
Rework and Reuse Effects in Software Economy1

Md.Shahadat Hossain2

Received: 12 December 2017 Accepted: 3 January 2018 Published: 15 January 20183

4

Abstract5

Software industry supposed to provide software product to their customers at a lower price6

and right time. Unfortunately, it?s true that the industry can?t deliver the software at lower a7

price. Lots of reasons are responsible for this high price of the Software. Such as high wages of8

stakeholders, the size of software, testing costs, implementation cost and one of the most vital9

reasons is a rework that increases the cost of software. In this research paper, I focused on10

rework and reuse, its cost effect on software economy. How to reduce the rework during the11

software development life cycleSDLC. This research found that a long part of the development12

duration used for rework. This scenario is not only obtainable in a small software firm but13

also medium and enterprise software companies. Rework issue is one of the big challenges of14

the software industry. This research explained the problem in a financial point of view and15

provided needed suggestions to reduce the rework increase the reuse based on software16

engineering body of knowledge. The software industry will be profitable if they can reduce the17

rework and upsurge the reuse of software.18

19

Index terms— software, rework, reuse, economy, quality, time, cost, stakeholders.20

1 Introduction21

ework is an ongoing problem in the software development process. Rework is generally considered to be potentially22
avoidable work that is triggered to correct problems or to tune an application (Aaron G. Cass, 2003). Many23
software firms are confused to isolate the rework. They think we are working to solve the existing problem24
& it is part of our maintenance, routine work. Now the point is how to differentiate the rework. Rework in25
software development is the additional effort of redoing a process or activity that was incorrectly implemented26
in the first instance or due to changes in requirements from clients ??Vimla Devi Ramdoo1, 2015). Rework27
is defined as work measures that have to be completed more than once (Robin McDonald, CCM, LEED G.A.,28
2013). Peter E.D. Love1 characterized rework as the ”unnecessary process of redoing a work activity that was29
incorrectly carried out the first time.” Another definition which emphasizes the essence of rework is ”work that30
is made to conform to the original requirements by completion or correction at least one extra time due to non31
conformance with requirements”. The term rework is clearly defined here. Now the question is what is the source32
of rework? How can we reduce the rework? What is the cost of rework and what is the effect of rework in the33
software economy? This research paper not only answering these questions but also explaining the benefit &34
values of reuse. The term ”Reuse” is used for developing the software by using the existing software components.35
These reusable components are projected assets. This research recommends to software engineers for design36
and develops software in such a manner so that a software component can be reused in multiple software. This37
research found that a few software firms are using existing reusable components, but the number of reuse is not38
satisfactory. Maximum components of the new software are being developing from scratch. Because the existing39
software components didn’t build for reuse. Although some components of previous software were developed for40
reuse, but all of those components are impossible to reuse due to technology upgrade and requirements changes.41
The ratio of reuse of already available software components is very limited. It is one of the barriers to the success42
of the software industry.43

This research was performed in a few software companies on multiple projects. A single project is not suitable44
for this type of research because let’s say the first project is fresh it has no reusable component. The first project45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

3 PURPOSE

will develop reusable components. Then in the next project development, reusable components of the first project46
can be reused. But at the first project, the chance to rework can’t ignore. Software reuse is accomplished by47
creating programs from previously developed software modules ??Robert W.Therriault, 1994). Reuse is expected48
to lead to reduced system development time arid maintenance while increasing reliability by using existing working49
modules ??Robert W.Therriault, 1994).50

2 II.51

3 Purpose52

The main purpose is to increase existing reuse levels to at least one step upper level and reduce the rework53
at least one step lower level. Development of project assets for decreasing rework and increasing reuse level of54
Software, Company. To meet this purpose Software Company must identify.55

1. What is their current rework level ? 2. What is their current reuse level ? First of all, defines the current56
position of the company where it exists now in rework and reuse level criteria. It is the very important job57
for software firm and complicated to define the level. A lot of the sensitive issues involved with it. If Software58
Company can’t measure the current level of rework and reuse, then it can’t estimate target level. product to59
their customers at a lower price and right time. Unfortunately, it’s true that the industry can’t deliver the60
software at lower a price. Lots of reasons are responsible for this high price of the Software. Such as high wages61
of stakeholders, the size of software, testing costs, implementation cost and one of the most vital reasons is a62
rework that increases the cost of software. In this research paper, I focused on rework and reuse, its cost &63
effect on software economy. How to reduce the rework during the software development life cycle-SDLC. This64
research found that a long part of the development duration used for rework. This scenario is not only obtainable65
in a small software firm but also medium and enterprise software companies. Rework issue is one of the big66
challenges of the software industry. This research explained the problem in a financial point of view and provided67
needed suggestions to reduce the rework & increase the reuse based on software engineering body of knowledge.68
The software industry will be profitable if they can reduce the rework and upsurge the reuse of software. One69
parameter is proportionally related to another. Some parameters are upward and some of them are downward.70
Upward parameters tend to the opposite with downward factors. Such as, if reuse arises, then time will fall,71
rework will fall, the development cost will drop. If project time rises, then the project cost will increase. The72
ultimate goal is to save the time, reduce cost and increase the profit margin. Here time and cost will sink parallel73
way with sinking rework. Profit will increase with the increase of quality & reuse. The rework, cost & time are74
expense related heads. The reuse, quality, productivity & profit is income associated heads. The opposite is75
happening when downward parameters grow up, and upward constraint goes down. When a rework is arisen in76
any part of a project such as, in a specific module or, same is happening in a small component, then the time77
of development is raising instantly. As a result the cost of development rises. The price may be $1 to $1000,78
depends on the project, its stage of SDLC and on the type of rework. Oppositely when there is no reuse, or the79
race becomes very limited in a project, then its quality may be having suffering, productivity may collapse and80
profit margins may plummet.81

Actually, every software company want to? Reduce project time ? Reduce project cost ? Reduce rework ?82
Reduce customer dissatisfaction ? Increase reuse ? Increase quality ? Increase productivity ? Increase profit83

If rework is decreased, then time will cut cost will shrink finally the profit margin of the company will upturn.84
If the reuse is increased then, the time of development will save, the cost of perfection will diminish ultimately85
the growth of revenue will upsurge. The major factor is R2. Reduce the Rework and increase the reuse. That is86
the prime focus of this research paper.87

Project Assets: Project assets are the reusable component of a project of a company. Project asset is developing88
by the predefine process. A process has multiple elements such policy, procedure up to 10 th elements based89
on manner. A procedure that has followed ten elements known as standard method and the component that90
developed with this ten elements is the reusable component. For example requirements specification stage, coding91
time, documentation segment design part, etc. Let say in requirement specification period, the requirement92
engineer detected that a requirement is repeated over several systems. So the engineer has to note that this93
portion of chucks corresponds to the well-defined set of necessities, modules then the engineer can reasonably94
expect to be able to reuse the requests Module. Similarly, in the coding level when a coder sees the same code95
is needed to write in multiple blocks, then coder can create a function, or it may be others object depends on96
the programming language that is used and it can be used, or call at any chunk of code where necessary. The97
software engineer can reuse the design of the existing subsystem as the design of the new subsystem, the test98
plan of the existing subsystem as the test plan of The new subsystem as well as others subsystems. Engineers99
can reuse existing the database schema for new database schema and create new object as well as Modify existing100
objects as per necessity. Here the maximum number of reused components is the user-defined function program.101
It is very easy, and friendly to reuse user-delineate function and procedure from one software to another software102
or from one software module to another module within the same software. Such as current age calculation within103
date of birth. If a programmer creates a job that will return current age year month day passing the parameter104
date of birth then it can be used for employee age calculation or same function can be reused for patient age105
calculation or same function can be reused for customer age calculation. This is suitable for reuse in any module106

2

within software as well as in other software. This component will reduce rework and save development time. The107
next place, of the maximum reused stage is the design part. Here design means software architecture design,108
database design, user interface design, platform design, and security design, etc. The reusable design saves time109
and cost. Design phase encourages increasing the reusability.110

4 c) Reuse’s Shortcomings111

Software reuse is hindered by issues. All-time reusable code is not a cure-all for Programmers and does not112
always provide significant benefits. Quite often maintaining old programs or developing shell scripts for reuse of113
old code is overlooked. A brief discussion of the important issues is as follows ??Robert W.Therriault, 1994).114
The above example is the reflection of reuse. It is amazing. 20% to 25% Productivity increase is not a small115
deal. These examples will influence another company for increase their reusability. Increasing the reuse means116
reducing the rework that reduces cost and time. As a result profit margin will rise. That is the ultimate goal of117
this research.?118

5 III.119

6 Original Work vs. Rework120

Software development works in a project typically include the development of new features, changes to existing121
features, and fixing reported feature defects. The journey from start to finish for these tasks may follow different122
paths described regarding time spent doing two types of work: original work and rework. Original work in123
this context is a metric which assesses how much initial time/effort was spent to develop/change/fix/verify a124
feature. Rework is a metric which assesses how much repeat time/effort was spent to complete a currently-open-125
and-active, or a previously-closed-and-reopened, feature/change/defect (Segue Technologies, 2014). The time of126
initial development work and the time of repeat work are clearly identified. Summation of both is the result of127
total work time.128

7 Causes of rework:129

Several avoidable and unavoidable reasons are responsible for rework. Some details can be minimized by seriously130
focusing on related works. Unavoidable causes that really impossible to ignore. Avoidable reason means those131
rework aims that can be easily controlled by stakeholders. Following are some spirited explanations.132

Rework cost may fluctuate from organization to organization. Above history of rework cost is asking us why133
we do allow rework, why we do not reduce rework yet.134

8 Risk level of rework:135

The risk level of rework differs over risk to risk, project to project. High-level risk of rework can lead to project136
failure. Risk management techniques would allow the project risk management team to identify, classify &137
prioritize the risk level, risky modules or components. In reality, it is very difficult to point out the risk level138
of rework in a large system. Rework become obligatory for a specific issue until the problem resolve. If the139
matter repeats several times and continuously works for the same matter, it not only waste time & money but140
also Damage Company good well. If the rework risk is too large for a firm to be willing to accept, the firm141
can avoid the risk by changing project strategies and tactics to choose a less risky alternate or may decide not142
to do the project at all. For example, if a project has a tight schedule constraint and includes state of the art143
technology. Current rework and reuse level of projects: ??———————————————————————144
—-X ??—————————————————————————-X So the initial development cost will be 1200145
PW * $1000 = $12,00,000. Rework cost will add 60 percent to that: Rework costs = 0.60 * $1200, 000= $720,000146
Software development cost = initial development cost + rework cost Total development cost = $12,00,000 +147
$7,20,000 Total development cost = $19,20,000 Next, you estimate the amount of rework that will be due to148
the requirements errors: 0.75 * $19,20,000= $14,40,000 Finally, you divide this rework cost by the number of149
requirements defects to determine the cost per requirement defect: $2,400 = $14,40,000/600 (1200/2 requirements150
defects).151

Here one project P001 cost analysis has been described. Note this is not total project cost or even your total152
development cost, it does not include project Management, QA time, analyst time, and so on. It only covers153
pure development effort and rework cost of a week. Cost analysis of the rest of the project is the same. Following154
table showing the calculation of cost of rework for above five projects.155

Table -6 shows how the cost of rework is changing. Project P001 reworks percentage increased to 65%,156
simultaneously rewrite cost enlarged to $7,80,000 & total development cost increased to $1,980,000. Alternatively,157
if the rework fall to 55%, then rework cost fall to $6, 60,000, and total development cost falls to $1,860,000. This158
is just one variable effect on software economy. To complete this task quickly, if include another person then159
time will reduce to 5.6 days, but the development cost will increase to $3,200,000. Again, if remove one person to160
reduce the cost, then some cost will reduce, and the development cost will be $1,920,000, but time will increase161
to 9.33 days. Here total objects, number of man & salary are variable. Cost of development is varying with rising162
and falling off any of this variable values. Software companies want to reduce the rework. Now if the project P001163

3

11 REWORK AND REUSE EFFECTS IN SOFTWARE ECONOMY

comes up with 20% reuse, then it’s time will save 20% and the cost will save $240,000, and total development cost164
will be $960,000. The massive amount of cost is kept for reuse. I have successful records of cost & time saving by165
reusing one project objects to multiple projects and made a handsome profit. Here if comparison table 6 to table166
7, the variation of development cost will be realized. Figure -7 shows the effect of reuse in the software economy.167
Here the percentage of reuse, total screen, number of men, salary are variables. Changes in this variable’s value168
might change the cost of development.169

For example, if P001 reuse, increase to 25% than its rate, reduce from $240,000 to $300,000 save for reuse is170
$60,000. Dramatically cost is falling by the rising of reuse. So Software companies must try to increase their171
reuse level. Year 2018 ? The life cycle model used in the software development process. ? The development172
history of the software system of which the artifact is a substantial portion. ? The cost of beginning a policy of173
software reuse. ? The cost of creating and maintaining a reuse library of software artifacts. ? The percentage of174
the system that is made using existing software artifacts. ? The ratio of change in each software artifact that is175
being reused.176

? Different levels of an organization have different goals for the reuse programs. Figure-11 shows a project177
cost saving scenario from the reuse of previous software components, the extra cost paid for the rework and the178
difference between the original development budget & the net price of the development. How much cost will save179
from the reuse, will define by the management policy and planning.180

9 Initial Cost181

Rework Cost182

10 Reuse Cost Net Cost183

Time & cost effect: Time and cost is correlated with each other. Both are leading parameters of the project.184
Following example is more than enough to understand the time, and the cost effect on a project. An 8.7185
kilometres Moghbazar-Mouchak flyover project was taken up in January 2011 and was supposed to be completed186
by December 2015. But, the authorities concerned went for a one-and-a-half-year time extension until mid-2017187
with the construction still in progress. The construction cost of the flyover has increased to almost 72 percent as188
the construction agency was unable to complete the work in time and extended the project tenure several times.189
The authorities extended the deadline for completion three times, responding to the request from the builder.190
The construction costs has jumped to Taka 1327.4 crore from the original estimation of Taka 772 crore (Rick191
Haque, 2017).192

Investment for reuse: Reuse is the robust components of the development process. First and foremost, we193
must recognize that reuse has the same cost and risk Characteristics as any financial investment (BH Barens,194
1991). To get the benefit from software reuse, it is expected that the company should invest in the development195
of reusable software components. ROI of reusability depends on the efficient investment of reusable components.196
There are additional costs associated with understanding, Modifying, certifying, and maintaining it (Ronald J.197
Leach, 2011). It is clear that price is involved in the development of reusable software components as well as cost198
is involved in the uses of existing reusable software components. Barry Boehm explained the cost calculation as199
followed (Barry Boehm, 1997): Year200

© 2018 Global Journals201

11 Rework and Reuse Effects in Software Economy202

Investment for the development of reusable software component is calculated by the above formula.203
Investment of reuse of already developed existing reusable software component calculated by the above formula.204
ROI of reuse: Return on investment for reuse is a widely used measure to compare the effectiveness of reusable205

components development investments. It is commonly used to justify software projects. The plain ROI calculation206
is to divide the net return from an investment by the cost of the investment and express this as a percentage.207
ROI, while a simple and extremely popular metric, it may be easily modified for different situations.208

There is another term called ROR (rate of return), Rate of profit. The return is also known as money gained209
or lost on investment, profit or loss, gain or loss, net income or loss. The cost of investment is also known as210
investment, capital, principal, costs. A project is more likely to proceed if its ROI is higher because higher the211
better. For example, a 200% ROI over five years indicates a return of double the project Investment, over a212
five year period. Financially, it makes sense to choose projects with the highest ROI first, then those with lower213
ROI’s. While there are exceptions, if a project has a negative ROI, it is questionable if it should be authorized214
to proceed.215

Let’s say a project P001 developed a reusable component in six month durations. P001 invested $6,000 for this216
reusable software component development. Later this reusable component was used in five projects. This reuse217
saved $24,000 development cost that is the return from reuse for the first year. So the ROI is ROI = ($24,000218
-$6,000)/$6,000 * 100 ROI = 300% for the first year 2nd years to 5th years the project will get return $30,000219
per year if there is no exceptional investment require for this reusable component. The return will come four220
Times i.e.400% higher than investment continuously for the next four years. The ROI for the next four years221
will be ROI = 400%*4 =1,600%. A Net ROI of five years projects is 1,600% + 300%=1,900%. It is a successful222

4

investment for the development of reusable components and the successful reuse benefit. Here we see the return223
of reusable components is four times higher than the investment. The return increases 300% to 1900% within224
five years of project duration. That makes sense to decide for investment for reusable software components.225

Reuse effect on software product line: It is essential to define the product line for produce new product226
by reusing an existing software product. Software product line architecture recycles standing product for227
productivity, quality, and profitability. Software product line practice carefully elicits, specify, analyze, and228
manage software requirements. This approach based on the systematic creation and reuse of existing assets in229
support of new product development (Emilio Insfran, 2014).230

12 RCWR: Relative Cost of Writing for Reuse231

The cost of developing reusable asset RCWR =232
The cost of developing single-use asset RCR: Relative Cost of Reuse233
The Cost to reuse asset RCR =234
The cost to develop the asset from scratch235
The ROI formula is:Return from reuse -Cost of Investment ROI % = X 100236

13 Cost of Investment237

The Apple iOS is the best example of software reuse. When the original iPhone launched, the OS was called238
”iPhone OS”, and it kept that name for four years, only changing to iOS with the release of iOS 4 in June of239
2010. iOS is the name of the operating system that runs the iPhone, iPod touch, and iPad. It’s the core software240
that comes loaded on all devices to allow them to run and support other apps. One year after the iPhone became241
a bigger hit than almost anyone projected, Apple released iOS 2.2.1. It was released on January 27, 2009 (then242
called iPhone OS 2.0) to coincide with the release of the iPhone 3G. The 1st generation iPad was Microsoft is243
an unusual company for the sheer number of product lines. Microsoft has revolutionary reuse records since its244
start on November 10, 1983, to till now. Microsoft’s bread and butter are Windows, the OS is doing quite well.245
Microsoft revealed that it had sold 400 million copies of its latest version, Windows 7. Microsoft’s big sales pitch246
with Windows 10 is that it’s one platform, with one consistent experience and one app store to get software from.247
There are seven different versions of Windows 10. Anyone who knows anything about Microsoft is aware of how248
essential its Office franchise is to the company. In every product, Microsoft reused the existing product, added249
new features and released a new product in the same product line.250

14 Life cycle affected by rework & reuse:251

Software development life cycle different model are affected by rework & reuse. Such as waterfall model, spiral252
model, rapid prototyping model, agile model, etc. The cost saving from reuse can be started earlier in the life253
cycle model and can be realized at any phase (design phase, coding phase, test phase, etc.) of life cycle subsequent254
to the point at which the system is reused. When programmers took any component from the reusable library255
and used it as is without any change, then the element need not be tested because it was tested as a module256
earlier. Programmers only need to perform unit testing and integration testing in which the reusable component257
is engaged. No additional test cases, test plans or documentation need to write for this reusable component.258
At any segment of the life cycle if a bug is generated, or a scope for rework is produced, and it inherits to259
next part then its cost become several times higher than the earlier chapter. Early detection and prevention are260
cost-effective. If a scope of rework is formed in requirement specification phase, but it realized later in testing261
stage than the rework cost become higher than the requirement specification phase. The cost of rework varies262
from one phase to another phase of the software development life cycle.263

15 Cost-benefit analysis of software reuse & rework:264

Rework is cost heads. Although rework has no financial benefit, but this research found a potential benefit265
of rework. Reworks help to find out the undiscovered bug, logical and exceptional issues. At some point of266
view, rework is re-check, re-testing of an existing system during next work. If an effort is done twice the result267
of the second labor is better than the result of first work. During the rework, some additional modification268
and the necessity to include new features may grow. The existing issues are cleaning by the Rework. Rework269
has some positive benefit. Rework cost is high, the cost vary from project to project. Reuse is revenue heads270
that save development time investment cost and improve quality. Here particular cost heads didn’t mention.271
Project to project the values of profit and loss may be varying. Some project may have a standard amount of272
turnover for remarkable reuse. Alternatively, project must count loss for oversize rework. Software reuse does273
not come free. We anticipate that developing reusable software on AAS will cost twice as much as developing274
nonreusable software. This alone could have deterred the AAS management from implementing a reuse program275
(Johan Margono, 1992). Anomaly Metrics Model for Software Rework Reduction: Majority of the reported276
anomalies belong to this category of real faults in the software or documentation delivered together with the277
software. Reproducible anomaly is an observed failure during testing that cannot be reproduced by the developer278
that is assigned to fix it. Getting many such failures might be due to the existence of many intermittent279
faults in the product. This indicates a robustness problem that probably requires improvements to the product280

5

19 CONCLUSION

architecture. Insufficient debugging environments are other common reasons for not being able to reproduce the281
failures. Anomalies occur when the requirements documentation is vague or incomplete. For example, when a282
test engineer, and a developer interpret a requirement differently, the tester is likely to submit an abnormality283
report. In these cases, the inconsistency report is defined as an opinion for function report which might also result284
in a correction. When an organization reports many anomalies of this type, it indicates that the requirements are285
not pure enough. (Lars-Ola Damm, 2008). According to Ola Damm above statement, it is important to cure all286
types of anomalies of every stage of SDLC whenever the anomalies introduce. It will reduce the rework otherwise287
in later stage rework will be increased and the rate of rework will also increase. The best way of anomalies &288
bug’s rework reduction is killed it before born.289

16 Global Journal of290

Prevention is better than a cure: This popular saying most definitely holds true when it comes to bugs or security291
issues identified within the SDLC. During the development process, it is more cost-effective and efficient to fix292
bugs in the early stages rather than later ones. The fee increases exponentially as the software moves forward293
in the SDLC. This research focuses on prevention the cure because prevention reduces rework that save time &294
cost of software development.295

17 IV.296

18 Results297

Bug fixing and rework are not the same things, but both are cost heads. Rework cost exceeds the project budget.298
Reuses saves both time and cost. This paper is influencing to reduce rework and increase reuse of software299
components to ensure the successive economic growth of Software Company. The prime goal of this project is300
to develop process assets that will be used to reduce rework & increase reuse levels of the software company.301
Here I didn’t find any benefit for which Software Company can neglect to develop reusable components. This302
research found that rework is harmful to the software economy. This research suggesting for early detection and303
prevention of bugs which is more cost-effective than testing & implementation phase.304

V.305

19 Conclusion306

This research found that economic growth of software companies falling for rework. All sizes of firms have307
more or less the rework problem. It is now one of the enormous challenges of the software industry. Rework is308
the barrier to the continuous achievement of financial improvement. This research focused on reuse to reduce309
the financial losses. The R2 is influential elements that move the economy. This paper is significant for modern310
software companies for high quality software development, as industries of all types utilize software applications to311
varying degrees. Unfortunately for startups, small businesses, and even multimillion dollar companies, tightening312
costs and rising competition mean a desperate scramble to find areas in which to slash expenses. Reduce your313
software development costs without sacrificing the quality of your product by following this paper cost saving314
strategy of reducing rework and increasing reuse.

1

Figure 1: Figure 1 :
315

6

2

Figure 2: Figure 2 :

Figure 3:

Figure 4:

7

19 CONCLUSION

6

Figure 5: Figure 6 :

7

Figure 6: Figure 7 :

8

8

Figure 7: Figure 8 :

9

19 CONCLUSION

9. Control
10. Improvement
For example a Following are a list of five projects:

Year
2018
36
Volume
XVIII
Issue
IV
Ver-
sion
I

Figure 3: List of five projects

)
(C
Global
Jour-
nal of
Com-
puter
Sci-
ence
and
Tech-
nol-
ogy

a) Advantages of reuse of software components Software reuse
can cut software development time and costs. The major
advantages of software reuse are to: ? Faster time to market
? Less effort ? Time-saving ? Increase software productivity.
? Utilize fewer resources ? Shorten software development time.
? Improve software system interoperability. ? Develop software
with fewer people. ? Move personnel more easily from project
to project. ? Reduce the systems development expenditures
? Reduce the software implementation and maintenance costs.
? Produce more standardized software. ? Produce better
quality software and provide a powerful competitive Advantage.
? Leads to better quality software ? Reduce bugs Reusable
component development phase: In any phases of the software
Development life cycle-SDLC, software engineers can develop
reusable components.

1.
Purpose
or Output
2. Per-
formance
Param-
eters 3.
Policies
4. Proce-
dures 5.
Standards

6. Knowl-
edge,
Skills &
Environ-
ment
7. Tools
& Tech-
niques
8. Mea-
surements

Figure 8:

10

Rework and Reuse Effects in Software Economy
Project Code Name

of the
project

Nature of the
project

StakeholdersRemarks

P001 Hospital
Man-
age-
ment
Infor-
ma-
tion
Soft-
ware

Health Care Infor-
mation System

Renown
Hospital
and Di-
agnostic
Labora-
tories

Year
2018

37
P002 P003 P005 P004 b) Reuse percentage of software components Eye Care System Ophthalmic EMR Trade Marketing & Distribution system Manufacturing and Distribution System Web Based Interactive ERP Digital Health Card System GPRS Health Tracking Pharmaceutical ERP Several studies into reuse have shown that. 40% to 60% of the code is reusable from one application to another. 60% of design and code are reusable in business applications. 75% of program functions are common to more than one program. 15% of the code found in most systems is unique and new to an application. Renown

Eye
Hospital
and
Institute
Group
of Com-
pany
Joint
Venture
Com-
pany
Govern-
ment
Staff

Volume
XVIII
Issue
IV
Ver-
sion
I

)
(C

Reusable components of a software: Software reuse is accomplished by creating programs from previously Global
Jour-
nal of
Com-
puter
Sci-
ence
and
Tech-
nol-
ogy

developed Software modules. Many different aspects of
software can be reused. Some of the constituents that
can be reused are as follows:

©
2018
Global
Jour-
nals

[Note: 15% to 85% rates of actual and potential reuse range (Florinda Imeri, 2012).]

Figure 9:
11

19 CONCLUSION

Rework and Reuse Effects in Software Economy
? Plans ? Queries, reports
? Software requirement specifications ? Concepts and domain knowledge
? Source code ? Implementation & experiences
? Software architecture ? Objects and text
? Design and user interface ? Process
? User manuals ? Library
? Software documentation ? Artifacts
? Database ? Modules
? Algorithms ? Master setup data
? Test case ? Models

Year
2018

? Templates ? Tools ? Procedure ? Themes ? Function ? Package

38 ? Plugins ? API ? Dynamic action ? Template
? Legal problems
? Domain irrelevance
? Technical Difficulty
? Complexity
? Team members conflicts

) ? Difficult to identify reusable component’s
(
C

? The technical factor that hinders software reuse is

poor conceptualization.
? Additional costs associated with understanding,

modifying, certifying, and maintaining
the reusable
components.

? 312 projects in the aerospace industry, with
averages of
20% increase in productivity.
20% reduction in customer complaints,
25% reduced time to repair, and
25% reduction in time to produce the
system.

? A Japanese industry study that noted
15-50% increases in productivity.
20-35% reduction in customer com-
plaints,
20% reduction in training costs, and
10-50% reduction in time to produce the
system.

©
2018
Global
Jour-
nals
1

[Note: d) Examples of successful software reuseGlobal Journal of Computer Science and TechnologyVolume XVIII
Issue IV Version I ? A simulator system developed for the US Navy with an increase of nearly 200% in the number
of source lines of code produced per hour. ? Tactical protocol software with a return on investment of 400%.?]

Figure 10:12

1

1. The reason for rework is infrequently the result of
individuals not doing their jobs well.
2. Improper planning
3. Poor communication
4. Inadequate testing
5. Unstructured programming
6. Poor logic and algorithm
7. Lack of domain knowledge
8. Insufficient time
9. Low-cost budget
10. One reason rework becomes necessary is that the
development, design and engineering teams lack
visibility into software requirements, which often
change throughout the development process.
11. Poor requirements management can have a
significant effect throughout the process and on the

[Note: Rework and reuse data of above projects: Data for this research were collected from small, medium and
enterprise software firms. There are maximum local software development firms of Bangladesh & a few() C ©
2018 Global Journals Rework and Reuse Effects in Software Economy E a r l y V i e w]

Figure 11: Table 1 :

13

19 CONCLUSION

5

Rework and Reuse Effects in Software Economy
80
60
40 Rework

Level
Reuse
Level

20
0

Year
2018

P001 P002 P003 P004P005

42
Volume
XVIII
Issue IV
Version
I

Number of functionalities that needs rework (defect found) Rework Level = -

)
(C
Global
Journal
of Com-
puter
Science
and
Technol-
ogy

Cost analysis for rework of the project P001: Our enlisted P001 project will come in at a 60 percent rework rate: Rework Cost = 0.60 * Project Dev Cost Managing Software Requirements indicate that about half of all software defects are due to missing or bad requirements, but the cost of finding and fixing

requirement defects is higher than that for other kinds of
defects. In fact, they indicate that 70 to 85 percent of the
rework cost is due to requirements defects. For our
example, we could use 75 percent (or use own
measurement):
Rework Cost of Requirements Defects = 0.75 * Rework
Cost
© 2018 Global Journals 1

Figure 12: Table 5 :

14

Rework and Reuse Effects in Software Economy Rework and Reuse Effects in Software Economy
Project Code 3500000 Reuse % 4000000 Total

Screen
No
of
Man

Man
Week

Salary Weekly Initial
De-
velop-
ment
Cost

Cost Save
for Reuse

Total
Cost

P001 3000000 20 300 4 1200 $1,000 $1,200,000 $240,000 $960,000
P001

P002 2500000 73 400 4 1600 $1,000 $1,600,000
$1,168,000

$432,000
P002

P003 2000000 22.44 200 3 600 $1,000 $600,000 $134,640 $465,360
P003

P004 1500000 32.35 100 5 500 $1,000 $500,000 $161,750 $338,250
P004

P005 1000000 31.55 500 5 2500 $1,000 $2,500,000 $788,750
$1,711,250
P005

Year 2018 Year 2018 0 500000 Initial Development Cost with Rework Cost with
Reuse

Year
2018

2000000 2500000 3000000 3500000 4000000 cost fall, if reuse fall development cost rise. Both rework Figure 9: Rework cost and Reuse cost effect Cost Variation of cost: A project having 60% rework rate and 20% reuse rate frequently up and down of its development cost. 46 Volume XVIII Issue IV Version I 44 P003 P004
P005 P001
P002

() C) (C 2500000 1500000) (C
Global Journal of
Computer Science and
Technology

0 500000 1000000 1000000 Ini.Dev. Cost 500000 1500000 2000000 0 Initial Development Cost Rework Cost Rework Cost Total Cost Rework + Development Cost Per Defect
Cost Cost
Save by
Net De-
velopment
Reuse
Cost

P001 1200000 720000 1920000 240000 960000
© 2018 Global
Journals 1 ©
2018 Global
Journals 1

© 2018
Global
Jour-
nals

[Note: Figure 10: Up and down of a project cost for rework and reuse effect How much cost saves from reuse
of software: It is a vigorous question of the Software industry. The software company expects to save some cost
by reuse. Because they are reusing some portion of a system and not developing the particular component from
scratch. The amount of cost saving depends on the number of reusable components they used. There are several
reasons for this discrepancy. The amount saved depends upon many factors. The most important factors are the
following (Ronald J. Leach, 2011):]

Figure 13:

15

19 CONCLUSION

including FaceTime, multitasking, iBook’s, organizing
apps into folders, Personal Hotspot, AirPlay, and
AirPrint. Another important change introduced with iOS 4
was the name ”iOS” itself. iOS 4 It was released on July

Year
2018

25, 2011. iOS 5 was released on May 7, 2012 with wirelessness, and cloud
computing features. A Controversy was one of the dominant themes of iOS 6

48 was released on Feb. 21, 2014. Like iOS 6, iOS 7 was met with substantial
resistance upon its release on June

Volume
XVIII
Is-
sue
IV
Ver-
sion
I (
) C
Com-
puter
Sci-
ence
and
Tech-
nol-
ogy

30, 2014. Unlike iOS 6, though, the cause of unhappiness among iOS 7 users
wasn’t that things didn’t work. Rather, it was because things had changed.
After the firing of Scott Forstall, iOS development was overseen by Jony Ive,
Apple’s head of design, who had previously only worked on hardware. In
this version of the iOS, Ive ushered in a major overhaul of the user interface,
designed to make it more modern. More consistent and stable operation
returned to the iOS in version 8.0 was released on August. 13, 2015. iOS 9
was released on August. 25, 2016 with major improvements were delivered in
speed and responsiveness, stability, and performance on older devices. iOS 10
was released on July 19, 2017. iOS 11 was released on May 29, 2018, contains
lots of improvements for the iPhone, but its major focus is turning the iPad
Pro series models into legitimate laptop replacements for some users. Apple
was continuously updating iOS and releasing one after one product by reusing
the previous iOS. Apple becomes world’s first trillion-dollar public company
as on Thursday 2nd August, 2018. Apple Is Worth $1,000,000,000,000. Two
decades ago, it was almost Bankrupt.

© 2018 Global Journals 1

Figure 14:

16

.1 Acknowledgements

.1 Acknowledgements316

I was inspired for this research by my professor of Independent University Bangladesh. I am grateful to my317
department for their cooperation. I would like to express my thanks to all software firms for their help. My wife318
Mrs Hosneara Shahadat and my Mother encourage me cooperated with me to perform the research.319

[Benefits] , Benefits . 140.00. 750.320

[BH Barnes Making reuse cost effective ()] , BH Barnes Making reuse cost effective 1991.321

[Barry Boehm Software Reuse Economics ()] , Barry Boehm Software Reuse Economics 1997.322

[Linda Westfall Software risk management ()] , Linda Westfall Software risk management 2001.323

[A Software Development Management Methodology Managing John W. Rittinghouse. ISBN ()] A Software324
Development Management Methodology Managing John W. Rittinghouse. ISBN, 2004. p. . (John Managing325
Software Deliverables)326

[Cass ()] Aaron G Cass . Formalizing Rework in Software Processes, 2003. Department of Computer Science,327
University of Massachusetts328

[Aaron ()] Cass Formalizing Rework in Software Processes, G Aaron . 2017.329

[Cost Benefit Profit/ Loss Total: 2,603,260.00 ========== 2,493] Cost Benefit Profit/ Loss Total:330
2,603,260.00 ========== 2,493, 140.00 ========== (110,120.00.331

[Lars-Ola ()] Damm A Model for Software Rework Reduction through a Combination of Anomaly Metrics, Lars-332
Ola . 2008.333

[David McAllister Software Waste and the Cost of Rework ()] David McAllister Software Waste and the Cost of334
Rework, 2017.335

[Emilio Insfran Requirements engineering in software product line engineering ()] Emilio Insfran Requirements336
engineering in software product line engineering, 2014.337

[Florinda Imeri an Analytical View on the Software Reuse ()] Florinda Imeri an Analytical View on the Software338
Reuse, 2012.339

[Johan Margono Software reuse economics: costbenefit analysis on a large-scale ADA project ()] Johan340
Margono Software reuse economics: costbenefit analysis on a large-scale ADA project, 1992.341

[Jones A short history of the cost per defect metric Capers Jones Associates LLC ()] ‘Jones A short history of342
the cost per defect metric’. Capers Jones & Associates LLC 2012. (2-2. Capers Jones, President)343

[Sommerville ()] Requirements engineering challenges, Sommerville . 2013. Ian Sommerville.344

[Rex Black is President and Principal Consultant of RBCS, Inc. R. Black, Managing the Testing Process, Second Edition Rex, Investing in software testing: the cost of software quality ()]345
‘Rex Black is President and Principal Consultant of RBCS, Inc. R. Black, Managing the Testing Process,346
Second Edition’. Rex, Investing in software testing: the cost of software quality, (New York) 2000. 2002.347
Wiley.348

[Rick Haque Builder gets time extension, cost shoots up ()] Rick Haque Builder gets time extension, cost shoots349
up, 2017. p. 72.350

[Ronald ()] J Ronald . Leach Software Reuse Methods, Models, and Costs, 2011.351

[Mcdonald and Ccm ()] Root Causes & Consequential Cost of Rework, Robin Mcdonald , Leed G A Ccm . 2013.352
Insurance North America Construction.353

[Segue Technologies Use Test Track Metrics to Measure and Manage Software Project Rework ()] Segue Tech-354
nologies Use Test Track Metrics to Measure and Manage Software Project Rework, 2014.355

[Shahadat Challenges of software quality assurance and testing ()] Shahadat Challenges of software quality as-356
surance and testing, 2018. Department of Software Engineering, School of Engineering & Computer Science,357
Independent University Bangladesh358

[Ricardo] Testability of dependency injection (2007) University of Amsterdam Faculty of science, Ricardo .359
(master research software engineering)360

[Ross ()] The secrets to high customer satisfaction, Ross . 2013.361

[Robert ()] Therriault Industry Versus DOD: A Comparative Study of Software Reuse, W Robert . 1994.362

[Vimla and Ramdoo ()] Devi Vimla , Ramdoo . Strategies to Reduce Rework in Software Development on an363
Organization in Mauritius, 2015. Department of Computer Science and Engineering, University of Mauritius364

17

