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation

11 December 2012. https://www.w3.org/TR/owl2-
overview/. 2012.

2. OWL 2 Web Ontology Language. Structural
Specification and Functional-Style Syntax (Second
Edition). W3C Recommendation 11 December
2012, http://www.w3.org/TR/owl2-syntax/. 2012.

3. I Horrocks, O. Kutz, and U. Sattler, “The Even More
Irresistible SROIQ,” Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and
Reasoning (KR 2006). AAAI Press, pp. 57–67, 2006.

4. OWL 2 Web Ontology Language New Features and
Rationale (Second Edition) W3C Recommendation
11 December 2012, https://www.w3.org/TR/owl2-
new-features/. 2012.

5. OWL 2 Web Ontology Language Profiles (Second
Edition). W3C Recommendation 11 December
2012. https://www.w3.org/TR/owl2-profiles/. 2012.

6. M. Sadowska and Z. Huzar, “Semantic Validation of
UML Class Diagrams with the Use of Domain
Ontologies Expressed in OWL 2,” Software
Engineering: Challenges and Solutions. Springer
International Publishing, pp. 47–59, 2017.

7. OMG, Unified Modeling Language,Version 2.5, Doc.
No: ptc/2013-09-05, http://www.omg.org/spec/

UML/2.5. 2015.

8. M. Sadowska, “A Prototype Tool for Semantic
Validation of UML Class Diagrams with the Use of
Domain Ontologies Expressed in OWL 2,” In
Towards a Synergistic Combination of Research

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 12

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

The Method of Normalizing OWL 2 DL Ontologies

and Practice in Software Engineering. Springer,
Cham, pp. 49–62, 2018.

9. V. Denny and Y. Sure, “How to design better
ontology metrics,” The Semantic Web: Research
and Applications, pp. 311–325, 2007.

10. A. L. Rector, “Normalisation of ontology
implementations: Towards modularity, re-use, and
maintainability,” Proceedings Workshop on
Ontologies for Multiagent Systems (OMAS) in
conjunction with European Knowledge Acquisition
Workshop, pp. 1–16, 2002.

11. A. L. Rector, “Modularisation of domain ontologies
implemented in description logics and related
formalisms including OWL,” Proceedings of the 2nd
international conference on Knowledge capture.
ACM, pp. 121–128, 2003.

12. Meta Object Facility (MOF) Core Specification,
version 2.0. Object Management Group, OMG,
http://www.omg.org/spec/MOF/2.0/PDF/. 2006.

13. OWL 2 Web Ontology Language Direct Semantics
(Second Edition) W3C Recommendation 11
December 2012, https://www.w3.org/TR/2012/REC-
owl2-direct-semantics-20121211/. 2012.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

 13

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

The Method of Normalizing OWL 2 DL Ontologies

	The Method of Normalizing OWL 2 DL Ontologies
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. OWL 2 Ontology as a Set of Axioms
	IV. OWL 2 Construct Replacements
	a) Class expression axioms
	b) Object property axioms
	c) Data property axioms
	d) Assertion axioms
	e) Data ranges
	f) Class expressions
	g) Object property expressions

	V. Ontology Normalization Algorithm
	VI. Example of Single Normalization
	VII. Proofs of the Correctness of theOWL 2 Construct Replacements
	VIII. Conclusions
	References Références Referencias

