
Visualization of Multi-Service System Network with D3.Js &1

Kdb+/q using Websocket2

Ali Asgher Kapadiya3

Received: 9 December 2017 Accepted: 4 January 2018 Published: 15 January 20184

5

Abstract6

Visualization of complex web of services running in a multi-service system using D3.js as7

frontend, KDB+/q as backend and WebSocket JSON for communication.8

9

Index terms— multi-service systems, visualization, Kdb+, q, D3.js, websocket, JSON, SVG.10

1 Introduction11

ata visualization is everywhere. In the past decade, the JavaScript world has evolved multiple folds. A lot of12
JavaScript frameworks provide visualization analytics that brings the information to life. It has moved from the13
world of bar charts and scatter plots to a lot of other interactive charts which are now used heavily like Gauge14
charts (dial charts) in risk systems, Spider charts (radar charts) to compare the multivariate data, etc.15

One important aspect these JavaScript frameworks provides is the visualization of the relationship between16
the data. For example, during the investigation of Panama Papers, the ICIJ network used Linkurious.js ??1].17
This JavaScript library provided a simple and powerful way to visualize the graph database generated by Neo4j18
from more than 11.5 million documents, representing around 2.6 terabytes of data, enabling the investigators to19
uncover the potential stories in a short time frame.20

There are multiple JavaScript frameworks available for data visualization D3.js, Linkurious.js, Processing.js,21
Raphael.js to name a few. The comparison of these visualization frameworks is beyond the scope of this paper.22

2 a) Motivation23

The idea of this paper is to visualize the complex network of the multi-service system (having 100s of services24
serving different functionalities) using the WebSocket and JSON for communication. This visualization can help25
the developers/maintenance team to understand the complexity of the system and analyze the flow of information26
between the services.27

In this paper, we are going to visualize the complex web of Kdb+/q services in a typical financial institution28
using the D3.js as a visualization tool. However, any system publishing the events to a centralized service29
supporting the WebSocket and JSON can easily be integrated with the D3.js implementation we are going to30
discuss in this paper.31

3 b) D3.js32

D3.js (D3 or Data-Driven Documents) created by Mike Bostock ??2], is one of the JavaScript frameworks which33
uses the browser capabilities for producing interactive visualizations. It works perfectly with the DOM (Document34
Object Model) and is widely used on websites across the world for displaying the data in interactive graphical35
components.36

In general, there are two different ways to create and visualize the graphical components:37
? SVG -Remembers the objects in a DOM and enables the event handlers to be associated with objects.38
? Canvas -Renders the objects to a picture, but highly performant while handling a large number of objects.39

4 c) Kdb+40

Kdb+ is column -oriented, in-memory database known for its high-performance in the financial world. It was41
created by Arthur Whitney and is now one of the highly suitable databases for real-time time-series data analytics42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

15 C) NOTIFICATION FUNCTIONALITY

and is capable of handling millions of records effectively. The 32-bit version is free to download and use from43
https://kx.com/.44

Kdb+ is used for tick data and analytics platform in investments banks, hedge funds, etc. for various real-time45
analytics, P&L, risk assessment, best execution and regulatory purpose. It is slowly making its way to other46
fields like life-sciences, gaming, space, etc ??3]. A typical Kdb+ platform has evolved to hundreds of q services47
serving a different functionality like data capture, in-memory database, historical database, realtime calculation,48
user query gateways, etc.49

5 II.50

6 Process Visualizer51

There are two main components we are going to discuss in this paper. We will be using the term Process and52
Service interchangeably in this paper.53

7 a) Monitor process54

It is a centralized service containing the information of all the processes and connections among those processes.55
In this paper, it has been implemented in Kdb+ however it can be implemented in any other programming56
language and for any system having the complex web of connections.57

8 Data Structure58

Following are the data structures we are going to use in this paper.59
Node: A node is a point in the network that holds some properties. In our example, we are going to represent60

each Kdb+ service as a node in the network with two attributes ’prc’ (process name) and ’grp’ (process group).61
Link: An edge or a link represents a connection between two nodes. In our case, a link is representing a62

q/Kdb+ process connection to another q/Kdb+ process.63

9 IV.64

10 Monitor Process65

A Kdb/q process that acts as centralized service and has information of all the q processes running in the system66
and the connection between these q processes or to the users or the third-party apps. The appendix contains the67
full code for the monitor process. There are three main functionalities of a q monitor service.68

? Monitoring -Listening all process/connection events ? Subscriptions Maintaining the list of subscribers69
? Notification -Notifying the subscriber about any addition/deletion of process/connections a) Monitoring70
functionality Following are the functions through which the Monitor service cab be notified about any71
process/connection addition/drop.72

11 ? Add Prcocess73

Any service when it comes up needs to notify the monitor process about its name and meta using this function.74

12 ? Add Connection75

When a process is requested for a connection from some other process, user or third-party app, the process can76
inform the monitor service using the add Connection method.77

13 ? Drop Process78

This function can either be called from a process which is gracefully shutting down or can be called by monitor79
process connection handler after detecting the disconnection.80

14 ? Drop Connection b) Subscription Functionality81

The subscription functionality maintains a list of subscribers who are interested in process/connection events.82
The browser while loading the page will connect to Monitor service for any event updates.83

15 c) Notification functionality84

The monitor process will publish the following event to all the subscribers in case of any events along with85
the process/connection details. The web component needs to implement/handle these events and render the86
changes accordingly on the screen. Visualization of Multi-Service System Network with D3.Js & KDB+/q using87
Websocket -This function will be called when a q process drops a connection to some other process either88
gracefully or detecting a disconnection by connection close handler.? add_prc_event ? add_conn_event ?89
remove_prc_event ? remove_conn_event V.90

2

16 Web Component91

? WebSocket connection to Monitor service and subscribing itself for any event updates ? Call-back functions92
to listen and process the process/connection updates. ? Rendering the nodes (processes) and links (connections)93
on D3 SVG.94

17 a) Connection to Monitor service95

The following JavaScript code is connecting to the Monitor service using the browser WebSocket functionality96
and implementing the standard call-back methods of WebSocket.97

18 b) Monitor Event call-back methods implementation98

Implementation of the monitor process callbacks methods and then delegating the calls for displaying the99
process/connection updates using d3.js.100

19 c) Initializing the D3 SVG object d) Refreshing the nodes101

and links102

The ’refresh’ function contains the code to refresh the SVG after each node/link addition/removal update.103

20 VI.104

21 D3.js in Action105

The appendix below contains the full code for creating and displaying the process network. a) Steps to106
Run 1) Download 32bit version of KDB+/q from https://kx.com/download/ 2) Extract the zip file to107
’C:\’; it will produce a folder ’C:\q ?? [4]. 3) Save the ‘monitor.q‘, ‘Visualizer.html‘ and ‘simulator.q‘ files108
to the ‘C:\q\w32‘ directory. 4) Open a command prompt, go to the ‘C:\q\w32‘ directory and run the109
‘monitor.q‘ file C:\q\w32>q monitor.q -p 5555 .nodes(nNodes).links(nLinks).linkDistance(50).charge ??-200)110
.on(”tick”, tick); var svg = d3.select(”body”).append(”svg”).attr(”width”, sWidth).attr(”height”, sHeight);111
var arrows = svg.append(”svg:defs”).selectAll(”marker”) .data([”arrow”]) .enter() .append(”svg:marker”)112
.attr(”id”, String).attr(”viewBox”, ”0 -5 10 10”) .attr(”refX”, 10).attr(”refY”, -1) .attr(”markerWidth”,113
4).attr(”markerHeight”, 4) .attr(”orient”, ”auto”).append(”svg:path”).attr(”d”, ”M0,-5L10,0L0,5”);114
svg.append(”rect”).attr(”width”, sWidth).attr(”height”, sHeight); var nNodes = force.nodes(), nLinks115
= force.links(), node = svg.selectAll(”.node”), link = svg.selectAll(”.link”); function refresh() { link =116
link.data(nLinks); link.enter().append(”path”).attr(”class”, ”link”) .attr(”marker-end”, ”url(#arrow)”);117
link.exit().remove(); node = node.data(nNodes); var nodeEnter = node.enter() .insert(”g”).attr(”class”,118
”node”).call(force.drag); 5) Open the ‘Visualizer.html‘ in any browser supporting the WebSocket. The page will119
connect via WebSocket to the monitor service running on port 5555. Now the Visualizer is ready to display120
and service/connection updates. C:\q\w32>Visualizer.html 6) We will run a simulator to span some dummy121
services and connections.122

w32>q simulator.q 7) Now check the Visualizer page, you will see the simulated network updating real-time.123
To stop the continuously running simulation, type the command loop:0b on the simulator service console.124

22 b) Simulated Network Visualization125

Here is a sample graph generated by D3.js using the simulated process network implemented in q/Kdb+.126

23 Conclusion127

The whitepaper demonstrated how the visualization platform could connect to a centralized service supporting128
the JSON and WebSocket and display the network of services interfacing with each other.129

The service-network visualization example discussed in this paper could be useful for developers and130
support to visualize the health of the system for monitoring purpose. The code is not production-131
ready and has been kept concise for simplicity. Now the monitor service is ready to listen to any132
service/connection events. C:\q\w32>q simulator.q /Publish-Subscribe . .sim.prcsall:update id:i from133
ungroup update ‘$prc,‘$grp ,‘$”|”vs/:target from ‘prc‘grp‘target!/:((”tp_fx_a”;”tp”;””);(”tp_eqc_a”;”tp134
”;””);(”tp_fx_e”;”tp”;””);(”tp_eqc_e”;”tp”;””);(”tp_fx _u”;”tp”;””);(”tp_eqc_u”;”tp”;””);(”ctp_fx_a”;”ctp”;”t135
p_fx_a”);(”ctp_eqc_a”;”ctp”;”tp_eqc_a”);(”ctp_fx_e”;”c tp”;”tp_fx_e”);(”ctp_eqc_e”;”ctp”;”tp_eqc_e”);(”ctp_fx136
_u”;”ctp”;”tp_fx_u”);(”ctp_eqc_u”;”ctp”;”tp_eqc_u”);(” rte_fx_a”;”rte”;”tp_fx_a”);(”rte_eqc_a”;”rte”;”tp_eqc_a”);(”rte_fx_e”;”rte”;”tp_fx_e”);(”rte_eqc_e”;”rte”;”t137
p_eqc_e”);(”rte_fx_u”;”rte”;”tp_fx_u”);(”rte_eqc_u”;”r te”;”tp_eqc_u”);(”rdb_fx_a”;”rdb”;”rte_fx_a|gw_fx_a|gw138
_gf”);(”rdb_eqc_a”;”rdb”;”rte_eqc_a|gw_eqc_a|gw_ge”);(”rdb_fx_e”;”rdb”;”rte_fx_e|gw_fx_e|gw_gf”);(”rdb_eqc_e139
”;”rdb”;”rte_eqc_e|gw_eqc_e|gw_ge”);(”rdb_fx_u”;”rdb”; ”rte_fx_u|gw_fx_u|gw_gf”);(”rdb_eqc_u”;”rdb”;”rte_eqc_u|gw_eqc_u|gw_ge”);(”hdb1_fx_a”;”hdb1”;”gw_gf”);(”hdb1140
_eqc_a”;”hdb1”;”gw_ge”);(”hdb1_fx_e”;”hdb1”;”gw_gf”);(”hdb1_eqc_e”;”hdb1”;”gw_ge”);(”hdb1_fx_u”;”hdb1”;”gw_g141
f”);(”hdb1_eqc_u”;”hdb1”;”gw_ge”);(”hdb_fx_a”;”hdb”;”g w_fx_a”);(”hdb_eqc_a”;”hdb”;”gw_eqc_a”);(”hdb_fx_e”;”h142
db”;”gw_fx_e”);(”hdb_eqc_e”;”hdb”;”gw_eqc_e”);(”hdb_fx _u”;”hdb”;”gw_fx_u”);(”hdb_eqc_u”;”hdb”;”gw_eqc_u”);(”143

3

23 CONCLUSION

gw_fx_a”;”gw”;””);(”gw_eqc_a”;”gw”;””);(”gw_fx_e”;”gw” ;””);(”gw_eqc_e”;”gw”;””);(”gw_fx_u”;”gw”;””);(”gw_eqc144
_u”;”gw”;””);(”gw_ge”;”gw”;””);(”gw_gf”;”gw”;””);(”fh_lse”;”fh”;”tp_eqc_e”);(”fh_nyse”;”fh”;”tp_eqc_u”);(”fh145
_nse”;”fh”;”tp_eqc_u”);(”fh_ret”;”fh”;”tp_fx_u”);(”fh_ebs”;”fh”;”tp_fx_e”);(”fh_int”;”fh”;”tp_fx_u”);(”c1e”;146
”c”;”ctp_eqc_e|gw_ge”);(”c2e”;”c”;”ctp_eqc_e”);(”c3e”; ”c”;”ctp_eqc_u”);(”c4e”;”c”;”ctp_eqc_u”);(”c5e”;”c”;”g147
w_gf”);(”d1e”;”d”;”ctp_eqc_e”);(”c1f”;”c”;”ctp_fx_e”); (”c2f”;”c”;”ctp_fx_e”);(”c3f”;”c”;”gw_gf”);(”c4f”;”c”;148
”gw_ge”);(”c5f”;”c”;”ctp_fx_a”);(”d1f”;”d”;”ctp_fx_e”) ;(”gw_ca”;”gw”;”gw_gf|gw_ge”)); .sim.prcs:delete149
from .sim.prcsall where null target;150

.sim.conMap:()!(); resetVars:{show ”reset called”;.sim.cnt:count .sim.prcs;.sim.pubNodes:()}; newPrc:{[prc]151
h:hopen 5555 ;.sim.conMap ??prc‘prc] 1

Figure 1:
152

1© 2018 Global Journals 1

4

1

Figure 2: Fig. 1 :

5

23 CONCLUSION

6

Appendix below contains the complete implementation of the example in q, JavaScript and HTML. The153
example needs Kdb+ 3.0 or above. ??‘addprc ;prc); ‘.pm.prclist upsert (.z.w;prc‘prc;prc‘grp);154

.ps.pub (‘add_prc_event ;prc) }; addcon :{[con] .log.info(‘addcon ;con); ‘.pm.conlist upsert155
??.z.w;con‘prc;con‘target)156

[References Références Referencias] , https://linkurio.us/blog/panama-papers-how-linkurious-enables-icij-to-investigate-the-massive-mossack-fonseca-leaks/157
2.D3.jshttps://d3js.org/3.https://kx.com/solutions/ References Références Referencias 1.158

[enter() .append(”svg:marker”) .attr(”id svg:defs”).selectAll(”marker”) .data] ‘enter() .append(”svg:marker”)159
.attr(”id’. svg:defs”).selectAll(”marker”) .data, (var arrows = svg.append. String).attr(”viewBox”, ”0 -5160
10 10”) .attr(”refX”, 10).attr(”refY”, -1) .attr(”markerWidth”, 4).attr(”markerHeight”, 4) .attr(”orient”,161
”auto”).append(”svg:path”).attr(”d”, ”M0,-5L10,0L0,5”))162

[links(nLinks).linkDistance(50).charge(-200) .on(”tick] links(nLinks).linkDistance(50).charge(-200) .on(”tick,163
(tick)164

[rect”).attr(”width”, sWidth).attr(”height] rect”).attr(”width”, sWidth).attr(”height, (sHeight)165

[var svg = d3.select(”body”).append(”svg”).attr(”width”, sWidth).attr(”height] var svg =166
d3.select(”body”).append(”svg”).attr(”width”, sWidth).attr(”height, (sHeight)167

7

https://linkurio.us/blog/panama-papers-how-linkurious-enables-icij-to-investigate-the-massive-mossack-fonseca-leaks/2.D3.jshttps://d3js.org/3.https://kx.com/solutions/
https://linkurio.us/blog/panama-papers-how-linkurious-enables-icij-to-investigate-the-massive-mossack-fonseca-leaks/2.D3.jshttps://d3js.org/3.https://kx.com/solutions/
https://linkurio.us/blog/panama-papers-how-linkurious-enables-icij-to-investigate-the-massive-mossack-fonseca-leaks/2.D3.jshttps://d3js.org/3.https://kx.com/solutions/

