
© 2013. Naveed Khan, Muhammad Shahid Khan, Muhammad Ahmed Javed & Muhammad Abid Khan. This is a research/review
paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium,
provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 7 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Reducing Testing Effort in the Test Driven Development

 By Naveed Khan, Muhammad Shahid Khan, Muhammad Ahmed Javed

& Muhammad Abid Khan

Gandhara University, Pakistan

Abstract

-

Test-driven development (TDD) is a software development process that relies on the

repetition of a very short development cycle: first the developer writes a failing automated test case
that defines a desired improvement or new function, and then produces code to pass that test and
finally refractors the new code to acceptable standards. TDD is a good approach for the
development of the new software but it is more time consuming process model when test the existing
software system. In this research we are introducing a new technique which reduces the effort of the
TDD approach.

GJCST-C Classification : D.2.5

Reducing Testing Effort in the Test Driven Development

Strictly as per the compliance and regulations of:

Reducing Testing Effort in the Test Driven
Development

Abstract - Test-driven development (TDD) is a software
development process that relies on the repetition of a very
short development cycle: first the developer writes a failing
automated test case that defines a desired improvement or
new function, and then produces code to pass that test and
finally refractors the new code to acceptable standards.

TDD is a good approach for the development of the
new software but it is more time consuming process model
when test the existing software system. In this research we are
introducing a new technique which reduces the effort of the
TDD approach.

I. Introduction

est driven development works on test first
programming concept. In test driven development
the programmer writes the code and then passes

the code through test. If test was successful then stop
the process of testing. So pass another code of the
project through test if it fails then programmer will
modify the code and pass the modified code again
through test. Process will repeat again and again until
test of the code will be successful.

II. Research Question

The existing test driven development model for
unit testing work very fine for the newly software but it is
time consuming process for the existing software. In
order to reduce the testing effort for the existing software
in test driven development we need some improve-
ments. Test Driven Development Model is shown bellow.

In the above model “write a test” and “write
production code” a lot of typing effort is required by the
programmer so testing effort will be increase if we
implement this model for the existing system. Our
research question is that how we reduce the testing
effort in the test driven development?

III.

Key Hypothesis

•

For test driven development input a module of the
existing system.

•

Test for module performance.

•

If the code of module is working fine then test is
successful.

•

If test is unsuccessful then Go to module library.

•

So select a specfic module from the module library.

•

Repeat the first step and test the selected code of
the module of module library.

This research is practically is very important and
challenge because in this area only newly software are
tested no one work on the existing system.

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Naveed Khan α, Muhammad Shahid Khan σ, Muhammad Ahmed Javed ρ & Muhammad Abid Khan Ѡ

Authors α σ : Gandhara University, Peshawar, Pakistan.
E-mails : naveediit@gmail.com, shahidkhan123@gmail.com
Author ρ : Government Degree College, Kohat, Pakistan.
E-mail : ahmed.javed725@gmail.com
Author Ѡ : University of Engineering & Technology, Peshawar,
Pakistan. E-mail : engrabid08@gmail.com

http://en.wikipedia.org/wiki/File:Test-driven_development.PNG�

Test-driven development (TDD) is a software
development process that relies on the repetition of a
very short development cycle: first the developer writes
a failing automated test case that defines a desired
improvement or new function, then produces code to
pass that test and finally refactors the new code to
acceptable

standards. Kent Beck, who is credited with

having developed or 'rediscovered' the technique, stated
in 2003 that TDD encourages simple designs and
inspires confidence.[1]

 Test-driven development is related to the test-
first programming concepts of extreme

programming,

begun in 1999,[2]

but more recently has created more

general interest in its own right.[3]

 Programmers also apply the concept to
improving and debugging legacy code

developed with

older techniques.[4]

 A 2005 study found that using TDD meant
writing more tests and, in turn, programmers who wrote
more tests tended to be more productive.[7]

Hypotheses

relating to code quality and a more direct correlation
between TDD and productivity were inconclusive.[8]

 Programmers using pure TDD on new
("greenfield") projects report they only rarely feel the
need to invoke a debugger. Used in conjunction with a
version control system, when tests fail unexpectedly,
reverting the code to the last version that passed all
tests may often be more productive than debugging.[9]

 Test-driven development offers more than just
simple validation of correctness, but can also drive the
design of a program.[10]

By focusing on the test cases

first, one must imagine how the functionality will be used
by clients (in the first case, the test cases). So, the
programmer is concerned with the interface before the
implementation. This benefit is complementary to
Design by Contract as it approaches code through test
cases rather than through mathematical assertions or
preconceptions.

 Test-driven development offers the ability to
take small steps when required. It allows a programmer
to focus on the task at hand as the first goal is to make
the test pass. Exceptional cases and error handling are
not considered initially, and tests to create these
extraneous circumstances are implemented separately.
Test-driven development ensures in this way that all
written code is covered by at least one test. This gives
the programming team, and subsequent users, a
greater level of confidence in the code.

While it is true that more code is required with

TDD than without TDD because of the unit test code,
total code implementation time is typically shorter.[11]

Large numbers of tests help to limit the number of
defects in the code. The early and frequent nature of the
testing helps to catch defects early in the development

expensive problems. Eliminating defects early in the
process usually avoids lengthy and tedious debugging
later in the project.

V.

Working of the Proposed Model

a)

Steps

 •

For test driven development input a module of the
existing system.

 •

Test for module performance.
 •

If the code of module is working fine then test is
successful.

 •

Otherwise test is unsuccessful.
 •

So select a specfic module from the module library.

 •

Repeat the first step and test the selected code of
the module of module library.

 Modules of the existing software are stored in
the module library.

In this way your test effort will be

reduced in the existing system.

You just test the module

code and attach it to the specfic software.
 b)

Results

 In this research we are testing the developed
system not a newly system.

Test#
Time taken by

Test

Driven Development
Model

Time Taken by
the Proposed

Model
 1

5 mints= 300 sec

3sec

 2

50 mints= 3000 sec

5sec
 3

100 mints= 6000 sec

7 sec

 4

150 mints=9000 sec

8 sec
 5

200 mints=12000 sec

10sec

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

Test Driven
Model
Proposed
Model

Figure 1.1 :

Test cases for both test driven development
model and proposed model

VI.

Discussion

In the above fig(1.1) shows that proposed

model is more efficient then the existing test driven
development

model. In these tests we write

manu

lay
code in the test driven development model and copy
and paste code in the proposed model. Because in test
driven development model programmer manually write
the code which is time consuming process but in the

Reducing Testing Effort in the Test Driven Development

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

2

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

cycle, preventing them from becoming endemic and

proposed model we just copy and paste code of the
testing module. The above graph shows that the
proposed model is 100% reduced the test effort.

http://en.wikipedia.org/wiki/Test-driven_development#cite_note-Newkirk-2�
http://en.wikipedia.org/wiki/Legacy_code�

VII.

Conclusion

The existing test driven development model for
unit testing work very fine for the newly software but it is
time consuming process for the existing software. In
order to reduce the testing effort for the existing software
in test driven development we introduced a new
approach and practically result shows that the new
approach is more efficient for test driven development
for the existing systems.

References

Références

Referencias

1.

a b c Beck, K. Test-Driven Development by
Example, Addison Wesley -

Vaseem, 2003.

2.

Lee Copeland (December 2001). “Extreme
Programming”. Computer

world. Retrieved January
11, 2011.

3.

a b Newkirk, JW and Vorontsov, AA. Test-Driven
Development in Microsoft .NET, Microsoft Press,
2004.

4.

Feathers, M. Working Effectively with Legacy Code,
Prentice Hall, 2004.

5.

a b c d e f g “Effective TDD for Complex Embedded
Systems Whitepaper”. Pathfinder Solutions.

6.

“Agile Test Driven Development”. Agile Sherpa.
2010-08-03. Retrieved 2012-08-14.

7.

Koskela, L. “Test Driven: TDD and Acceptance TDD
for Java Developers”, Manning Publications, 2007.

8.

a b “Test-Driven Development for

Complex Systems
Overview Video”. Pathfinder Solutions.

9.

Erdogmus, Hakan; Morisio, Torchiano. "On the
Effectiveness of Test-first Approach to
Programming". Proceedings of the IEEE Trans-
actions on Software Engineering, 31(1). January
2005. (NRC 47445). Retrieved 2008-01-14. “We
found that test-first students on average wrote more
tests and, in turn, students who wrote more tests
tended to be more productive.”

10.

Proffitt, Jacob. “TDD Proven Effective! Or is it?”.
Retrieved 2008-02-21. “So TDD's relationship to
quality is problematic at best. Its relationship to
productivity is more interesting. I hope there's a
follow-up study because the productivity numbers
simply don't add up very well to me. There is an
undeniable correlation between productivity and the
number of tests, but that correlation is actually
stronger in the non-TDD group (which had a single
outlier compared to roughly half of the TDD group
being outside the 95% band).”

11.

Llopis, Noel (20 February 2005). “Stepping Through
the Looking Glass: Test-Driven Game Development
(Part 1)”. Games from Within

Retrieved 2007-11-01.
“Comparing [TDD] to the non-test-driven
development approach, you're replacing all the
mental checking and debugger stepping with code
that verifies that your program does exactly what
you intended it to do.”

12.

Müller, Matthias M.; Padberg, Frank.

“About the
Return on Investment of Test-Driven Development"
(PDF). Universität Karlsruhe, Germany. p. 6.
Retrieved 2012-06-14.

13.

Loughran, Steve (November 6, 2006). “Testing”
(PDF). HP Laboratories. Retrieved 2009-08-12.

Reducing Testing Effort in the Test Driven Development

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

This page is intentionally left blank

Reducing Testing Effort in the Test Driven Development

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

4

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

	Reducing Testing Effort in the Test Driven Development
	Author's
	I. Introduction
	II. Research Question
	III. Key Hypothesis
	IV. Literature Review
	V. Working of the Proposed Model
	a) Steps
	b) Results

	VI. Discussion
	VII. Conclusion
	References Références Referencias

