
© 2018. Dr. Sanjay S Solank. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Incremental Maintenance of a Materialized View in Data
Warehousing: An Effective Approach

By Dr. Sanjay S Solank
 JSPMs Abacus Institute of Computer Application

Abstract- A view is a derived relation defined in terms of base relations. A view can be materialized by
storing its extent in the database. An index can be made of these views and access to materialized
view is much faster that recomputing the view from scratch. A Data Warehouse stores large amount
of information collected from a different data sources. In order to speed up query processing,
warehouse usually contains a large number of materialized views. When the data sources are
updated, the views need to be updated. The process of keeping view up to date called as materialize
view maintenance. Accessing base relations for view maintenance can be difficult, because the
relations may be being used by users. Therefore materialize view maintenance in data warehousing
is an important issue. For these reasons, the issue of self-maintainability of the view is an important
issue in data warehousing. In this paper we have shown that a materialized view can be maintained
without accessing the view itself by materializing additional relations at the data warehouse site.

Keywords: optimized view, ETL, incremental maintenance, view maintenance process, DMWS, view
synchronization, expression tree.

GJCST-C Classification: H.2.7

IncrementalMaintenanceofaMaterializedViewinDataWarehousingAnEffectiveApproach

 Strictly as per the compliance and regulations of:

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Type: Double Blind Peer Reviewed International Research Journal

Software & Data Engineering
Global Journal of Computer Science and Technology: C

Volume 1 Issue 3 Version 1.0 Year 2018

Publisher: Global Journals

8

Incremental Maintenance of a Materialized View
in Data Warehousing: An Effective Approach

Dr. Sanjay S Solank

Abstract-

A view is a derived relation defined in terms of base
relations. A view can be materialized by storing its extent in the
database. An index can be made of these views and access to
materialized view is much faster that recomputing the view
from scratch. A Data Warehouse stores large amount of
information collected from a different data sources. In order to
speed up query processing, warehouse usually contains a
large number of materialized views. When the data sources
are updated, the views need to be updated. The process of
keeping view up to date called as materialize view
maintenance. Accessing base relations for view maintenance
can be difficult, because the relations may be being used by
users. Therefore materialize view maintenance in data
warehousing is an important issue. For these reasons, the
issue of self-maintainability of the view is an important issue in
data warehousing. In this paper we have shown that a
materialized view can be maintained without accessing the
view itself by materializing additional relations at the data
warehouse site. We have developed a cost effective approach
to reduce the burden of view maintenance and also proved
that proposed approach is optimum as compared to other
approaches. Here incremental evaluation algorithm to
compute changes to materialized views in relational is
presented.

Keywords:

optimized view, ETL, incremental
maintenance, view maintenance process, DMWS, view
synchronization, expression tree.

 I.

Introduction

 t has been observed that in most typical data analysis
and data mining applications, timeliness and
interactivity are more important considerations than

accuracy; thus, data analysts are often willing to
overlook small inaccuracies in the answer, provided that
the answer can be obtained fast enough. This
observation has been the primary driving force behind
the recent development of approximate query
processing techniques for aggregation queries in
traditional databases and decision support systems [4],
[5]. Numerous approximate query processing
techniques have been developed: The most popular
ones are based on random sampling, where a small
random sample of the rows of the database is drawn,
the query is executed on this small sample, and the
results are extrapolated to the whole database. In
addition to simplicity of implementation, random
sampling has the compelling advantage that, in addition
to an estimate of the aggregate, one can also provide
confidence intervals of the error, with high probability.

Broadly, two types of sampling-based approaches have
been investigated: 1) pre-computed samples, where a
random sample is pre-computed by scanning the
database and the same sample is reused for several
queries and 2) online samples, where the sample is
drawn “on the fly” upon encountering a query. So the
selection of these random samples in distributed
environments for query processing is addressed in [6].
Data warehouses (DW) [6] are built by gathering
information from data sources and integrating it into one
virtual repository customized to users’ needs. One
important task of a Data Warehouse Management
System (DWMS) is to maintain the materialized view
upon changes of the data sources, since frequent
updates are common for most data sources. In addition,
the requirements of a data source are likely to change
during its life-cycle, which may force schema changes
for the data source. A schema change could occur for
numerous other reasons, including design errors, the
addition of new functionalities and even new
developments in the modeled application domain. Even
in fairly standard business applications, rapid schema
changes have been observed. In [10], significant
changes (about 59% of attributes on the average) were
reported for seven different applications over relational
databases. A similar report can also be found in [15].
These applications ranged from project tracking, sales
management, to government administration.

 In situations that real-time refreshment of the
data ware-house content is not critical; changes to the
sources are usually buffered and propagated
periodically such as once a day to refresh the view
extent. Two benefits are possible. One is to gain better
maintenance performance. The other is that there are
less conflicts with DW read sessions. In a data update
only environment, most view maintenance (VM)
algorithms proposed in the literature [17, 1, 14] group
the updates from the same relation and maintain such a
large delta change in a batch fashion. However, these
algorithms would fail whenever source schema changes
occur, which are also common as stated above. One
obvious reason is that the data updates in this group
may be schema inconsistent with each other if there are
some schema changes in between. On the other hand,
work has begun on incorporating source schema
changes into the data warehouse, namely, view
synchronization (VS) [8] aims at rewriting the DW view
definition when the source schema has been changed.

I

Author: Professor, JSPM’s Abacus Institute of Computer Application,
Pune. e-mail: sanjay.solanki123@gmail.com

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

11

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

To handle the delete of any schema information of a
data source, VS tries to locate an alternative source for
replacement to keep the new view semantically as close
to the original view as possible. Thereafter, view
adaptation (VA) [12] incrementally adapts the view
extent to keep the new view consistent. Such algorithms
are also not sufficient to batch a group of mixed data
updates and schema changes, since there could be a
number of schema changes interleaved with some data
updates. In this paper, we propose a solution strategy
that is capable of batching a mixture of both source data
updates

II. Definition of Terms

 View evaluation can be represented by a tree,
called an expression tree[5,9]. An expression tree is a
tree, where the leaf nodes represent base relations and
non-leaf nodes represent binary expressions in the
relational algebra. The unary relational algebraic
expressions are associated along the edges. A view or a
query is optimized by the query optimizer before
executing it. A query optimizer takes an expression tree
as input and produces an output, called an optimized
expression tree, which determines the internal sequence
of operations for executing a query. Thus, an optimized
expression tree defines a partial order in which
operations must be performed in order to produce the
result of the view.

Depth: The depth of leaf nodes, that is data base
relations is 0. The depth d of a node is defined as
max(depth of descendents)+1.

Height: The height of the optimized expression tree is
defined as the maximum depth of any node in the tree.

Given a node i in the expression tree, its parent
is denoted by i, and op(i) and op(i) are the
expressions associated with i and i, respectively. The
children of node i are denoted by i’ and i’’ where i’ is a
sibling of i’’ and vice versa. IRi denotes the intermediate
result of node i. The auxiliary relation associated with
node I is denoted ARi in the case where only one relation
is needed, and by AR1i and AR2i when two are needed.
The key of IRi is denoted by Ki, and the keys of IRi’ and
IRi’’ are denoted by Ki’ and Ki’’, respectively. Insertion and
deletion of tuples are denoted by and respectively.
The symbol δ either an inserted set or a deleted set of
tuples. The instance of a relation, say Ri, before and
after an update is denoted by Ri old and Rin ew

respectively, similiary for an auxiliary relation AR and a
materialized view V.

III. Example & Simplification

Consider a data warehouse for a large research
organization which has got many departments and each
department has many research groups. Suppose this
data warehouse is collecting data from four base
relations whose schemas are as follows:

R1: emp_rschr(rschr_id,rname,deptno,major) This
relation gives the researchers id, name, department and
major.

R2:emp_paperpublish(rschrid,paper_id,paper_title,sour
ce_of_publiscation, year_of_publish)

This gives researchers id,paper id, paper title,
source of publication and year of publish.

R3: emp_manager(rschr_id,deptno)
This relation contain one record for each

manager and his department. Assume that each
department has one manager. Since a manager is also
a researcher, relation emp_rschr has a tuple for each
manager.

R4: emp_groupleader(rschr_id,deptno)
This relation contains information about th

research group name and who is leading this group.
Since a group leader is also a researcher, relation
emp_rshcr has a tuple for each group leader.

Suppose a user of the organization is interested
in materializing and maintaining the following view:

‘Researchers other than managers and group
leaders along with their departments who have
published more than 10 papers in the year 2010.’

In SQL, it is defined as a sequence of view
definitions:

Create view mngr_or_groupleader (rschr_id, deptno) as
select rschr_id, deptno from emp_rschr

 UNION

 (select rschr_id, deptno from emp_groupleader)

 // This view is for finding manager and group leader

Create view rschr_ex_ manager_or_groupleader
(rschr_id, deptno) as select reshr_id, deptno from
emp_rschr where NOT EXISTS (select *from
mngr_or_grouple ader where emp_rschr.id=mngr_
or_groupleader.id)
 //This view is for finding researcher, those are not
manager or group leader.

Create view rschrpaperview2010 (rschr_id, paper_id,
deptno) as select emp_paperpublish.rschr_id, paper_id,
deptno from rschr_ex_manager_or_group leader,
emp_paperpublish where rschr_ex_ manager_or_ group
leader.rschr_id=emp_paperpublish.rschr_id and year=
’2010’.
 //This view gives the researcher those who have
published paper in the year 2010.

Create view rschrpaperview(rschr_id,deptno) as
 Select rschr_id, deptno from rschrpaper
view2010 group by rschr_id having count(*)>10;
 // This view gives the researcher who published
more than 10 research paper in the year 2010.

As base relations are updated, changes
representing the researchers data come into the
warehouse. Most warehouse do not apply the changes
immediately. Instead, changes are deferred and applied

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

 12

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Incremental Maintenance of A Materialized View in Data Warehousing: An Effective Approach

to the auxiliary relations incrementally. Deferring the
changes allows analysts that query the warehouse to
see a consistent snapshot of the data throughout the
day, and can make the maintenance more efficient.
Figure 1 shows the optimized expression tree for the

above view. Here, the nodes at leaf level are base
relations and non-leaf nodes are expressions. Each non-
leaf node in the tree corresponds to a relational
algebraic expression given above.

Figure 1:

Expression tree

Suppose Researchers or Paper_Public

relations
are updated. In this case we materialize the two auxiliary
relations View2 and View3. The contents of these views
are derived while computing the view first time. By
materializing these two auxiliary relations in the
warehouse, the view is self-maintainable along with
these auxiliary relations. Suppose new researchers
joined the organization, therefore, one tuple for each
new researcher in emp_rschr relation has to be inserted.
These insertions will led to generate tuples that to be
inserted in rschr_ex_manager_groupleader. Since these
new researchers have not published any paper at the
time of joining, these tuples cannot join with any tuples
of emp_paper_publish, thus there will no change in the
materialized views. Therefore, all auxiliary relations and
materialized views are self_maintainable. Now consider
another case where a set of tuples is inserted in
emp_paper_publish relation, say R. Then, we first
compute the research paper those are published in year
2010 and then it is join with
rschr_ex_managergroupleader view. Lastly the
intermediate result is grouped in the final auxiliary
relation by performing count operation. In this case also,
the view and auxiliary relations are self-maintainable.

IV.

Procedure of Materialize Views
Maintenance

The

materialize view maintenance process can
be divided into two functions: 1. Propagate and 2.
Refresh. The work of computing the auxiliary relations
happens within the propagate function, which can take
place without locking materialize views so that the

warehouse can continue to be made available for
querying by analysts. Materialize views are not locked
until the refresh function, during which time the
materialize views are updated from the auxiliary
relations.

The propagate function involves updating the
auxiliary views incrementally from deferred set of
changes. The final auxiliary view represents the net
changes to the materialize views due to the changes in
the underlying data sources.

The refresh function applies the net changes
represented in the final auxiliary relation to the
materialize views. This process carried out after a
specific time interval or when the system has free
cycles. So none of the data warehouse users or
operations are affected by the view maintenance
process. None of the query has to pay for view
maintenance. The materialize view maintenance process
totally hidden by users and running transactions.
Whenever an interested change happens in the
underlying data source, simply this desire change is
stored in the auxiliary relations by comparing and joining
it with others relations if required. This change is passed
to the higher level auxiliary relations. Again the change is
integrated and circulated to final auxiliary relation. Lastly
the change is refreshed into the data warehouse when
the refresh trigger is occur.

a)

Analytical Cost Model

In this section we show the performance results
of our materialize view maintenance method. The results
are based on the following cost model.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

 13

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

View4

View3

View2

View 1

 D

Group

∞

–

υ

Paper_Pub
lish

Researche
rs

Manager GroupLead
er

Incremental Maintenance of a Materialized View in Data Warehousing: An Effective Approach

i. Cost Model
The overall view maintenance cost of

materialized views includes the cost of propagate the
changes and the cost of refresh operations. Let
V1,V2,….,Vm be the m materialized views. Let B1, B2,…,Bn
be the n base relations and A1,A2,…Ai be the i auxiliary
relations. Let fu1

B1 ,…..,fun
Bn be the update frequency to

the base relations. Let Cij
B->A be the cost of propagating

an update on base relation Bi to auxiliary relation Aj and
Cjk

A->V be the cost of refresh of auxiliary Aj to materialized
view Vk. The overall cost of maintaining the views when
keeping both the materialized views and the auxiliary
relations is:

CMV+AR=� �f 𝐵𝐵𝐵𝐵𝑢𝑢𝐵𝐵 � ∗ (� C−> 𝐴𝐴�𝑛𝑛𝑘𝑘�𝑥𝑥
𝑘𝑘𝑎𝑎𝑛𝑛−𝑘𝑘

𝑗𝑗=1

𝑗𝑗=1

𝑘𝑘

𝑎𝑎𝑛𝑛−𝑘𝑘
𝐵𝐵=𝑛𝑛

𝐵𝐵=1

The total view maintenance cost with no
auxiliary relations is:

CMV=� �f 𝐵𝐵𝐵𝐵𝑢𝑢𝐵𝐵 � ∗
𝐵𝐵=𝑛𝑛

𝐵𝐵=1
(∑ C𝐵𝐵=𝑛𝑛

𝑘𝑘=1

It is obvious that the cost of maintaining the
materialized views directly from base relations is much
more than the cost of maintaining materialized views
through auxiliary relations.

V. Evaluation
To verify the feasibility and effectiveness of our

view maintenance strategies and corresponding
optimization framework, we have implemented the
proposed techniques using Oracle 9i. All experiments
were performed on a workstation with Pentium D 3.2
GHz processor, 1 GB of memory and 160 GB disks,
running Windows XP.

Relation R1 contain 500000 records, R2
contains 25000 records, where as in R3 there are

records of individual manager of a department and in R4
holds the records of group leaders.
We considered two types of changes:

Update-Generating changes: Insertions and deletions of
an equal number of tuples over existing researchers and
paper publishers. These changes mostly cause updates
amongst the existing tuples in materialized view.

Insertion-Generating changes: Insertions over new
researchers those who published certain number of
research papers. These changes cause only insert into
paper publish table.

The insertion-generating changes are very
meaningful since in many data warehousing
applications the only changes to the fact tables are
insertions of tuples for new dates, which leads to
insertions into materialized views.

Figure 2 shows four graphs illustrating the
performance advantage of using incremental
materialized view maintenance method which uses
auxiliary views to store intermediate results. The view
maintenance time is split into two functions propogate
and refresh. While computing the intermediate result the
data warehouse is remain free to the user.

Figure 2 (a) and (b) plot the variation in elapsed
time as the size of the change set changes(delta
relation), for a fixed size 500000 records in emp_rschr
relation and 250000 records in emp_paperpublish
relation.

We found that the incremental materialize view
maintenance using auxiliary relations wins for both types
of changes, but it wins with a greater margin for the
update generating changes. The refresh time is going
down by 20% in figure 2(b).

Figure 2(c) and (d) plot the variation in elapsed
time as the size of the emp_paperpublish relation
(source relation) changes, for a fixed size of 50000
records in change set(delta relation).

 Figure 2

(a):

Varying change set size for insert generating changes

0

20

40

60

80

100

120

140

2X10^3 4X10^3 6X10^3 8X10^3 10X10^3

Propagate

Refressh

Total

Total
Elapsed
Time
(seconds)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

 14

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Incremental Maintenance of a Materialized View in Data Warehousing: An Effective Approach

Figure 2(b):

Varying change set size for update generating changes

VI.

Conclusions

We have investigated one of the significant
problems of a data warehouse, that is, materialized view
maintenance and how to make warehouse materialized
views self maintainable without accessing the data from
underlying data sources. The study shows that it is
possible to make warehouse views self maintainable by
materializing additional auxiliary relations, which contain
intermediate results, at a data warehouse site. Using
efficient incremental materialize view maintenance
technique it is possible to reduce the cost of view
maintenance. Proposed materialize view maintenance
technique using auxiliary relation and dividing the
maintenance process into two steps: propagate and
refresh require less maintenance time as compared to
counting algorithm. Here the propagate function works
implicitly and whenever the data warehouse is ideal the
refresh function integrate the data into data warehouse
views. The entire maintenance process is hidden from
the data warehouse users.

References Références Referencias

1.

A Segev and J. Park, “Maintaining Materialised
Views in Distributed databases”, In Proceedings of
the IEEE International Conference on Data
Engineering, 1989.

 2.

Segev and W. Fang,” Currency based updates to
distributed materialized Views”, In proceedings of
the IEEE International Conference on Data
Engineering, 1990.

 3.

Abdulaziz S. Almazyad & Mohammad Khubeb
Siddiqui,” Incremental View Maintenance: An
Algorithmic Approach”, Internatioinal Journal of
Electrical & Computer Sciences IJECS-IJENS Vol.
10, No. 03,

2009.

4. Bin Liu & Elke A. Rundensteiner,

”Optimizing Cyclic

Join View Maintenance over Distributed Data

Sources”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 18, No. 3, March 2006.

 5.

D. Agarwal, A. E. Abbadi, A. Singh and T. Yurek,
“Efficient View Maintenance at Data Warehouses”,
Proc. ACM SIGMOD, pp. 417-427, 1997.

 6.

D. Lomet and J. Widom,” Special Issue on
Materialized Views and Data Warehousing”, IEEE
Data Engineering Bulletin 18(2), June 1995

 7.

E. N. Hanson, “A performance analysis of view
materialization strategies”, In SIGMOD pages

 440-453, 1987.
 8.

GianLuca Moro and Claudio Sartori,” Incremental
View Maintenance on Multi-Source”, In proceedings
of IEEE, 2001.

 9.

Gray C. H. Yeung and William A. Gruver, “Multi
 agent Immediate Incremental View Maintenance for

Data
 10.

Warehouses”, IEEE Transaction on Systems, Man

 & Cybermetics- Part A:

Systems & Human, Vol. 35,

 No.

2, March 2005.

 11.

Hao He, Junyi Xie., Jun Yang, Hai Yu,” Asymmetric
Batch Incremental View Maintenance”, In the
Proceedings of the 21st

International Conference on

Data Engineering, 1084-4627/05, 2005.
 12.

Heney E. Korth and Abraham Silberschatz,

 “Database System Concepts”, McGraw Hill, 1986.
 13.

J. A. Blakeley, P.A. Larson and F. W. Tompa,
“Efficient Updating Materialized Views”, Proc. ACM
SIGMOD, pp. 61-71, May 1986.

 14. J. Chen, X. Zhang, S. Chen, K. Andreas and E. A.
Rundensteiner, “DyDa: Data Warehouse
Maintenance under Fully Concurrent Environments”,
Proc. ACM SIGMOD Demo Session, p.619,

2001.

15. J. Hammer, H. Garcia-Molina, J. Widom, W. Labio

& Zhuge, “The Stanford Data Ware housing
Project”, IEEE Data Engineering Bulletin, June1995.

16. Jingren Zhou, PerAke Larson and Hicham G.
Elmongui: Lazy Maintenance of Materialized Views”,

0

20

40

60

80

100

120

2X10^3 4X10^3 6X10^3 8X10^3 10X10^3

Propagate

Refressh

Total

Total
Elapsed
Time
(seconds)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

15

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals

Incremental Maintenance of a Materialized View in Data Warehousing: An Effective Approach

in Proceddings of 33rd International conference on
VLDB 2007, Vienna, Austria.

17. L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S.
Mumick and K. A. Ross, “Supporting Multiple View
Maintenance Policies”, In Proceeding ACM
SIGMOD International Conference on Management
of Data, 1977.

18. Latha S. Colby, Timothy Griffin, Leonid Libkin,
Inderpal Singh Mumick and Howard Tricky,
“Algorithms for Defered View Maintenance”, In
proceedings of ACM SIGMOD, 1996, Canada.

19. M. Adiba & B. Line\dsay, “Database Snapshots, ”In
Proceedings of the sixth International Conference on
Very Large Databases, pages 86-91, Montreal,
Canada, October 1980.

20. M. Mohnia, “Avoiding re-computation: View
Adaptation in Data Warehouses”, In Proc. Of 8th

International Database Workshop, Hong Kong,
pages 151-165, 1997.

21.

N. Hyun, “Efficient View Self-Maintenance”,
Proceeding of ACM workshop on Materialized
views:

Techniques &

Applications”, Canada, June 7,

1996.

22.

N. Roussopoulos, “An Incremental Access Method
for Viewcache:

Concept, Algorithms and Cost

Analysis”, ACM Trans. On Database Systems,
16(3):535-563, 1991.

23.

O. Wolfson, H. M. Dewan, S. J. Stolfo and Yemini,
“Incremental Evaluation of Rules & Its Relationship
to Parallesim”, In Proceedings ACM IGMOD,
International Conference on Management of Data,
pages 78-87, 1991.

24.

R. Hull & G. Zhou, “A framework for supporting data
integration using the materialized &

virtual

approaches”, In SIGMOD Int’l Conference, Canada,
June 4 -6,1996.

25.

R. Ramakrishan, K. A. Ross, D. Srivastava and S.
Sudarshan, “Efficient Incremental Evaluation of
Queries with Aggregation”, In International Logic
Programming Symposium 1994.

26.

S. Chaudhuri and U. Dayal, “An Overview of Data
Warehousing and OLAP Technology”, In ACM
SIGMOD Record, volume26, pages 65-74, 1974.

27.

S. Chen, B. Liu and E.A. Rundensteiner,
“Multiversion Based View Maintenance over
Distributed Data Sources”, ACM Trans. Database
Systems (TODS), vol.29, no. 4, pp. 675-709,

2004.

28.

S. Solanki and Dr. Ajay Kumar, “A Comparative
Study of Materialized View Maintenance Techniques
in Data Warehousing”, IJRIME, Vol. 1, Issue 2,
August 2011.

29.

S. Solanki and Dr. Ajay Kumar, “A Comprehensive
Study of Data Warehousing”,

IJMR, Vol1, Issue 1,

January 2012.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
II

V
er
sio

n
I

16

Y
e
a
r

20
18

 (

)
C

© 2018 Global Journals 1

Incremental Maintenance of a Materialized View in Data Warehousing: An Effective Approach

	Incremental Maintenance of a Materialized View in DataWarehousing: An Effective Approach
	Author
	Keywords
	I. Introduction
	II. Definition of Terms
	III. Example & Simplification
	IV. Procedure of Materialize ViewsMaintenance
	a) Analytical Cost Model
	i. Cost Model

	V. Evaluation
	VI. Conclusions
	References Références Referencias

