
Incremental Maintenance of a Materialized View in Data1

Warehousing: An Effective Approach2

Dr. Sanjay S Solanki13

1 JSPMs Abacus Institute of Computer Application4

Received: 11 December 2017 Accepted: 2 January 2018 Published: 15 January 20185

6

Abstract7

A view is a derived relation defined in terms of base relations. A view can be materialized by8

storing its extent in the database. An index can be made of these views and access to9

materialized view is much faster that recomputing the view from scratch. A Data Warehouse10

stores large amount of information collected from a different data sources. In order to speed11

up query processing, warehouse usually contains a large number of materialized views. When12

the data sources are updated, the views need to be updated. The process of keeping view up13

to date called as materialize view maintenance. Accessing base relations for view maintenance14

can be difficult, because the relations may be being used by users. Therefore materialize view15

maintenance in data warehousing is an important issue. For these reasons, the issue of16

self-maintainability of the view is an important issue in data warehousing. In this paper we17

have shown that a materialized view can be maintained without accessing the view itself by18

materializing additional relations at the data warehouse site. We have developed a cost19

effective approach to reduce the burden of view maintenance and also proved that proposed20

approach is optimum as compared to other approaches. Here incremental evaluation algorithm21

to compute changes to materialized views in relational is presented.22

23

Index terms— optimized view, ETL, incremental maintenance, view maintenance process, DMWS, view24
synchronization, expression tree.25

1 Introduction26

t has been observed that in most typical data analysis and data mining applications, timeliness and interactivity27
are more important considerations than accuracy; thus, data analysts are often willing to overlook small28
inaccuracies in the answer, provided that the answer can be obtained fast enough. This observation has been the29
primary driving force behind the recent development of approximate query processing techniques for aggregation30
queries in traditional databases and decision support systems [4], [5]. Numerous approximate query processing31
techniques have been developed: The most popular ones are based on random sampling, where a small random32
sample of the rows of the database is drawn, the query is executed on this small sample, and the results are33
extrapolated to the whole database. In addition to simplicity of implementation, random sampling has the34
compelling advantage that, in addition to an estimate of the aggregate, one can also provide confidence intervals35
of the error, with high probability.36

Broadly, two types of sampling-based approaches have been investigated: 1) pre-computed samples, where a37
random sample is pre-computed by scanning the database and the same sample is reused for several queries and38
2) online samples, where the sample is drawn ”on the fly” upon encountering a query. So the selection of these39
random samples in distributed environments for query processing is addressed in [6]. Data warehouses (DW) [6]40
are built by gathering information from data sources and integrating it into one virtual repository customized41
to users’ needs. One important task of a Data Warehouse Management System (DWMS) is to maintain the42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

7 R1:

materialized view upon changes of the data sources, since frequent updates are common for most data sources.43
In addition, the requirements of a data source are likely to change during its life-cycle, which may force schema44
changes for the data source. A schema change could occur for numerous other reasons, including design errors,45
the addition of new functionalities and even new developments in the modeled application domain. Even in fairly46
standard business applications, rapid schema changes have been observed. In [10], significant changes (about47
59% of attributes on the average) were reported for seven different applications over relational databases. A48
similar report can also be found in [15]. These applications ranged from project tracking, sales management, to49
government administration.50

In situations that real-time refreshment of the data ware-house content is not critical; changes to the sources51
are usually buffered and propagated periodically such as once a day to refresh the view extent. Two benefits are52
possible. One is to gain better maintenance performance. The other is that there are less conflicts with DW read53
sessions. In a data update only environment, most view maintenance (VM) algorithms proposed in the literature54
[17,1,14] group the updates from the same relation and maintain such a large delta change in a batch fashion.55
However, these algorithms would fail whenever source schema changes occur, which are also common as stated56
above. One obvious reason is that the data updates in this group may be schema inconsistent with each other if57
there are some schema changes in between. On the other hand, work has begun on incorporating source schema58
changes into the data warehouse, namely, view synchronization (VS) [8] aims at rewriting the DW view definition59
when the source schema has been changed.60

To handle the delete of any schema information of a data source, VS tries to locate an alternative source61
for replacement to keep the new view semantically as close to the original view as possible. Thereafter, view62
adaptation (VA) [12] incrementally adapts the view extent to keep the new view consistent. Such algorithms are63
also not sufficient to batch a group of mixed data updates and schema changes, since there could be a number of64
schema changes interleaved with some data updates. In this paper, we propose a solution strategy that is capable65
of batching a mixture of both source data updates II.66

2 Definition of Terms67

View evaluation can be represented by a tree, called an expression tree [5,9]. An expression tree is a tree, where68
the leaf nodes represent base relations and non-leaf nodes represent binary expressions in the relational algebra.69
The unary relational algebraic expressions are associated along the edges. A view or a query is optimized by70
the query optimizer before executing it. A query optimizer takes an expression tree as input and produces an71
output, called an optimized expression tree, which determines the internal sequence of operations for executing72
a query. Thus, an optimized expression tree defines a partial order in which operations must be performed in73
order to produce the result of the view.74

3 Depth:75

The depth of leaf nodes, that is data base relations is 0. The depth d of a node is defined as max(depth of76
descendents)+1.77

4 Height:78

The height of the optimized expression tree is defined as the maximum depth of any node in the tree.79
Given a node i in the expression tree, its parent is denoted by i, and op(i) and op(i) are the expressions80

associated with i and i, respectively. The children of node i are denoted by i’ and i” where i’ is a sibling of i”81
and vice versa. IR i denotes the intermediate result of node i. The auxiliary relation associated with node I is82
denoted AR i in the case where only one relation is needed, and by AR 1 i and AR 2 i when two are needed.83
The key of IR i is denoted by K i , and the keys of IR i’ and IR i” are denoted by K i’ and K i” , respectively.84
Insertion and deletion of tuples are denoted by and respectively. The symbol ? either an inserted set or a deleted85
set of tuples. The instance of a relation, say Ri, before and after an update is denoted by Ri old an d Ri n ew86
respectively, similiary for an auxiliary relation AR and a materialized view V.87

5 III.88

6 Example & Simplification89

Consider a data warehouse for a large research organization which has got many departments and each department90
has many research groups. Suppose this data warehouse is collecting data from four base relations whose schemas91
are as follows:92

7 R1:93

emp_rschr(rschr_id,rname,deptno,major) This relation gives the researchers id, name, department and major.94

2

8 R2:emp_paperpublish(rschrid,paper_id,paper_title,sour95

ce_of_publiscation, year_of_publish)96

This gives researchers id,paper id, paper title, source of publication and year of publish.97

9 R3: emp_manager(rschr_id,deptno)98

This relation contain one record for each manager and his department. Assume that each department has one99
manager. Since a manager is also a researcher, relation emp_rschr has a tuple for each manager.100

10 R4: emp_groupleader(rschr_id,deptno)101

This relation contains information about th research group name and who is leading this group. Since a group102
leader is also a researcher, relation emp_rshcr has a tuple for each group leader.103

Suppose a user of the organization is interested in materializing and maintaining the following view:104
’Researchers other than managers and group leaders along with their departments who have published more105

than 10 papers in the year 2010.’106
In107

11 C108

to the auxiliary relations incrementally. Deferring the changes allows analysts that query the warehouse to see109
a consistent snapshot of the data throughout the day, and can make the maintenance more efficient. Figure110
?? shows the optimized expression tree for the above view. Here, the nodes at leaf level are base relations and111
non-leaf nodes are expressions. Each nonleaf node in the tree corresponds to a relational algebraic expression112
given above.113

12 Figure 1: Expression tree114

Suppose Researchers or Paper_Public relations are updated. In this case we materialize the two auxiliary115
relations View2 and View3. The contents of these views are derived while computing the view first time. By116
materializing these two auxiliary relations in the warehouse, the view is self-maintainable along with these117
auxiliary relations. Suppose new researchers joined the organization, therefore, one tuple for each new researcher118
in emp_rschr relation has to be inserted. These insertions will led to generate tuples that to be inserted in119
rschr_ex_manager_groupleader. Since these new researchers have not published any paper at the time of joining,120
these tuples cannot join with any tuples of emp_paper_publish, thus there will no change in the materialized121
views. Therefore, all auxiliary relations and materialized views are self_maintainable. Now consider another122
case where a set of tuples is inserted in emp_paper_publish relation, say R. Then, we first compute the research123
paper those are published in year 2010 and then it is join with rschr_ex_managergroupleader view. Lastly the124
intermediate result is grouped in the final auxiliary relation by performing count operation. In this case also, the125
view and auxiliary relations are self-maintainable.126

13 IV.127

14 Procedure of Materialize Views Maintenance128

The materialize view maintenance process can be divided into two functions: 1. Propagate and 2. Refresh. The129
work of computing the auxiliary relations happens within the propagate function, which can take place without130
locking materialize views so that the warehouse can continue to be made available for querying by analysts.131
Materialize views are not locked until the refresh function, during which time the materialize views are updated132
from the auxiliary relations.133

The propagate function involves updating the auxiliary views incrementally from deferred set of changes. The134
final auxiliary view represents the net changes to the materialize views due to the changes in the underlying data135
sources.136

The refresh function applies the net changes represented in the final auxiliary relation to the materialize views.137
This process carried out after a specific time interval or when the system has free cycles. So none of the data138
warehouse users or operations are affected by the view maintenance process. None of the query has to pay for139
view maintenance. The materialize view maintenance process totally hidden by users and running transactions.140
Whenever an interested change happens in the underlying data source, simply this desire change is stored in the141
auxiliary relations by comparing and joining it with others relations if required. This change is passed to the142
higher level auxiliary relations. Again the change is integrated and circulated to final auxiliary relation. Lastly143
the change is refreshed into the data warehouse when the refresh trigger is occur.144

15 a) Analytical Cost Model145

In this section we show the performance results of our materialize view maintenance method. The results are146
based on the following cost model.147

3

19 CONCLUSIONS

16 Global Journal of Computer Science and Technology148

Volume XVIII Issue III Version I149

17 i. Cost Model150

The overall view maintenance cost of materialized views includes the cost of propagate the changes and the cost151
of refresh operations. Let V 1 ,V 2 ,?.,V m be the m materialized views. Let B 1 , B 2 ,?,B n be the n base152
relations and A 1 ,A2,?A i be the i auxiliary relations. Let f u1 B1 ,?..,f un Bn be the update frequency to the153
base relations. Let C ij B->A be the cost of propagating an update on base relation B i to auxiliary relation A j154
and C jk A->V be the cost of refresh of auxiliary A j to materialized view V k . The overall cost of maintaining155
the views when keeping both the materialized views and the auxiliary relations is:C MV +AR=? ?f ???? ???? ?156
* (? C?> ??? ?? ?? ??? ?? ?? ????? ?? =1 ?? =1 ?? ?? ?? ??? ??=?? ??=1157

The total view maintenance cost with no auxiliary relations is:C MV =? ?f ???? ???? ? * ??=?? ??=1 (? C158
??=?? ??=1159

It is obvious that the cost of maintaining the materialized views directly from base relations is much more160
than the cost of maintaining materialized views through auxiliary relations.161

V.162

18 Evaluation163

To verify the feasibility and effectiveness of our view maintenance strategies and corresponding optimization164
framework, we have implemented the proposed techniques using Oracle 9i. All experiments were performed on a165
workstation with Pentium D 3.2 GHz processor, 1 GB of memory and 160 GB disks, running Windows XP.166

Relation R1 contain 500000 records, R2 contains 25000 records, where as in R3 there are records of individual167
manager of a department and in R4 holds the records of group leaders. We considered two types of changes:168

Update-Generating changes: Insertions and deletions of an equal number of tuples over existing researchers169
and paper publishers. These changes mostly cause updates amongst the existing tuples in materialized view.170

Insertion-Generating changes: Insertions over new researchers those who published certain number of research171
papers. These changes cause only insert into paper publish table.172

The insertion-generating changes are very meaningful since in many data warehousing applications the only173
changes to the fact tables are insertions of tuples for new dates, which leads to insertions into materialized views.174

Figure 2 shows four graphs illustrating the performance advantage of using incremental materialized view175
maintenance method which uses auxiliary views to store intermediate results. The view maintenance time is split176
into two functions propogate and refresh. While computing the intermediate result the data warehouse is remain177
free to the user.178

Figure 2 (a) and (b) plot the variation in elapsed time as the size of the change set changes(delta relation),179
for a fixed size 500000 records in emp_rschr relation and 250000 records in emp_paperpublish relation.180

We found that the incremental materialize view maintenance using auxiliary relations wins for both types of181
changes, but it wins with a greater margin for the update generating changes. The refresh time is going down182
by 20% in figure 2(b).183

19 Conclusions184

We have investigated one of the significant problems of a data warehouse, that is, materialized view maintenance185
and how to make warehouse materialized views self maintainable without accessing the data from underlying186
data sources. The study shows that it is possible to make warehouse views self maintainable by materializing187
additional auxiliary relations, which contain intermediate results, at a data warehouse site. Using efficient188
incremental materialize view maintenance technique it is possible to reduce the cost of view maintenance.189
Proposed materialize view maintenance technique using auxiliary relation and dividing the maintenance process190
into two steps: propagate and refresh require less maintenance time as compared to counting algorithm. Here191
the propagate function works implicitly and whenever the data warehouse is ideal the refresh function integrate192
the data into data warehouse views. The entire maintenance process is hidden from the data warehouse users. 1193

1© 2018 Global JournalsIncremental Maintenance of a Materialized View in Data Warehousing: An Effective
Approach

4

Year 2018
12
Volume XVIII Issue III Version I Create

view
mngr_or_groupleader
(rschr_id,
deptno)
as select
rschr_id,
deptno
from
emp_rschr

UNION // This view is for finding manager and group leader Create view rschr_ex_manager_or_groupleader (rschr_id, deptno) as select reshr_id, deptno from emp_rschr where NOT EXISTS (select *from mngr_or_grouple ader where emp_rschr.id=mngr_or_groupleader.id) //This view is for finding researcher, those are not manager or group leader. Create view rschrpaperview2010 (rschr_id, paper_id, deptno) as select emp_paperpublish.rschr_id, paper_id, deptno from rschr_ex_manager_or_group leader, emp_paperpublish where rschr_ex_manager_or_group leader.rschr_id=emp_paperpublish.rschr_id and year= ’2010’. //This view gives the researcher those who have published paper in the year 2010. Create view rschrpaperview(rschr_id,deptno) as Select rschr_id, deptno from rschrpaper view2010 group by rschr_id having count(*)>10; // Global Journal of Computer Science and Technology (select rschr_id, deptno from emp_groupleader) ()

Figure 1:

5

19 CONCLUSIONS

6

[Solanki and Kumar (2011)] ‘A Comparative Study of Materialized View Maintenance Techniques in Data194
Warehousing’. S Solanki , Dr , Ajay Kumar . IJRIME August 2011. 1 (2) .195

[Solanki and Kumar (2012)] A Comprehensive Study of Data Warehousing, S Solanki , Dr , Ajay Kumar . January196
2012. (IJMR, Vol1, Issue 1)197

[Hull and Zhou ()] ‘A framework for supporting data integration using the materialized & virtual approaches’.198
R Hull , & G Zhou . SIGMOD Int’l Conference, June 4 -6,1996.199

[Hanson ()] ‘A performance analysis of view materialization strategies’. E N Hanson . SIGMOD pages, 1987. p. .200

[Latha et al. ()] ‘Algorithms for Defered View Maintenance’. S Latha , Timothy Colby , Leonid Griffin , Singh201
Libkin , Howard Mumick , Tricky . proceedings of ACM SIGMOD, (ACM SIGMOD) 1996.202

[Roussopoulos ()] ‘An Incremental Access Method for Viewcache: Concept, Algorithms and Cost Analysis’. N203
Roussopoulos . ACM Trans. On Database Systems 1991. 16 (3) p. .204

[Chaudhuri and Dayal ()] ‘An Overview of Data Warehousing and OLAP Technology’. S Chaudhuri , U Dayal .205
ACM SIGMOD Record, volume26, 1974. p. .206

[Hao He et al. ()] ‘Asymmetric Batch Incremental View Maintenance’. Junyi Hao He , Jun Xie , Hai Yang , Yu207
. the Proceedings of the 21 st International Conference on Data Engineering, 1084-4627/05, 2005.208

[Mohnia ()] ‘Avoiding re-computation: View Adaptation in Data Warehouses’. M Mohnia . Proc. Of 8 th209
International Database Workshop, (Of 8 th International Database WorkshopHong Kong) 1997. p. .210

[Segev and Fang ()] ‘Currency based updates to distributed materialized Views’. W Segev , Fang . proceedings211
of the IEEE International Conference on Data Engineering, (the IEEE International Conference on Data212
Engineering) 1990.213

[Adiba and Line(1980)] ‘Database Snapshots’. M Adiba , & B Line\dsay . Proceedings of the sixth International214
Conference on Very Large Databases, (the sixth International Conference on Very Large DatabasesMontreal,215
Canada) October 1980. p. .216

[Heney et al. ()] Database System Concepts, E Heney , Abraham Korth , Silberschatz . 1986. McGraw Hill.217

[Chen et al. ()] ‘DyDa: Data Warehouse Maintenance under Fully Concurrent Environments’. J Chen , X Zhang218
, S Chen , K Andreas , E A Rundensteiner . Proc. ACM SIGMOD Demo Session, (ACM SIGMOD Demo219
Session) 2001. p. 619.220

[Ramakrishan et al. ()] ‘Efficient Incremental Evaluation of Queries with Aggregation’. R Ramakrishan , K A221
Ross , D Srivastava , S Sudarshan . International Logic Programming Symposium, 1994.222

[Blakeley et al. (1986)] ‘Efficient Updating Materialized Views’. J A Blakeley , P A Larson , F W Tompa . Proc.223
ACM SIGMOD, (ACM SIGMOD) May 1986. p. .224

[Agarwal et al. ()] ‘Efficient View Maintenance at Data Warehouses’. D Agarwal , A E Abbadi , A Singh , T225
Yurek . Proc. ACM SIGMOD, (ACM SIGMOD) 1997. p. .226

[Hyun (1996)] ‘Efficient View Self-Maintenance’. N Hyun . Proceeding of ACM workshop on Materialized views:227
Techniques & Applications, (eeding of ACM workshop on Materialized views: Techniques & Applications)228
June 7, 1996.229

[Wolfson et al. ()] ‘Incremental Evaluation of Rules & Its Relationship to Parallesim’. O Wolfson , H M Dewan230
, S J Stolfo , Yemini . Proceedings ACM IGMOD, International Conference on Management of Data, (ACM231
IGMOD, International Conference on Management of Data) 1991. p. .232

[Moro and Sartori ()] Incremental View Maintenance on Multi-Source, Gianluca Moro , Claudio Sartori . 2001.233
(In proceedings of IEEE)234

[Abdulaziz et al. ()] ‘Incremental View Maintenance: An Algorithmic Approach’. S Abdulaziz , Almazyad &235
Mohammad Khubeb , Siddiqui . Internatioinal Journal of Electrical & Computer Sciences IJECS-IJENS236
2009. 10 (03) .237

[Zhou et al. ()] ‘Lazy Maintenance of Materialized Views’. Jingren Zhou , Perake Larson , Hicham G Elmongui238
. Proceddings of 33 rd International conference on VLDB, (eddings of 33 rd International conference on239
VLDBVienna, Austria) 2007.240

[Segev and Park ()] ‘Maintaining Materialised Views in Distributed databases’. A Segev , J Park . Proceedings241
of the IEEE International Conference on Data Engineering, (the IEEE International Conference on Data242
Engineering) 1989.243

[Gray et al. (2005)] ‘Multi agent Immediate Incremental View Maintenance for Data 10. Warehouses’. C H Gray244
, William A Yeung , Gruver . IEEE Transaction on Systems, Man & Cybermetics-Part A: Systems & Human,245
March 2005. 35.246

[Chen et al. ()] ‘Multiversion Based View Maintenance over Distributed Data Sources’. S Chen , B Liu , E A247
Rundensteiner . ACM Trans. Database Systems (TODS) 2004. 29 (4) p. .248

7

19 CONCLUSIONS

[Liu Elke and Rundensteiner (2006)] ‘Optimizing Cyclic Join View Maintenance over Distributed Data Sources’.249
Bin Liu & Elke , A Rundensteiner . IEEE Transactions on Knowledge and Data Engineering March 2006. 18250
(3) .251

[Lomet and Widom (1995)] ‘Special Issue on Materialized Views and Data Warehousing’. D Lomet , J Widom .252
IEEE Data Engineering Bulletin June 1995. 18 (2) .253

[Colby et al. ()] ‘Supporting Multiple View Maintenance Policies’. L S Colby , A Kawaguchi , D F Lieuwen , I S254
Mumick , K A Ross . Proceeding ACM SIGMOD International Conference on Management of Data, (eeding255
ACM SIGMOD International Conference on Management of Data) 1977.256

[Hammer et al. ()] ‘The Stanford Data Ware housing Project’. J Hammer , H Garcia-Molina , J Widom , W257
Labio & Zhuge . IEEE Data Engineering Bulletin June1995.258

8

