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Abstract -

 

The paper proposes a method of normalizing OWL 2 
DL ontologies. The method introduces rules aimed at 
refactoring OWL 2 constructs. The proposed transformations 
only use a subset of OWL 2 constructs and enable to present

 

an input OWL 2 ontology in a new but semantically equivalent 
form. The normalization is motivated by the fact that 
normalized OWL 2 DL ontologies have a unified structure of 
axioms so that they can be compared in an algorithmic way.
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I.

 

Introduction

 
WL 2 Web Ontology Language (OWL 2) [1]

 

is a 
language of knowledge representation used for 
defining ontologies. The ontologies which satisfy 

syntactic conditions listed in the specification in 
Section

 

3 of [2]

 

are called OWL 2 DL

 

ontologies and 
have their semantics expressed in SROIQ description 
logic [1]. SROIQ

 

was designed to provide additions to 
OWL-DL to guarantee decidability in reasoning [3,

 

4].

 

The

 

domain ontologies are

 

expected to provide 
a knowledge base about specific application area. 
Therefore they should be consistent. An ontology 
consistency check [5]

 

is one of the reasoning problems 
that can be answered with the use of inference engines. 

 

In our work, we would like to take advantage of 
and reuse the existing OWL 2 DL domain ontologies. We 
assume that the selected OWL 2 DL

 

domain ontology is 
syntactically correct, consistent and adequately 
describes the notions from the needed domain. One 
can successfully conduct reasoning over the ontology 
with the use of one of the reasoning engines available. 
However, it is not obvious or conclusive

 

how to 
effectively process other useful operations on 
ontologies, for example how to compare two or more 
ontologies. The problem of comparing two ontologies 
with the agreed vocabulary was faced in [6]

 

in a method 
of semantic validation of UML class diagrams. In [6], in 
the beginning, the UML class diagram is transformed 
into an ontology expressed in OWL 2. Next, the two 
ontologies-the domain ontology and the ontological 
representation of the UML diagram-need to be 
compared against each other. 

 

The question arises: how to correctly and 
automatically find out whether one ontology is compliant 
or contradictory concerning another one

 

? For the 
purpose of answering the question, we introduce such a 

form of normalization that allows for unifying the 
structure of axioms in the ontologies so that it is 
possible to automatically compare them. The method of 
normalization of ontologies and the method of semantic 
validation of UML class diagrams has been 
implemented in the prototype tool [8]. This paper 
presents the details of conducting the transformation of 
OWL 2 ontology to its normalized form. The important 
fact is that the presented transformations only change 
the structure but do not affect the semantics of axioms 
or expressions in the OWL 2 ontology.  

We propose the following groups of 
transformations of OWL 2 constructs: 
Group I. Extraction of declarations of entities: A 
declaration in OWL 2 associates an Entity with its type. If 
a declaration axiom for the selected Entity is missing 
from the ontology, it can be retrieved based on the 
usage of the Entity. In OWL 2, the declaration axiom can 
be specified for all types of entities: Class, Datatype, 
ObjectProperty, DataProperty, AnnotationProperty and 
NamedIndividual. 
Group II. Removal of duplicates in data ranges, 
expressions, and axioms: Following [2], sets written in 
one of the exchange syntaxes (e.g., XML or RDF/XML) 
may contain duplicates. Therefore, duplicates (if 
applicable) are eliminated from axioms (e.g. 
EquivalentClasses), data ranges (e.g. DataUnionOf) and 
expressions (e.g. DataUnionOf).  
Group III. Restructuration of data ranges and 
expressions: The proposed restructurations are intended 
(1) to flatten the nested structures of the data ranges 
and expressions, (2) to eliminate the weakest cardinality 
restrictions included in the data ranges or expressions, 
and (3) to refactor the data ranges and expressions 
which are connected with union, intersection and 
complement constructors, based on the rules of the De 
Morgan's laws. 
Group IV. Removal of syntactic sugar in axioms: OWL 2 
offers the so-called syntactic sugar [4]. The syntactic 
sugar makes some axioms easier to write and read for 
humans (e.g., DisjointUnion axiom) but does not lend 
itself so easily to processing conducted by tools. Due to 
this fact, the removal of syntactic sugar allows e.g., 
easier comparison of axioms expressing the same 
semantics but written with a different syntax. 
Group V. Restructuration of axioms: Most of OWL 2 
axioms which contain several class expressions can be 
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restructured into several axioms containing only two 
class expressions each, e.g., DisjointClasses and 
EquivalentClasses axioms. This is only worth to be 
applied for axioms whose order of internal expressions 
is not important. 
Group VI. Removal of duplicated axioms: A correctly 
specified OWL 2 ontology cannot contain two identical 
axioms (see Section 3). However, duplicated axioms 
may appear as a result of applying transformations from 
groups IV and V. Therefore, the last step of the 
normalization algorithm is to remove all duplicate 
axioms from the output ontology. 

We define ontology normalization as a process 
of transforming the input ontology into the ontology in its 
refactored form. In Section 4, we presented replacing 
and replaced OWL 2 constructs used in the process of 
normalizing OWL 2 DL ontologies. The details of the 
ontology normalization algorithm are presented in 
Section 5. The process consists of four phases, which 
are executed in the following order in the algorithm: 

1. Extraction of declarations (group I). 
2. Refactorization of data ranges and expressions 

through applying transformations from group II.  
3. Restructuration of expressions and data ranges 

through applying transformations from group III. 
4. Refactorization of axioms through applying 

transformations from groups II, IV, V and VI. 
We consider the output ontology (obtained as a 

result of conducting the algorithm) as normalized. 
Because all transformations (of the replaced OWL 2 
constructs to the replacing OWL 2 constructs) preserve 
semantics, the semantics of the normalized ontology is 
the same as the semantics of the input ontology. 

In this paper, OWL 2 constructs are written with 
the use of functional-style syntax [2]. Additionally, the 
following convention is used: 

•
 

C − indicates a class,
 

•
 

CE (possibly with an index) − indicates a class 
expression,

 

•
 

OP −
 
indicates an object property,

 

•
 

OPE (possibly with an index) − indicates an object 
property expression,

 

•
 

DP −
 
indicates a data property, 

 

•
 

DPE (possibly with an index) − indicates a data 
property expression,

 

•
 

DR − indicates a data range,
 

•
 

a −
 
indicates an individual,

 

•
 

lt −
 
indicates a literal,

 

•
 

α
 
= β – means the textual identity of α and β

 
OWL 2 

constructs.
 

II.
 Related Work

 

According to our investigation, a similar concept 
of normalization of OWL 2 ontologies has not yet been 

proposed. In this paper, the normalization is aimed at 
unifying the structure of axioms in the ontologies 
allowing for automatic processing of the ontologies. A 
different purpose (as well as a different kind of) ontology 
normalization has been proposed in [9], where ontology 
normalization was suggested to be a pre-processing 
step that aligns structural metrics with intended 
semantic measures. Additionally, in [10] and [11], 
normalization has been proposed as an aspect of 
ontology design that provides support for ontology 
reuse, maintainability, and evolution. In [10] and [11] the 
criteria for normalization are focused on engineering 
issues that make ontologies modular and 
understandable for knowledge engineers.  

III. OWL 2 Ontology as a Set of Axioms 

The structural specification of OWL 2 [2] is 
defined with the use of Unified Modeling Language (UML) 
[7], and the notation is compatible with Meta-Object 
Facility (MOF) [12]. OWL 2 ontologies consist of entities 
(classes, datatypes, object properties, data properties, 
annotation properties and named individuals), 
expressions (class expressions, data and object 
property expressions) and axioms (e.g., subclass 
axioms).  

The main component of OWL 2 ontologies is 
axioms (see fig.1) which specify what is true in a specific 
domain. The expressions are used to represent complex 
notions in the described domain. Textually, expressions 
can be seen as components of axioms, for example, two 
or more class expressions are needed to specify 
DisjointClasses axiom (see fig. 2). Finally, entities 
constitute the vocabulary of an ontology. 
 

 

Fig.1: A relation between OWL 2 ontology and axioms 
(extract from Figure 1 of OWL 2 specification [2]).
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Fig.2: A relation between the selected class axiom, relevant expressions and entities (by OWL 2 specification [2]). 

Because the association end named axioms 
(see fig. 1) is specified with the use of UML Multiplicity 
Element and a Set collection type (is Ordered=false and 
is Unique=true), a correct OWL 2 ontology cannot 
contain two axioms that are textually equivalent. In the 
normalization method, it is assured through applying the 
transformations from group VI. 

Nevertheless, the ontology may have axioms 
which contain the same information. For example, it 
may include the following two axioms: DisjointUnion            
(:Child :Boy :Girl ) and DisjointClasses(:Boy: Girl). The 
semantics of DisjointUnion [2] states that Child class is 

a disjoint union of Boy

 

and Girl

 

class expressions 
which are pairwise disjoint. Therefore, the additional 
information specified by DisjointClasses

 
can be seen 

as redundant and will be refactored with the proposed 
transformation rules (here from groups II and IV).

 

The structural specification of OWL 2 [2]
 
defines 

an abstract class Axiom
 
(see fig. 3). The abstract class 

Axiom
 

is specialized by the following classes: 
ClassAxiom

 
(abstract), ObjectPropertyAxiom

 
(abstract), 

DataPropertyAxiom (abstract), Declaration,
 

Datatype
 

Definition (abstract), HasKey, Assertion
 

(abstract) and 
AnnotationAxiom (abstract). 

 
 

 

Fig. 3: The axioms of OWL 2 [2]and the tables which specify the proposed replacement rules. 

AnnotationAxiom [2] axioms are mainly used to 
improve readability for humans. The axioms do not 
affect the semantics [2]. Therefore, they are not further 
restructured in this paper. 

Declaration [2] axioms specify that entities are 
part of the vocabulary in ontology and are of a specific 
type, e.g., class, datatype, etc. OWL 2 DL ontology must 
explicitly declare all datatypes that occur in datatype 
definition, although in general, it is advisable to declare 
all entities for verification of the correctness of the usage 
of the entity based on its type. In the normalization 
method, if a declaration axiom is missing from the 
ontology, it is automatically retrieved based on the entity 
usage (transformation from the group I). This is applied 
toall types of entities but AnnotationProperty, because 

AnnotationProperty is only used to provide annotation 
and has no effect on the semantics.  

Datatype Definition [2] axiom defines a new 
datatype as being semantically equivalent to a unary 
data range. The Datatype Definition axiom is defined in 
the form that does not need to be restructured. 
Nonetheless, the data ranges included in other axioms 
or expressions may require refactoring (transformation 
from group III). The replacement rules for data ranges 
are presented in Table 5. 

HasKey[2] axiom states that each named 
instance of the specified class expression is uniquely 
identified by the specified object property and/or data 
property expressions. It is useful in querying about 
individuals which are uniquely identified. The HasKey 
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axiom itself is defined in the form that does not need to 
be restructured, but the class expression and object 
property expressions included in the axiom are 
restructured by the transformations presented in Tables 
6 and 7 (transformation from group III). 

To summarize, Section 4 presents replacement 
rules for Class Axioms in Table 1, for Object Property 
Axioms in Table 2, for Data Property Axioms in Table 3 and 
Assertion axioms in Table 4, Table 5 presents replacement 
rules for data ranges, Table 6 - for class expressions and 
Table 7 for object property expressions. Each row in Tables 
1-7 contains the number of the transformation group (by 
Groups I-VI defined in Introduction). Additionally, all the 
transformations from Group III are marked with the sub-
number (1)-(3) which defines a concrete refactorization 
within the group. 

IV. OWL 2 Construct Replacements 

Each replaced OWL 2 construct is semantically 
equivalent to the defined replacing construct(s). Most of 

the proposed transformations are our original proposals, 
but some of them come from the OWL 2 specification 
[2]. The specification defines the so-called syntactic sugar 
for selected axioms in more detail. This is for ease of 
writing of some popular patterns for humans. It is cited, 
where applicable, separately in each table. 

 
a)

 
Class expression axioms

 OWL 2 class expression axioms define the 
relationships between class expressions. The abstract 
class ClassAxiom

 
is specified by the following concrete 

classes: SubClassOf, EquivalentClasses, DisjointClasses 
and DisjointUnion. In Table 1, transformations of IDs: 3, 6 
and 8 are defined in [2], the other transformations are 
proposed by us. The replacing axioms

 
in ID 6 are 

semantically equivalent.
 

Table 1: Replaced and replacing class expression axioms. 

ID Group Replaced axiom Replacing axiom(s) 

1 II
   

   
   

 

2 V  

 
  

   

3 IV
     

   

4 II
  

  
  

 

5 V 
  

 
  

   

6
 

IV

    
   

 
   

7 II
   

  
   

 

8
 

IV

   
 

 

 
   
  

 

b) Object property axioms 

OWL 2 object property axioms define the 
relationships between property expressions. The 
abstract class ObjectPropertyAxiom is specified by the 
following concrete classes: SubObjectPropertyOf, 
EquivalentObjectProperties, Disjoint Object Properties, 
InverseObjectProperties, ObjectPropertyDomain, Object 

PropertyRange, ReflexiveObjectProperty, Irreflexive 

ObjectProperty, FunctionalObjectProperty, Inverse 

FunctionalObjectProperty, SymmetricObjectProperty, 
AsymmetricObjectProperty and TransitiveObjectProperty. In 
Table 2, transformations of IDs: 3 and 6-14 are defined in 
[2], the other transformations are proposed by us. The 
replacing axioms in ID 6 are semantically equivalent. 
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EquivalentClasses( CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentClasses ( CEi CEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf( CE1 CE2 )
SubClassOf( CE2 CE1 )
DisjointClasses( CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointClasses( CEi CEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf
    (CE1 ObjectComplementOf( CE2 ) )
SubClassOf
    (CE2 ObjectComplementOf( CE1 ) )
DisjointUnion( C CE1 ... CEi ... CEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentClasses( C 
ObjectUnionOf ( CE1 ... CEN ) )
DisjointClasses( CE1 ... CEN )
and N ≥ 2

EquivalentClasses( CE1 ... CEi ... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

EquivalentClasses( CE1 ... CEN)
and 1 ≤ i ≤ N and N ≥ 2

EquivalentClasses( CE1 CE2 )

DisjointClasses( CE1 ... CEi... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointClasses( CE1 ... CEN )
and N ≥ 2

DisjointClasses( CE1 CE2 )

DisjointUnion( C CE1 ... CEi ... CEj ... CEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

DisjointUnion( C CE1 ... CEN )
and N ≥ 2



Table 2: The replaced and replacing object property axioms. 
ID Group Replaced axiom Replacing axiom(s) 

1 II
  

 

   

  
 

 

2 V    

 
   

   

3 IV    

 
   

   

4 II
   

 
  

  
 

 

5 V    

 
   

   

6
 

IV

    

 
 

  
 

  

7 IV     
 

8 IV   
 

9 IV   
 

10
 

IV
   

 
 

11 IV   
 

12 IV   
 

13 IV   
 

14 IV   
 

c) Data property axioms 
OWL 2 data property axioms define the 

relationships between property expressions. The 
abstract class DataProperty Axiom is specified by the 
following concrete classes: SubDataProperty Of, 

EquivalentDataProperties, DisjointDataProperties, Data 

PropertyDomain, DataPropertyRange, and Functional 

DataProperty.In Table 3, transformations of IDs: 3 and 6-8 
are defined in [2], the remaining transformations are 
proposed by us. 

Table 3: The replaced and replacing data properties axioms. 

ID Group Replaced axiom Replacing axiom(s) 

1 II

 EquivalentDataProperties  

    DPE1 ... DPEi... DPEj ... DPEN) 
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi

 = DPEj
 

 
  

  

2 V 
EquivalentDataProperties( DPE1

 ... DPEN ) 
and 1 ≤ i ≤ N and N ≥ 2 

   
   

3 IV
 EquivalentDataProperties( DPE1

 DPE2 )    
   

4 II
 DisjointDataProperties(  

    DPE1 ... DPEi... DPEj ... DPEN) 
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DPEi

 = DPEj
 

 
  

  

5 V 
DisjointDataProperties( DPE1

 ... DPEN ) 
and 1 ≤ i ≤ N and N ≥ 2 

  
   

6 IV
 DataPropertyDomain( DPE CE )  

 

7 IV
 DataPropertyRange( DPE DR )  

 

8 IV
 FunctionalDataProperty( DPE )  
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EquivalentObjectProperties( OPE1 ... OPEi ... 
OPEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentObjectProperties( OPEi OPEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubObjectPropertyOf( OPE1 OPE2 )
SubObjectPropertyOf( OPE2 OPE1 )
DisjointObjectProperties( OPE1 ... OPEi ... 
OPEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointObjectProperties( OPEi OPEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
EquivalentObjectProperties( OPE1

    ObjectInverseOf( OPE2 ) )
EquivalentObjectProperties( OPE2

    ObjectInverseOf( OPE1 ) )
SubClassOf (Object Some Values From(OPE 
owl:Thing ) CE )
SubClassOf( owl:Thing 
    ObjectAllValuesFrom( OPE CE ) )
SubClassOf( owl:Thing 
    ObjectMaxCardinality( 1 OPE ) )
SubClassOf
    (owl:Thing ObjectMaxCardinality( 
        1 ObjectInverseOf( OPE ) ) )
SubClassOf( owl:Thing 
    ObjectHasSelf( OPE ) )
SubClassOf( ObjectHasSelf( OPE ) 
    owl:Nothing )
SubObjectPropertyOf( OPE 
    ObjectInverseOf( OPE ) )
SubObjectPropertyOf
    (ObjectPropertyChain( OPE OPE ) OPE ) )

EquivalentDataProperties
   ( DPE1 ... DPEi ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2
EquivalentDataProperties( DPEi DPEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubDataPropertyOf( DPE1 DPE2 )
SubDataPropertyOf( DPE2 DPE1 )
DisjointDataProperties
   ( DPE1 ... DPEi ... DPEN)
and 1 ≤ i ≤ N and N ≥ 2
DisjointDataProperties( DPEi DPEj )
and i,j ∈ {1,N} and i ≠ j and N ≥ 2
SubClassOf( DataSomeValuesFrom
     (DPE rdfs:Literal ) CE )
SubClassOf( owl:Thing 
     DataAllValuesFrom( DPE DR ) )
SubClassOf( owl:Thing 
     DataMaxCardinality( 1 DPE ) )

EquivalentObjectProperties( OPE1 ... OPEi ... OPEj 

... OPEN)
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi = OPEj

EquivalentObjectProperties( OPE1 ... OPEN )
and 1 ≤ i ≤ N and N ≥ 2

EquivalentObjectProperties( OPE1 OPE2 )

DisjointObjectProperties( OPE1 ... OPEi... OPEj 

... OPEN) 
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and OPEi = OPEj

DisjointObjectProperties( OPE1 ... OPEN )
and 1 ≤ i ≤ N and N ≥ 2

InverseObjectProperties( OPE1 OPE2 )

ObjectPropertyDomain( OPE CE )

ObjectPropertyRange( OPE CE )

FunctionalObjectProperty( OPE )

InverseFunctionalObjectProperty( OPE )

ReflexiveObjectProperty( OPE ) 

IrreflexiveObjectProperty( OPE ) 

SymmetricObjectProperty( OPE )

TransitiveObjectProperty( OPE )



d) Assertion axioms 
OWL 2 Assertion[2] axioms are used to state facts 

about individuals. Following structural specification [2], the 
abstract class Assertion is specified by the following 

concrete classes: SameIndividual, DifferentIndividuals, Class 
Assertion, ObjectPropertyAssertion, NegativeObjectProperty 
Assertion, DataPropertyAssertion, NegativeDataProperty 
Assertion. In Table 4, all transformations are proposed by us. 

Table 4: The replaced and replacing assertion axioms. 

ID Group Replaced axiom Replacing axiom(s) 

1 II
 SameIndividual( a1 ... ai ... aj ... aN) 

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj 
SameIndividual( a1 ... ai ... aN) 
and 1 ≤ i ≤ N and N ≥ 2 

2 V 
SameIndividual( a1 ... aN) 
and 1 ≤ i ≤ N and N ≥ 2 

SameIndividual( ai aj ) 
and i,j ∈ {1,N} and i ≠ j and N ≥ 2 

3 II
 DifferentIndividuals( a1 ... ai ... aj ... aN) 

and 1 ≤ i ≤ j ≤ N and N ≥ 3 and ai = aj 
DifferentIndividuals( a1 ... ai ... aN) 
and 1 ≤ i ≤ N and N ≥ 2 

4 V 
DifferentIndividuals( a1 ... aN) 
and 1 ≤ i ≤ N and N ≥ 2 

DifferentIndividuals( ai aj ) 
and i,j ∈ {1,N} and i ≠ j and N ≥ 2 

e) Data ranges 
OWL 2 data ranges [2] are used in restrictions on 

data properties. The abstract class DataRange is 
specified by the following concrete classes: 

DataComplementOf, DataUnionOf, DataOneOf, Datatype, 
DatatypeRestriction

 
and DataIntersectionOf. In Table 5, all 

transformations are our own proposals. 

Table 5: The replaced and replacing data ranges. 

ID Group Replaced data range Replacing data range(s) 

1 III (3)
  

 
 

2 II
   

  
   
 

3 III (1)

  
   

   
 
 

 
    

 
 

4 II
  

  
  

    
 

 

5 III (1)

  
   

   
 
 

 
    

 
 

6 III (3)

  
 

  
 

 
  

 

7 III (3)

  

  
 

 
  

 

8 II
    

  
   

 

f) Class expressions 

OWL 2 class expressions are constructed of 
classes and properties. In structural specification [2] class 
expressions are represented by the ClassExpression 

abstract class. The abstract class ClassExpression is 
specified by the following concrete classes: Class, 
ObjectIntersectionOf, ObjectUnionOf, ObjectComplement 

Of, ObjectOneOf, ObjectSomeValuesFrom, ObjectAllValues 

From, ObjectHasValue, ObjectHasSelf, ObjectMin 

Cardinality, ObjectMaxCardinality, ObjectExactCardinality, 
DataSomeValuesFrom, DataAllValuesFrom, DataHasValue, 
DataMinCardinality, DataMaxCardinality

 
and DataExact

 

Cardinality. In Table 6, the transformations of IDs: 9-14 and 
19 are defined in [2], the other transformations are our 
proposal. 

We exclude two general cases from further 
considerations - those of the existential and universal 
class expressions: 
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DR

DataUnionOf( DR1 ... DRi ... DRN )
and 1 ≤ i ≤ N and N ≥ 2

DataUnionOf
   (DR1 ... DRAi ... DRAN ... DRBj ... DRBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

DataIntersectionOf( DR1 ... DRi ... DRN )
and 1 ≤ i ≤ N and N ≥ 2

DataIntersectionOf
   (DR1 ... DRAi ... DRAN ... DRBj ... DRBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

DataComplementOf
       (DataUnionOf( DR1 ... DRN ) )
and 1 ≤ i ≤ N and N ≥ 2

DataComplementOf
       (DataIntersectionOf( DR1 ... DRN ) )
and 1 ≤ i ≤ N and N ≥ 2

DataOneOf( lt1 ... lti ... ltN )
and 1 ≤ i ≤ N and N ≥ 1

DataComplementOf 
    (DataComplementOf( DR ) )
DataUnionOf( DR1 ... DRi... DRj ... DRN )
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi = DRj

DataUnionOf
  (DataUnionOf( DR1 ... DRAi ... DRAN ) 
   ... DRBj ... DRBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
DataIntersectionOf
   (DR1 ... DRi... DRj ... DRN )
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and DRi = DRj

DataIntersectionOf
   (DataIntersectionOf( DR1 ... DRAi ... DRAN ) 
   ... DRBj ... DRBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
DataIntersectionOf
     (DataComplementOf( DR1 )
     ... DataComplementOf( DRN ) )
and 1 ≤ i ≤ N and N ≥ 2
DataUnionOf
     (DataComplementOf( DR1 )
     ... DataComplementOf( DRN ) )
and 1 ≤ i ≤ N and N ≥ 2
DataOneOf( lt1 ... lti ltj ... ltN )
and 1 ≤ i ≤ j ≤ N and N ≥ 1 and lti = ltj



• DataSomeValuesFrom( DPE1 ... DPEN DR ), where N 
≥ 2 and  

• DataAllValuesFrom( DPE1 ... DPEN DR ), where N ≥ 2.  
The reason is that in both class expressions the 

data range DR arity MUST be N (N ≥ 2). However, the 
current version of OWL 2 specification [2] does not 

provide any constructor, which may be used to define 
data ranges of arity more than one (see Section 7 of 
[2]). If a future version of the specification provides such 
a constructor, one can consider removal of duplicates 
and further restructuration of the mentioned class 
expressions. 

Table 6: The replaced and replacing class expressions. 

ID Group Replaced class expression Replacing class expression(s) 

1 III (3)
  

 
 

2 II
   

  
  

 

3 III (1)

  
    

   
 
 

 
     

 
 

4 II
  

 
  

  
 

 

5 III (1)

  
 

   
  

 
  

 
     

 
 

6 III (3)

  

  
 

 
  

 

7 III (3)

  
 

  
 

 
  

 
 

8 II
   

  
   

 
9 IV   

10
 

IV
   

 

11
 

IV
   

 
12 IV   

13
 

IV
   

 

14
 

IV
   

 

15

 

III (2)

  
  
  

  
 

  

 
  

  
 

 

16

 

III (2)

  
  
  

 
  

 
  

 
 

17
 

III (2)
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CE

ObjectUnionOf( CE1 ... CEi ... CEN )
and 1 ≤ i ≤ N and N ≥ 2

ObjectUnionOf
    (CE1 ... CEAi ... CEAN ... CEBj ... CEBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

ObjectIntersectionOf( CE1 ... CEi ... CEN )
and 1 ≤ i ≤ N and N ≥ 2

ObjectIntersectionOf
    (CE1 ... CEAi ... CEAN ... CEBj ... CEBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2

ObjectComplementOf
     (ObjectUnionOf( CE1 ... CEN ) )
and 1 ≤ i ≤ N and N ≥ 2

ObjectComplementOf
     (ObjectIntersectionOf( CE1 ... CEN ) )
and 1 ≤ i ≤ N and N ≥ 2

ObjectOneOf( a1 ... ai ... aN )
and 1 ≤ i ≤ N and N ≥ 1
ObjectMinCardinality( 1 OPE CE )
ObjectMaxCardinality
     (0 OPE ObjectComplementOf( CE ) )
ObjectSomeValuesFrom
     (OPE ObjectOneOf( a ) )
DataMinCardinality( 1 DPE DR )
DataMaxCardinality
     (0 DPE DataComplementOf( DR ) )
DataSomeValuesFrom
     (DPE DataOneOf( lt ) )

ObjectUnionOf
     (ObjectMinCardinality( n1 OPE CE )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2 and n1≥ 0 

ObjectIntersectionOf
     (ObjectMinCardinality( n2 OPE CE )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2 and n2≥ 0 

ObjectUnionOf
     (ObjectMaxCardinality( m2 OPE CE )

ObjectComplementOf   
    (ObjectComplementOf( CE ) )
ObjectUnionOf( CE1 ... CEi ... CEj ... CEN )
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectUnionOf
    (ObjectUnionOf( CE1 ... CEAi ... CEAN ) 
    ... CEBj ... CEBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
ObjectIntersectionOf
    (CE1 ... CEi... CEj ... CEN )
and 1 ≤ i ≤ j ≤ N and N ≥ 3 and CEi = CEj

ObjectIntersectionOf
    (ObjectIntersectionOf )
        (CE1 ... CEAi ... CEAN ) 
    ... CEBj ... CEBM ) )
and 1 ≤ i ≤ N and N ≥ 2
and 1 ≤ j ≤ M and M ≥ 2
ObjectIntersectionOf
     (ObjectComplementOf( CE1 )
     ... ObjectComplementOf( CEN ) )
and 1 ≤ i ≤ N and N ≥ 2
ObjectUnionOf
     (ObjectComplementOf( CE1 )
     ... ObjectComplementOf( CEN ) )
and 1 ≤ i ≤ N and N ≥ 2
ObjectOneOf( a1 ... ai... aj ... aN )
and 1 ≤ i ≤ j ≤ N and N ≥ 1 and ai = aj

ObjectSomeValuesFrom( OPE CE )

ObjectAllValuesFrom( OPE CE )

ObjectHasValue( OPE a )

DataSomeValuesFrom( DPE DR )

DataAllValuesFrom( DPE DR )

DataHasValue( DPE lt )

ObjectUnionOf
     (ObjectMinCardinality( n1 OPE CE )
    ( ObjectMinCardinality( n2 OPE CE )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectIntersectionOf
     (ObjectMinCardinality( n1 OPE CE )
     ObjectMinCardinality( n2 OPE CE )
     CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectUnionOf
     (ObjectMaxCardinality( m1 OPE CE )



  
  

 
  

  
 

 

18

 

III (2)

  
  
  

 
  

 
  

  
 

 

19
 

IV
  

 
 

 
 

20

 

III (2)

  
  
  

 
   

 

 
  

 
 

 

21

 

III (2)

  
  
  

 
 

  

 
  

  
 

 

22

 

III (2)

  
  
  

 
  

  

 
  

 
 

 

23

 

III (2)

  
  
  

 
 

  

 
  

  
 

24
 

IV
  

 
 

 
 

g) Object property expressions 
The following OWL 2 structural specification [2] 

object property expressions are represented by 
ObjectPropertyExpression abstract class. The abstract 

class ObjectPropertyExpression is specified by the 
following concrete classes: ObjectProperty and 

InverseObjectProperty. In Table 7, the transformation is our 
proposal. 

Table 7:  The replaced and replacing object property expressions. 

ID Group Replaced object property expression Replacing object property expression 

1 III (3)
 ObjectInverse of(  

    
ObjectInverse

 
Of ( OP ) )

 OP
 

V. Ontology Normalization Algorithm 

The following is an outline of the algorithm 
which transforms the syntactically correct and consistent 
OWL 2 DL ontology selected by the user − denoted by 
OWLONT − into the normalized ontology. The OWLONT' 
and OWLONT'' are intermediate ontologies required to 
process the input ontology into the output ontology. In 
the beginning, both OWLONT' and OWLONT'' are empty. On 
completion of the algorithm, the OWLONT'' represents the 
normalized ontology. 
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     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2 and m2≥ 0 

ObjectIntersectionOf
     (ObjectMaxCardinality( m1 OPE CE )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2
and m1≥ 0 

ObjectIntersectionOf
     (ObjectMinCardinality( n OPE CE )
     ObjectMaxCardinality( n OPE CE ) )

ObjectUnionOf     
(DataMinCardinality( n1 DPE DR )     
CEi... CEN )

and 1 ≤ i ≤ N and N ≥ 2 and n1≥ 0 

ObjectIntersectionOf
(     DataMinCardinality( n2 DPE DR )

     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2
and n2≥ 0 

ObjectUnionOf
     (DataMaxCardinality( m2 DPE DR )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2 and m2≥ 0 

ObjectIntersectionOf
     (DataMaxCardinality( m1 DPE DR )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 2 and m1≥ 0 

ObjectIntersectionOf
     (DataMinCardinality( n DPE DR )
     (DataMaxCardinality( n DPE DR ) )

     ObjectMaxCardinality( m2 OPE CE )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectIntersectionOf
    ( ObjectMaxCardinality( m1 OPE CE )
     ObjectMaxCardinality( m2 OPE CE )
     CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectExactCardinality( n OPE CE )
and n ≥ 0

ObjectUnionOf
     (DataMinCardinality( n1 DPE DR )
     DataMinCardinality( n2 DPE DR )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 3 and n1 ≤ n2

and n1≥ 0 and n2≥ 0 
ObjectIntersectionOf
     (DataMinCardinality( n1 DPE DR )
     DataMinCardinality( n2 DPE DR )
     CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and n1≥ 0 and n2≥ 0 and n1 ≤ n2

ObjectUnionOf
     (DataMaxCardinality( m1 DPE DR )
     DataMaxCardinality( m2 DPE DR )
     CEi... CEN )
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

ObjectIntersectionOf
     (DataMaxCardinality( m1 DPE DR )
     DataMaxCardinality( m2 DPE DR )
     CEi... CEN)
and 1 ≤ i ≤ N and N ≥ 3
and m1≥ 0 and m2≥ 0 and m1 ≤ m2

DataExactCardinality( n DPE DR )
and n ≥ 0



Algorithm:  Outline of the ontology normalization algorithm 

Input: Syntactically correct and consistent OWL 2 DL ontology 
Output: Normalized OWL 2 DL ontology  
BEGIN 
1. Take the first axiom from OWLONT.  
2. Take the first entity from the selected axiom. 
3. If the entity is declared, add the declaration axiom to OWLONT'.If the entity is not declared, extract 

the declaration axiom for the entity based on its usage and add the new declaration axiom to 
OWLONT'. 

4. Take the next entity from the selected axiom. 
5. Repeat steps 3-4 until no more entities in the selected axiom are available.  
6. Apply to the selected axiom allapplicable replacement rules defined in Tables 5-7, receiving a 

modified axiom.  
7. Add the modified axiom to OWLONT'.  
8. Take the next axiom from OWLONT. 
9. Repeat steps 2-8 until no more axioms in OWLONT are available.  
10. Take the first axiom from OWLONT'. 
11. Apply to the axiom allapplicable replacement rules defined in Tables 1-4.  
12. If transformations result in only one axiom, add the axiom to OWLONT''. Otherwise, if as a result of 

transformations the axiom splits into two or more axioms, repeat step 11 for each split axiom 
independently.  

13. Take the next axiom from OWLONT'. 
14. Repeat steps 11-13 until no more axioms in OWLONT' are available.  
15. Eliminate any of the duplicated axioms from OWLONT'' ontology. 
16. Return the OWLONT'' as a normalized ontology. 
END 

Comments to the algorithm: 

1. OWL 2 ontologies are built of axioms which may 
contain some expressions. Data ranges are 
contained in two axioms: DatatypeDefinition and 
DataPropertyRange, as well as in some expressions, 
e.g.,DataAllValuesFrom, DataMinCardinality, etc. 
Therefore, to perform fewer iterations of the 
normalization algorithm, first, we conduct all the 
transformations of the data ranges in axioms and 
expressions, as well as the expressions in axioms, 
and later on of the axioms themselves. 

2.
 

If the input ontology does not contain any 
duplicated axioms, the resulting ontology will 
contain at least the same number of axioms as the 
input ontology.

 

3.
 

The order of the conducted transformations is not 
important because the resulting ontology

 
will always 

be semantically equivalent. However, depending on 
the selected order, the resulting ontology may have 
a different textual form. The possible textual 
differences in the output ontology include: (1) the 
order of axioms and (2) the order of expressions in 
axioms (only if the order of expressions in the 
selected axiom is not important).

 

4.
 

The resulting ontology may contain fewer kinds of 
axioms and expressions. In particular, the ontology 
will not contain the below-mentioned list of axioms 
and expressions because they are refactored and 

reduced in accordance with the presented 
transformations:

 

•
 

Class axioms:
 

EquivalentClasses, DisjointClasses, 
DisjointUnion, 

•
 

Object property axioms: EquivalentObjectProperties, 
InverseObjectProperties, ObjectPropertyDomain, 
ObjectPropertyRange, InverseFunctionalObject

 

Property, FunctionalObjectProperty, ReflexiveObject
 

Property, IrreflexiveObjectProperty, SymmetricObject
 

Property,TransitiveObjectProperty, 

•
 

Data property axioms:
 

EquivalentDataProperties, 
DataPropertyDomain, DataPropertyRange, Functional

 

DataProperty, 

•
 

Class expressions:
 
ObjectSomeValuesFrom, Object

 

AllValuesFrom, ObjectHasValue, ObjectExact 
Cardinality, DataSomeValuesFrom, DataAllValues 
From, DataHasValue, DataExactCardinality. 

5.
 

The method of normalization and the defined 
transformations are unidirectional, which means that 
it is not possible to retrieve the original ontology 
from the normalized ontology.

 

VI.
 

Example of Single Normalization 

The example presents transformations 
conducted with the use of the normalization algorithm. 
The following is an input ontology, which contains one 
axiom:
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EquivalentClasses(:FourLeafClover: FourLeafClover ObjectIntersectionOf(  
       ObjectMinCardinality(3: hasLeaf:Leaf ) ObjectMaxCardinality( 7 :hasLeaf :Leaf ) 
       ObjectExactCardinality( 4 :hasLeaf :Leaf ) ) )  

Steps 1-5 of the algorithm extract declarations of entities: 
Declaration( Class ( :FourLeafClover ) )  (1) 
Declaration( Class ( :Leaf ) )  (2) 
Declaration( ObjectProperty (:hasLeaf ) )  (3) 

Steps 6-9 of the algorithm result in the following transformations: 

Rule 19 from Table 6 applied on the given axiom 
EquivalentClasses(:FourLeafClover :FourLeafClover ObjectIntersectionOf(  
       ObjectMinCardinality( 3 :hasLeaf :Leaf )  
ObjectMaxCardinality( 7 :hasLeaf :Leaf )  
       ObjectIntersectionOf( ObjectMinCardinality( 4 :hasLeaf :Leaf  )   
               ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) )  

(4) 

Rule 5 from Table 6 applied on (4) 
EquivalentClasses( :FourLeafClover :FourLeafClover ObjectIntersectionOf(  
      ObjectMinCardinality( 3 :hasLeaf :Leaf )  
ObjectMaxCardinality( 7 :hasLeaf :Leaf )  
      ObjectMinCardinality( 4 :hasLeaf :Leaf  ) 
 ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) )  

(5) 

Rule 20 from Table 6 applied on (5) 
EquivalentClasses( :FourLeafClover :FourLeafClover 
ObjectIntersectionOf( ObjectMaxCardinality( 7 :hasLeaf :Leaf ) 
ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
      ObjectMaxCardinality( 4 :hasLeaf :Leaf ) )  )  

(6) 

Rule 23 from Table 6 applied on (6) 
EquivalentClasses( :FourLeafClover :FourLeafClover 
ObjectIntersectionOf( ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) )  

(7) 

Steps 10-15 of the algorithm result in the following transformations: 

Rule 1 from Table 1 applied on (7) 
EquivalentClasses( :FourLeafClover ObjectIntersectionOf(  
ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) )  

(8) 

Rule 2 from Table 1 applied on (8) 
SubClassOf( :FourLeafClover ObjectIntersectionOf(  
ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) )  
SubClassOf( ObjectIntersectionOf( ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
      ObjectMaxCardinality( 4 :hasLeaf :Leaf ) )  :FourLeafClover ) 

(9) 

Steps 16-17 of the algorithm return the normalized ontology: 
Declaration( Class ( :FourLeafClover ) )  (1) 
Declaration( Class ( :Leaf ) )  (2) 
Declaration( ObjectProperty ( :hasLeaf ) )  (3) 
SubClassOf( :FourLeafClover ObjectIntersectionOf(  
ObjectMinCardinality( 4 :hasLeaf :Leaf  ) 
 ObjectMaxCardinality( 4 :hasLeaf :Leaf ) )  )  

(9A) 

SubClassOf( ObjectIntersectionOf( ObjectMinCardinality( 4 :hasLeaf :Leaf  )  
      ObjectMaxCardinality( 4 :hasLeaf :Leaf ) ) :FourLeafClover ) 

(9B) 
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VII. Proofs of the Correctness of the 
OWL 2 Construct Replacements 

This section aims at presenting proofs of 
correctness of the OWL 2 construct replacements 
presented in tables in Section 4. The replacing language 
constructs (right column in tables) are semantically 
equivalent to the replaced language constructs (left 
column in tables).  

The proofs are based on direct model-theoretic 
semantics [13]for OWL 2, which is compatible with the 
description logic SROIQ. The following convention is 
used: 
1. VC is a set of classes containing at least the owl: 

Thing and owl: Nothing classes.  
2. VOP is a set of object properties containing at least 

the object properties owl: topObjectProperty and 
owl: bottomObjectProperty. 

3. ΔI is a nonempty set called the object domain. 
4. ( )C is the class interpretation function that assigns 

to each class C ∈ VC a subset (C)C⊆ΔI such that 
(owl: Thing)C = ΔI and (owl: Nothing)C = ∅ 

5. ( )OP is the object property interpretation function that 
assigns to each object property OP ∈ VOPa subset 
(OP)OP⊆ΔI × ΔI such that (owl:topObjectProperty)OP 
= ΔI × ΔI and (owl: bottomObjectProperty)OP = ∅ 

6. 𝛼𝛼 = 𝛽𝛽means semantic equivalence of 𝛼𝛼 and 𝛽𝛽sets. 
7. 𝛼𝛼 ⊨ 𝐵𝐵 means that𝛼𝛼 formula is the semantic 

consequence of 𝐵𝐵 set of formulas. 
Proving equivalence comes down to the use of 

the interpretation definition and the rules of set theory. 
We selected two replacement rules for the proofs; all 
other ones could be proved analogically. 

Proof 1 for construct replacements from Table 1 ID 6: 
We have to prove that the interpretation of  
 DisjointClasses( CE1 CE2 ) 
is equivalent to the interpretation of  
 SubClassOf( CE1 ObjectComplementOf( CE2 ) ) 
The interpretation of 
 DisjointClasses( CE1 CE2 ) 
is (1) [13]: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶 = ∅ (1) 
The interpretation of 
 ObjectComplementOf( CE2 ) 
is (2) [13]: 
 △𝐼𝐼  \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (2) 
The interpretation of 
 SubClassOf( CE1 CE3 ) 
is (3) [13]: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊆ (𝐶𝐶𝐶𝐶3)𝐶𝐶 (3) 
Based on (2) and (3) the interpretation of  
 SubClassOf( CE1 ObjectComplementOf( CE2 ) ) 
is (4): 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊆  △𝐼𝐼  \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (4) 
We have to show that (4) is correct.  
If we assume that (4) is false, it means that (5) is true: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ⊈  △𝐼𝐼  \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 (5) 
It means that there exist: 
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶  ∧ 𝑥𝑥 ∉ △𝐼𝐼  \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⟺ 
 𝑥𝑥 ∉ △𝐼𝐼  \ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⇒ 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶2)𝐶𝐶 
Then: 
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∧ 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ⟺ 
 𝑥𝑥 ∈ (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶 
It means that: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ (𝐶𝐶𝐶𝐶2)𝐶𝐶 ≠ ∅ 
We have received contradiction, which had to be proved. 
Proof 2 for construct replacements from Table 6 ID 7: 
We have to prove that the interpretation of  
 ObjectUnionOf( 
      ObjectComplementOf( CE1 ) 
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      ... 
      ObjectComplementOf( CEN ) ) 
where 1 ≤ i ≤ N and N ≥ 2 is equivalent to the interpretation of 
 ObjectComplementOf( ObjectIntersectionOf( CE1 ... CEN ) ) 
where 1 ≤ i ≤ N and N ≥ 2. 
 
The interpretation of 
 ObjectUnionOf( CE1 ... CEN ) 
is (14) [13]: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∪ … ∪ (𝐶𝐶𝐶𝐶𝑛𝑛)𝐶𝐶 (14) 
The interpretation of  
 ObjectIntersectionOf( CE1 ... CEn ) 
is (15) [13]: 
 (𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑛𝑛)𝐶𝐶 (15) 
Based on De Morgan's law for sets, (2) and (14) the interpretation of 
 ObjectUnionOf( 
      ObjectComplementOf( CE1 ) 
      ...  
      ObjectComplementOf( CEN ) ) 
is (16): 
 (△𝐼𝐼  \ (𝐶𝐶𝐶𝐶1)𝐶𝐶) ∪ … ∪  (△𝐼𝐼  \ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (16) 
(17) is a result of application of (16) to (17): 
  △𝐼𝐼  \ ((𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (17) 
Based on (2) and (15) interpretation of 
 ObjectComplementOf( ObjectIntersectionOf( CE1 ... CEN ) ) 
is (18): 
 △𝐼𝐼  \ ((𝐶𝐶𝐶𝐶1)𝐶𝐶 ∩ … ∩ (𝐶𝐶𝐶𝐶𝑁𝑁)𝐶𝐶) (18) 
The equations (17) and (18) are equal, which had to be proved. 

VIII. Conclusions 

The paper introduces the concept of ontology 
normalization as a process of transforming the input 
OWL 2 ontology into the ontology in its refactored form. 
The process is defined through a group of OWL 2 
construct replacements. Because all individual replacing 
constructs preserve the semantics of the replaced 
constructs, the resulting ontology does not change the 
semantics of the original ontology. 

Thanks to the presented approach, users obtain 
the possibility to automate the processing of ontologies 
because the normalized ontologies have the structure of 
axioms unified. However, the normalized ontology has 
reduced readability from the point of view of human 
readers, which is caused especially by the 
transformations from the group IV, which remove the 
syntactic sugar from the ontology.  

The presented normalization algorithm is 
implemented in a prototype tool [8] which additionally 
allows for comparing two ontologies with the agreed 
vocabulary. More specifically, the tool states whether or 
not two ontologies are compliant or contradictory by the 
method outlined in [6]. 
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