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Software Defined Networks Road Map 

W. Rankothge

Abstract- Software Defined Networking (SDN) is a paradigm 
that moves out the network switch’s control plane (routing 
protocols) from the switch and leaves only the data plane 
(user traffic) inside the switch. Since the control plane has 
been decoupled from hardware and given to a logically 
centralized software application called a controller; network 
devices become simple packet forwarding devices that can be 
programmed via open interfaces. The SDN’s concepts: 
decoupled control logic  and programmable networks provide 
a range of benefits for management process and has gained 
significant attention from both academia and industry. Since 
the SDN field is growing very fast, it is an active research area. 
This review paper discusses the state of art in SDN, with a 
historic perspective of the field by describing the SDN 
paradigm, architecture and deployments in detail. 
Keywords: software defined network (SDN), review. 

I. Introduction 

hree components of the network architecture are 
control plane, data plane, and management plane 
[1]. The control plane carries control traffic (routing 

protocols) and is responsible  for maintaining the routing 
tables. The management plane carries administrative 
traffic and is considered a subset of the control plane. 
The data plane bears the user traffic that the network 
exists to carry. It forwards the user traffic based upon 
information learned by the control plane. In a 
conventional network, all these three planes are 
implemented in the firmware of routers and switches. 

Software Defined Networking (SDN) is a new 
paradigm that moves out the network switch’s control 
plane from the switch and leaves only data plane inside 
the switch [2]. Since the control plane is decoupled from 
hardware and given to a logically centralized software 
application called a controller, network devices become 
simple packet forwarding devices that can be 
programmed via open interfaces. The SDN’s concepts: 
decoupled control logic and programmable networks 
provide  a range of benefits for the network 
management process. They include centralized control, 
simplified algorithms, commoditizing network hardware, 
eliminating middle-boxes and enabling the design and 
deployment of third-party applications. 

The promise of SDN has gained significant 
attention from both academia and industry. The Open 
Network Foundation (ONF) is an industrial driven 
organization, founded in  the  year  2011  by a  group  of 
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network operators, service providers, and vendors to 
promote SDN and standardize the OpenFlow protocol 
[3]. Deutsche Telekom, Facebook, Google, Microsoft, 
Verizon and Yahoo are among the founders. Currently, 
ONF has around 95 members including several major 
vendors. The OpenFlow Network Research Center 
(ONRC) was created by the academia with a focus on 
SDN research [4]. Since the SDN field is growing very 
fast, it is a very active research area. This review paper 
discusses the state of  art  in SDN, with a historic 
perspective of the field by describing the SDN 
paradigm, architecture and deployments in detail. 

II. SDN History 

The idea of programmable networks and 
decoupled control logic has a story  of  years.  The  
history  of  SDN  goes back to 1980s [5]. This section 
provides an overview of four technologies which helped 
SDN to evolve. 

a) Central network control 
In earlier days telephone networks were using 

in-band signaling where the data (voice) and the control 
signals are sent over the same channel. The resulting 
networks were always complex and insecure. In 1980s, 
AT&T separated data and control planes of their 
telephone network and introduced the concept of 
“Network Control Point” (NCP) [6]. The idea was to 
separate voice and control, and the control resided on 
NCP. NCP allowed operators to have a central network-
wide vantage point and directly observe the network-
wide behavior. Elimination of in-band signaling lead to 
independent evolution of infrastructure, data, and 
services where new services were able to be introduced 
to customers easily. So NCP was the origin of the SDN’s 
concept: separating control and data plane, and to have 
centralized control over the network [5]. 

b) Programmability in networks 
In the mid-1990s, DARPA research community 

introduced “Active Networks” with the idea of a network 
infrastructure that would be programmable for 
customized services [7]. There were two main 
approaches: user programmable switches, with in-band 
data transfer and out-of-band management channels 
and capsules, which  were  program  fragments  that  
carried  in user messages. Program fragments would be  
interpreted and executed by routers [8]. A Cambridge  
project  in  the  year 1998, Tempset developed 
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programmable, virtualizable switches called switchlets 
[9]. Switchware project of Penn, introduced a 
programmable switch and a scripting language   to 
support switchlets [10]. Smart Packets, research by 
BBN was focused on applying the active networks 
framework to network management process [11]. The 
Open Signaling project of Columbia, introduced 
NetScript, a language to provide programmable 
processing of packet streams [12] [13]. Pro- grammable 
switches accelerated the innovation of middle- boxes 
(firewalls and proxies) which are programmed to per- 
form specific functions. Providing programming 
functions in networks and compose these functions 
together were the legacy of active networks for SDN [5]. 

c) Network virtualization 
Network virtualization is the representation of 

one or more logical network topologies on top of the 
same infrastructure. It separates the logical 
infrastructure from underlying physical infrastructure. 
There are many different instantiations such as Virtual 
LANs (VLANs), network testbeds and VMWare. In the 
Switchlets, the control framework has been separated 
from the switch and allowed virtualization of the switch 
[9]. In the year 2006, VINI provided a Virtual Network 
Infrastructure    to support different experiments on 
virtual topologies using a single infrastructure [14]. VINI 
used the concept of separating control and data planes, 
and its control plane was a software routing protocol 
called XORP, which allowed to run routing protocols on 
virtual network topologies. VINI’s data plane “Click” 
provided the appearance of the virtual network topolo- 
gies to experimenters. In the year 2007, CABO, a 
network infrastructure, separated the infrastructure and 
services to allow service providers to operate 
independently [15]. The concepts of separating services 
from infrastructure, using multiple con- trollers to control 
a single switch and exposing multiple logical switches 
on top of a single physical switch were the legacy of 
network virtualization for SDN [5]. 

d) Control of packet switched networks 
With the above evolution of network 

technologies, the separation of control was needed for 
rapid innovation of networks. Since the control logic is 
tied to hardware, it was easier to modify the existing 
control logics of the telephone network. Having a 
separate control channel made it possible to have      a 
separate software controller and could easily introduce 
new services to the telephone network. Software 
controllers also allowed operators to have a centralized 
network-wide vantage point and directly observe the 
network-wide behavior of the telephone network. With 
these motivations, packet switched networks also tried 
to separate the control plane from the data plane. There 
are four main ways that packet switched networks 
achieved separation of control: separate control 

channel, in- band protocols, customizing the hardware 
in the data plane and open Hardware [5]. 

The first approach of a separate control channel 
for packet switched network came from the Internet 
Engineering Task Force (IETF) with the protocol 
“FORCES” in the year 2003 [16]. The FORCES 
redefined the network device’s internal architecture by 
separating the control element (CE) from the forwarding 
elements (FE). The CE executes control and signaling 
functions and uses the ForCES protocol to instruct FEs 
on how to forward packets. The FEs forwards packets 
according to the instructions given by the CE. Each FE 
has a Logical Function Block in its data plane which 
enables the CE to control the FEs’ configuration and 
used to process packets. The communication between 
FEs and CE are achieved by the FORCES protocol. The 
protocol works based on a master- slave model; FEs 
are slaves and CE is the master. Even though the 
FORCES architecture separated the control plane from 
the data plane, both the planes were kept in the same 
network device and was represented as a single entity. 
However, the FORCES required standardization, 
adoption and deployment of new hardware. 

The second approach was to use existing 
protocols as control channels to send control messages 
to FEs, and it was called in-band protocols. With the 
Routing Control Platform (RCP) in the year 2004, each 
autonomous system in the network had a controller in 
the form of an  RCP  [17]. An RCP computed the routes 
on behalf of routers and, it used existing routing 
protocols to communicate routes to routers. The 
limitation with this approach was, the control process 
was constrained by what the existing protocols can 
support. 

Customizing the hardware in the data plane, 
supported a wide range of applications in the control 
plane. In the year 2007, Ethane presented a network 
architecture for enterprise networks, which used a 
centralized controller to manage policies and security in 
a network [18]. Ethane directly enforced   a single, 
network policy at an element called “Domain Controller.” 
A Domain controller computes the flow table entries that 
should be installed in each of the enterprise switches 
based on access control policies defined at the Domain 
Controller. OpenWrt, NetFPGA, and Linux built custom 
switches to sup- port the Ethane protocol. However, 
they required new hardware deployments that support 
Ethane protocol. 

The solution was the last approach, to use a 
method that can operate on existing routing protocols, 
and did not require customized hardware [19]. It  is  
called  open  hardware  and in the year 2008, the 
OpenFlow project started with this concept [20] [21]. 
OpenFlow took the capabilities of existing hardware and 
opened those capabilities, such that standard control 
protocols could control the behavior of that hardware. 
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e) OpenFlow 
The OpenFlow network has been deployed in 

academic campus networks initially [20] [21] and today 
more than nine universities in the US have deployed 
OpenFlow networks [22]. OpenFlow has gained 
significant attention from both academia and industry as 
a strategy to increase the functionality of the network, 
but at the same time reducing costs and hardware 
complexity. The OpenFlow architecture consists of three 
modules: a Flow Table in each switch, a Secure 
Channel that connects the switch to a remote control 
process (called the controller) and the OpenFlow 
Protocol [20] [21] as shown in Figure 1. 

The forwarding device (OpenFlow enabled 
switch/router) has one or more flow tables. A flow table 
consists of flow entries, each of which determines how 
packets belonging to a flow will be processed and 
forwarded. Flow entries are stored according to their 
priorities. A flow table entry consists of three main fields 
[23] and shown in Figure 2. 
• Match fields (information found in the packet 

header): used to match incoming packets  
• Counters: used to collect statistics for the particular 

flow (number of received packets, number of bytes 
and duration of the flow) 

 

Fig. 1: OpenFlow Architecture [20] 

A set of instructions, or actions, to be applied 
upon a match; they dictate how to handle matching 
packets. The actions include dropping the packet, 
continuing the matching process on the next flow table, 
or for- ward the packet to the controller over the 
OpenFlow channel. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: OpenFlow Flow Table Entry [23] 

 
 

 

 

 

 

 

 

 

Fig. 3: High-level description of how an OpenFlow 
switch processes a packet 

An OpenFlow enabled switch/router  has  the  
capability  of forwarding packets according to the rules 
defined in the flow table. Figure 3 shows a high-level 
description of how    an OpenFlow enabled switch/router 
processes a packet. Internally, a switch uses Ternary 
Content Addressable Memory (TCAM) and Random 
Access Memory (RAM) to process  each packet [24]. 
When a packet arrives at the OpenFlow enabled 
switch/router, packet header fields are extracted and 
matched against the matching fields of the first flow 
table entries. If a matching entry is found, the switch 
applies the appropriate set of instructions associated 
with the matched flow entry. If a matching entry is not 
found, depends on the instructions defined by the table-
miss flow entry, the switch will take action. To handle 
table misses, every flow table must contain a table-miss 
entry which  specifies  a  set  of  actions to be performed 
when no match is found for an incoming packet [23]. 
Figure  4 shows a low-level description of how  an 
OpenFlow switch processes a packet. 

 

 

 

 

 

 

 

 

Fig. 4: Low-level description of how an OpenFlow switch 
processes a packet 

The communication between the controller and 
switch is achieved through the OpenFlow protocol [20] 
[21]. It defines  a set of messages that is exchanged 
between the controller and a switch over a secure 
channel. Using the OpenFlow protocol, a controller can 
add, update, or delete flow entries from the switch flow 
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tables reactively (in response to a packet arrival) or pro-
actively. 

The OpenFlow specifications have different 
versions [23] and the first version was the OpenFlow 
version 0.2.0 released in March 2008. OpenFlow version 
1.0, which is the most widely deployed version was 
released in December 2009. A switch which supports 
OpenFlow specification 1.0.0 uses 12 header fields in 
the Ethernet header and payload of the Ethernet 
packets are coming into the switch. The header fields 
include: Ingress port, Ethernet source address, Ethernet 
destination address, Ethernet destination address, 
Ethernet type, VLAN priority QoS, IP source address, IP 
destination address, IP protocol, IP type of service bits, 
TCP/UDP source port and TCP/UDP destination port. A 
packet is matched to a flow entry in the flow table by 
using one or more header fields of the packet.  

 

 

 

 

 

 

Fig. 5:
 
Main components of the OpenFlow 1.1.0 switch

 

In the OpenFlow 1.1.0 specification, instead of a 
single flow table, a switch contains several flow tables 
and a group

 
table. Figure 5 shows the main 

components of the OpenFlow
 

1.1.0 switch with multiple flow tables. Three 
extra fields (Metadata, MPLS label and MPLS EXP traffic 
class) have been added to the header fields with 
OpenFlow 1.1.0. The metadata field acts as a register 
which can be used to pass information between the 
tables as the packet traverses through them. The Multi-
Protocol Label Switching (MPLS) fields are included to 
support MPLS tagging. Since there are multiple flow 
tables available in the switch, the processing of a packet 
entering   the switch is changed. The flow tables in the 
switch are linked together using a process called 
“pipeline processing.” When the packet first enters the 
switch, it is sent to the first flow table   to look for the flow 
entry

 
to be matched. If there is a match, the packet gets 

processed there. If there is another flow table that the 
particular flow entry points to, the packet is then sent to 
that flow table. The process is repeated until a particular 
flow entry does not point to any other flow table. The 
flow entries in the flow tables can also point to the group 
table.   The group table is specially designed to perform 
operations that are common across multiple flows. The 
OpenFlow 1.1.0 also replaced actions with instructions.

 

In OpenFlow 1.0.0 an action could be to forward the 
packet or to  drop it, as  well  as  processing  it normally 

as it would be in a regular switch. Instructions are more 
complex and they include modifying a packet, updating 
an action set or updating the metadata.

 

The OpenFlow 1.2.0 specification was released 
in De-

 
cember 2011 and it included support to IPv6 

addressing. Matching could be done using the IPv6 
source and destination addresses. With OpenFlow 1.2.0 
specifications, a switch could be connected to

 
multiple 

controllers concurrently. The switch maintains 
connections with all the controllers. Controllers can 
communicate with each other. Having multiple 
controllers facilitated load balancing and faster recovery 
during a failure. The OpenFlow 1.3.0 specification was 
released in June 2012. It included features to (1) control 
the rate of packets through per flow meters, (2) have 
auxiliary connections between the switch and the 
controller and (3) add cookies to the packets sent from 
the switch to the controller. Table  I shows a 
summarization   of OpenFlow specifications.

 

Table
 
I:
 
Comparison of OpenFlow Specifications

 

Specification
 

1.0.0
 

1.1.0
 

1.2.0
 

1.3.0
 

Widely deployed
 

Yes
 

No
 

No
 

No
 

Flow tables
 

One
 

Multiple
 

Multiple
 

Multiple
 

Group tables
 

No
 

Yes
 

Yes
 

Yes
 

MPLS matching
 

No
 

Yes
 

Yes
 

Yes
 

Group tables
 

No
 

Yes
 

Yes
 

Yes
 

IPV6 Support
 

No
 

No
 

Yes
 

Yes
 

Simultaneous 
communication

 No
 

No
 

Yes
 

Yes
 

III.
 

SDN Architecture
 

In SDN, the control plane is decoupled from the 
hard-

 
ware data plane and given to a software 

application called
 
a controller. The controller is the core 

of an SDN network   and it lies between network devices 
and applications [25] [26]. This section gives a brief 
introduction to the SDN architecture. SDN architecture is 
shown in figure 6 and it includes: SDN Controllers, 
Southbound Interfaces, and Northbound Interfaces [25].

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6:
 
SDN Architecture

 

a)
 

SDN controller
 

The controller is as an operating system for the 
network that provides a uniform and centralized view 
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point to the network (network operating system) [27]. 
While a computer operating system provides read and 
write access to various resources, a network operating 
system provides the ability to observe and control a 
network. The network operating system which is referred 
to as the controller here after, does not manage the 
network, but it provides a programmatic interface which 
can be used  to  implement  applications  to  perform  
the actual management tasks. SDN controllers presents 
two possible behaviors: reactive and proactive [28]. 

When the controller behaves reactively, it listens 
to switches passively and configures routes on-demand. 
The first packet of each new flow, received by a switch 
(flow request) triggers the controller to insert flow entries 
in each switch of the network [28]. Every new flow 
introduces a small delay because of the additional set-
up time. Also with the hard dependency of the controller, 
if a switch losses the connection to the controller, the 
switch will not be able to forward packets of new flows. 
When the controller behaves pro-actively, it pre-
populates a flow table for each switch. So it has zero 
additional flow set-up time because the forwarding rules 
are already defined [28]. With this approach, if the 
switch loss   the connection with the controller, it will not 
disrupt traffic. However, the proactive approach requires 
the controller to know the traffic flows in advanced to 
configure the paths before it is used. Current controllers 
are implemented to facilitates both approaches. The 
Controller behaves reactively in the initial state of the 
network and, after getting to know the network it starts to 
behave pro-actively. 

b) Southbound Interfaces 
The southbound interfaces allow switches to 

communicate with the controller. The OpenFlow 
protocol is the most popular implementation of the 
southbound interface. OpenFlow 1.3.0 and above 
provide optional support for encrypted Transport Layer 
Security (TLS) communication and a certificate 
exchange between the switches and the controller for 
secure communication [23]. The OpenFlow protocol 
consists of three types of messages. 

1) Controller-to-switch messages: Sent by the 
controller: The Features messages are used to 
request information on switch capabilities, while 
configuration messages are used to set or query 
configuration parameters. Evermore, modify state 
messages are used to specify, modify or delete flow 
definitions. The Read state messages are used to 
retrieve information like counters from the switch 
and the Role request messages are used to set or 
query the state of the OpenFlow channel when the 
switch is connected to multiple controllers. Finally, 
the Packet out messages are used to send a packet 
back to a switch for processing after a new flow is 
created. 

2) Asynchronous messages: Sent by the switch: The 
Packet-in messages are used to inform the 
controller about      a packet that does not match an 
existing flow. The Flow Removed messages are 
used to inform the controller that a flow has been 
removed because of its time to live parameter or 
inactivity timer has expired. Finally, the Port status 
messages are used to inform the controller of a 
change in port status or that an error has occurred 
on the switch. 

3) Symmetric messages: Sent by both the switch or 
the con- troller: The Hello messages exchanged 
between the controller and switch on startup, and 
the Echo messages are used to determine the 
latency of the controller-to-switch connection and to 
verify that the controller-to-switch connection is still 
operative. The Error messages are used to notify the 
other  side of the connection of problems. Finally, 
the Experimenter messages are used to provide a 
path for future extensions to OpenFlow technology. 

The Border Gateway Protocol (BGP), a well-
known core Internet routing protocol is used by Juniper 
Network’s  in  their SDNs [29]. The controller uses BGP 
as a control plane protocol and leverage NETCONF (an 
IETF network management protocol) as a management 
plane protocol to interact with physical routers, switches 
and networking services like firewalls. This approach 
enables SDN to exist in a multi vendor environment 
without requiring infrastructure upgrades. OpenFlow 
does not address the issue of the controller inter- 
operability and requires physical changes to the 
network, so Juniper is introducing BGP to be the 
standard of the SDN. Extensible Messaging and 
Presence Protocol (XMPP) which was originally 
developed for instant messaging and online presence 
detection is also emerging as an alternative SDN 
protocol [30]. XMPP can be used by the controller to 
distribute control plane information to the server 
endpoints because XMPP manages information at all 
levels of abstraction down to the flow, not only to 
network devices. 

c) Northbound APIs 
The southbound interfaces allowed controller - 

switches communication and provided basic operations 
to access the network system. But they could not 
retrieve complex information from the switches and 
therefore programming the network to perform high-level 
tasks (load balancing, implementing security policies) 
was difficult. Also, it was difficult to perform multiple 
independent tasks (routing, access control) concurrently 
using the south bound interfaces. So the northbound 
interface, a programming interface that allows 
applications to program the network with higher level 
abstraction [25] [26] was introduced. Developers can 
use the northbound interface to extract information 
about the underlying network and to implement complex 
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applications such as path computation, loop avoidance, 
routing, and security. Additionally, northbound interface 
can be used by controllers to communicate with each 
other to share resources and synchronize policies. The 
North- bound interface offers vendor in-dependability 
and ability to modify or customize control through 
popular programming languages. Unlike southbound 
interfaces, there is no currently accepted standard for 
northbound interfaces and they are  more likely to be 
implemented depending on the application 
requirements. 

IV. SDN Development Tools and 
Frameworks 

The concept of decoupling control plane from 
the data plane allows SDN to facilitate network evolution 
and innovation by introducing new services and 
protocols easily. This section gives an overview of 
currently available tools and environments for 
developing services and protocols with SDN. 

a) SDN controller platforms 
Many controller implementations are available 

for SDNs and a suitable controller can be selected by 
considering the programming language and 
performances of the controller [31] [32] [33]. The 
popular controller platforms include ovs [23], NOX [27], 

POX [34], Beacon [31], Maestro [35], Trema [36] Ryu 
[37] and Floodlight [38]. Table II shows a comparison of 
the SDN controller platforms according to their general 
details and Figure 7 (taken from [31]) shows a 
comparison of the performances of SDN controller 
platforms. 

The current standard for evaluating SDN 
controller performance is Cbench. The Cbench 
simulates OpenFlow switches and operates in either 
throughput or latency mode. In through- put mode, each 
of  64  emulated  switches  constantly  sends  as many 
Packet In messages as possible to the controller, 
ensuring that the controller always has messages to 
process. Evaluation tests have been run on Amazon’s 
Elastic Computer Cloud using a Cluster Compute Eight 
Extra Large instance, containing 16 physical cores from 
2 x Intel Xeon E5-2670 processors, 60.5GB of RAM, 
using a 64-bit Ubuntu 11.10 VM image. Figure 7 shows 
Cbench throughput mode results using controllers with 
a single thread. Beacon shows the highest throughput 
at 1.35 million responses  per  second,  followed by 
NOX with 828,000, Maestro with 420,000, Beacon 
Queue with 206,000, Floodlight with 135,000, and 
Beacon Immediate with 118,000. Both Python-based 
controllers run significantly slower, POX serving 35,000 
responses per second and Ryu with 20,000. 

Table II: General comparison of SDN controller platforms 

Name
 

Language
 

License
 

Original 
authors

 Can 
Extend

 Currently 
active

 Notes
 

Ovs
 

C
 OpenFlow 

license Stanford/ Nicira
 

No
 

No
 

A reference controller, act as a learning switch
 

NOX
 

C++
 

GPL
 

Nicira
 

Yes
 

Yes
 

Event-based
 

POX
 

Python
 

GPL
 

Nicira
 

Yes
 

Yes
 

Event-based
 

Beacon
 

Java
 

GPL
 

Stanford
 

Yes
 

Yes
 Web Interface, Regression test framework, Event 

based and Multi-thread based 

Maestro Java LGPL Rice Yes No Multi-thread based 

Trema Ruby, C GPL NEC Yes No Emulator and Regression test framework 

Floodlight Java Apache Big switch Yes Yes REST APIs, Supports multi-tenant clouds 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: SDN Controller Platforms Performances Comparison [31] 
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b) SDN software switch platforms 
With SDN, the switch architecture has become 

very simple, because it is left only with the data plane. It 
has reduced functions of switches and introduced 
concepts of software switch implementation and switch 
virtualization. The result was rapid innovations in 
software switch platforms. The software switch platforms 
can be used to replace the firmware of physical 
switches that do not support SDN. The popular software 
switch platforms include Open vSwitch [23], 
Pantou/OpenWRT [39] and ofsoftswitch13 [40]. Table III 
shows a comparison of the SDN software switch 
platforms. 

c) Native SDN switches 
As explained at the beginning of the paper, the 

promise of SDN has gained significant attention from 
many network de- vices vendors. One clear evidence of 
industry strong commitment to SDN is the availability of 
OpenFlow enabled commodity network hardware. 
Hewlett-Packard, Brocade, IBM, NEC, Pronto, Juniper, 
and Pica8 have introduced many OpenFlow enabled 
switch models. Table IV shows a partial list of native 
SDN switches. 

d) SDN languages 
SDN programming languages are used for 

higher level abstraction of programming for network 
management. They consist of high-level abstractions for 
querying network state, defining forwarding policies and 
updating policies in a consistent way [41]. SDN 
languages is an area of very active research and several 
languages have been proposed and are still under 
development. Table V shows a classification of different 
SDN languages. 

The FatTire [42] allows programmers to 
declaratively specify sets of legal paths through the 
network and fault tolerance requirements for those 
paths. The FatTire compiler takes programs specified 
regarding paths and translates them to OpenFlow 
switch configurations. Since the backup paths are 
configured with those programs, responding to link 

failures can be done automatically without controller 
intervention. 

The Nettle [43] was originally designed for 
programming OpenFlow networks. Using the discrete 
nature of Functional Reactive Programming, Nettle can 
capture control messages to and from OpenFlow 
switches as streams of Nettle events. The Nettle model 
messages from switches with a data type 
SwitchMessage and commands to switches with a data 
type SwitchCommand. A Nettle program is a signal 
function (SF) having an input carrying switch messages 
from all switches   in the network and output carrying 
switch commands to any switches in the network, SF 
(Event SwitchMessage) (Event SwitchCommand). 

The Flow-based Management Language (FML) 
[44] comes with high-level built-in policy operators that 
allow or deny certain flows flowing through a firewall or 
provide quality     of service. If network forwarding policy 
falls into the space   of policies that can be described by 
an FML program, the  code for implementing the policy 
is easy. But adding new policy operators to the system 
requires coding outside the FML language. Moreover, a 
resulting policy decision applies equally to all packets 
within the same flow and it is not possible to move or 
redirect a flow as it is processed. So, even though FML 
provides network operators with a very useful set of SDN 
abstractions, the programming model, is inflexible. 

The Procera [45] is an extension to Nettle, 
which has been designed to incorporate events that 
originated from sources other than OpenFlow switches. 
It supports policies that react to conditions such as user 
authentications, time of day, bandwidth use and server 
load. Procera is expressive and extensible, so users can 
easily extend the language by adding new constructs. 
The input to the main Procera signal function is a world 
signal whose instantaneous values have the abstract 
World type. The output of a Procera program is a signal 
carrying flow constraint functions. A flow constraint 
function determines the constraints that are applied to a 
flow: allow or deny. 

Table III: General comparison of software switch platforms 
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Software switch Language OpenFlow
Version Notes

OpenVSwitch C, Python V 1.0 Implements a switch platform in a virtualized server environment. Supports standard
Ethernet switching with VLANs and access control lists. Provides interfaces for
managing configuration state and a method to remotely manipulate the forwarding
path.

Pantou/
OpenWRT

C V 1.0 Turns a commercial wireless router/access point to an OpenFlow enabled switch.
OpenFlow is implemented as an application on top of OpenWRT. Pantou is based on
the BackFire OpenWRT release and the OpenFlow module is based on the Stanford
reference implementation.

ofsoftswitch13 C, C++ V 1.3 A user space software switch implementation. The code is based on the Ericsson’s
Traffic Lab 1.1 soft switch implementation.
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Table IV: Native SDN switches 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Frenetic language is embedded in Python 
and comprises two integrated sub-languages: a 
declarative network query language and a network 
policy management library. The results of such queries 
may be used for security monitoring and for decisions 
about the forwarding policy. 

The Flog [46] combines features of both FML 
and in Frenetic. From FML, Flog uses logic 
programming as the central paradigm for controlling 
SDNs. Logic programming fits the SDN domain 
because SDN programming is table driven collection 
and processing of network statistics. From Frenetic, 
Flog uses the concept that controller programs may be 
factored into three key components: a mechanism for 
querying network state, a mechanism for processing 
data learned from queries and a component for 
generating packet forwarding policies. Flog is designed 
as an event-driven and forward chaining logic 
programming language. Each time a networking event 
occurs, the logic program executes. It can have two 
effects: generates a packet forwarding policy that  is  
compiled  and  deployed on switches and generates a 
state that is used  to  help  the logic program to be 
executed when the next network event     is processed. 

The Pyretic system [47] enables programmers 
to specify network policies, compose them together and 
execute them on abstract network topologies. The 
Pyretic’s static policy lan-network), and policy 
combinators, which are used to mix primitive actions, 
predicates, and queries together to craft so- phisticated 
policies from simple components. The policies can be 
composed together in two ways: parallel and sequential. 
In parallel composition, multiple policies operate 
concurrently on separate copies of the same packets. In 
sequential composition, one module operates on the 
packets produced by another. 

e) SDN debugging tools 
The emergence of SDN enables adding new 

network functionalities easily, at the risk of programming 

errors. Even though the centralized programming model 
has reduced the likelihood of bugs, the  ultimate  
success  of  SDN  depends  on having effective ways to 
test applications in pursuit of avoiding bugs. There are 
many SDN debugging tools have been developed and 
they can be divided into four categories based on the 
layers they are working with. Table   VI shows    a 
classification of different debugging tools according to 
the layers they are working with. 

The NICE [48] is an automated testing tool that 
can be used to identify bugs in OpenFlow programs 
though model checking and symbolic execution. It 
automatically generates streams of packets under 
possible events and tests unmodified controller 
programs. The programmer must supply the controller 
program and the specification of a topology with 
switches and hosts, to use with NICE. NICE can be 
instructed by  the programmer  to check for generic 
correctness properties (no forwarding loops or no black 
holes), and optionally application-specific correctness 
properties. NICE is developed to explores the space of 
possible system behaviors systematically and checks 
them against the desired correctness properties. As the 
output, NICE reports property violations with the traces 
to deterministically reproduce them. 

Anteater [49] is the first design and 
implementation of a data plane analysis system which 
can be used to find bugs in real networks. The system 
detects problems by analysing the contents of 
forwarding tables in routers, switches, firewalls and 
other networking equipment. It checks network 
invariants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Switch Company Series

Cisco Cisco cat6k, catalyst 3750,6500 series

Juniper Juniper MX-240,T-640

HP HP pro-curve 5400zl,8200zl,6200zl,3500zl,6600

NEC NEC IP8800

Pronto Pronto 3240, 3290

Dell Dell Z9000 and S4810

Toroki Toroki Light switch 4810

Ciena Ciena Core-director running firmware version 6.1.1

Quanta Quanta LB4G
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Table V: General comparison of SDN Languages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table VI: Classification of SDN debugging tools 
according to the layers they are working with 

 
 
 
 
 
 
 
 
 
 
 
 

(connectivity
 
or consistency) that exist in the data plane. 

Violations of these invariants are considered as a bug in 
the network. Anteater translates the detected high-level 
network invariants into instances of boolean satisfiability 
problems (SAT). Then checks them against network 
state using an SAT solver. And finally, if violations have 
been found, it reports counter examples.

 
The ndb [50] is a prototype network debugger 

inspired by gdb (a popular debugger for software 
programs). It implements two primitives useful for 
debugging a SDN control plane: breakpoints and 
packet back-traces. A packet back-trace in ndb allows 
the user to define a packet breakpoint (an un-forwarded 
packet or a packet filter). Then it shows the sequence of 
for-

 
warding actions seen by that packet leading to the 

breakpoint.
 

OFRewind
 
[51] allows SDN control plane traffic 

to be recorded at different granularities. Later they can 
be replayed to reproduce a specific scenario, giving the 
opportunity to localize and troubleshoot the events that 
caused the network anomaly. It records flow table state 
via a proxy and logs packet traces and aids debugging 
via scenario  re-creation.  The VeriFlow [52] is a SDN 
debugging tool which finds  faulty rules issued by SDN 
applications and prevents them from reaching the 
network and causing anomalous network behavior. 

VeriFlow operates as a layer between the controller and 
the devices, and checks the validity of invariants as 
each rule is inserted. To ensure a real-time response, 
VeriFlow introduces new algorithms to search for 
potential violation of key network invariants: availability 
of a path to the destination, absence of routing loops, 
access control policies or isolation between virtual 
networks. 

Other than the SDN debugging tools which 
were described earlier, there are two SDN 
troubleshooting simulators: STS (SDN Troubleshooting 
Simulator) [53] and OpenSketch [54]. STS [53] is a SDN 
troubleshooting simulator which is written in python and 
depends on POX controller [34]. It simulates the devices 
of the network to allow operators to easily generate test 
cases, examine the state of the network interactively and 
find the exact inputs that are responsible for triggering a 
given ment architecture, which separates the 
measurement data plane from the control plane. In the 
data plane, OpenSketch provides a simple three-stage 
pipeline (hashing, filtering, and counting). They can be 
implemented with commodity switch components and 
support many measurement tasks. In the control plane, 
OpenSketch provides a measurement library that 
automatically configures the pipeline and allocates 
resources for different measurement tasks. 

f) SDN emulation and simulation tools 
The Mininet [55], the Emulab and the ns-3 [56] 

are popular emulation and simulation Tools used with 
SDN. Mininet [55] is an emulation environment which 
creates a complete network of hosts, links, and switches 
on a single machine. It creates virtual networks using 
process-based virtualization and network namespaces 
(features available in Linux kernels). In Mininet, hosts are 
emulated as bash processes running in a network 
namespace. So any code that would run on a Linux 
server can be run within a Mininet “Host”. The Mininet 
“Host” has its private network interface and can only see 
its own processes. Switches in Mininet are software-

Language Supports Type Based on Used for

FatTire Only OpenFlow - Regular expressions Fault tolerant programming

Nettle Only OpenFlow Functional Functional Reactive Program-
ming

Load balancing programming

FML Only OpenFlow Logical datalog Policy implementation programming

Procera Any type of hard-
ware

Functional Functional Reactive Program-
ming

General programming

Flog Any type of hard-
ware

Logical datalog General programming

Frenetic Any type of hard-
ware

Logical Query language General programming

Pyretic Any type of hard-
ware

Logical Query language General programming

Layer Tools

Application layer NICE

Data Plane Anteater

Control Plane ndb, OFrewind

A new layer between Data Plane and Control Plane VeriFlow
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based OpenFlow switches. Links are virtual ethernet 
pairs, which resides in the Linux kernel and connect 
emulated switches to emulated hosts. Mininet is useful 
for SDN interactive development, testing, and 
demonstrations. SDN prototypes in Mininet can be 
transferred to hardware with minimal changes for real-
time execution. 

The Emulab [57] is a network emulation testbed 
which includes a network facility and a software system. 
Emulab is widely used by computer science researchers 
in the fields of networking and distributed systems and it 
support OpenFlow. So currently it is used also used for 
SDN research works. The primary Emulab installation is 

 

g) SDN virtualization tools 
The OpenFlow has opened the control of a 

network for innovation, but only one network 
administrator can do experiments on the network at a 
time. If there is a way to divide, slice or replicate network 
resources, more than one network administrator can use 
them in parallel to do experiments. Actions in one slice 
or replication should not  negatively  affect other, even if 
they share the same underlying physical hardware. SDN 
Virtualization concepts have been introduced to achieve 
these goals. 

The FlowVisor [58] is a special purpose 
OpenFlow controller that allows multiple researchers to 
run experiments independently on the same production 
OpenFlow network. It uses a new approach to switch 
virtualization, in which the same hardware forwarding 
plane is shared among multiple logical networks, each 
with distinct forwarding logic. FlowVisor acts as a middle 
layer between the underlying physical hardware and the 
software that controls it. It is implemented as an 
OpenFlow proxy that intercepts messages between 
OpenFlow switches and OpenFlow controllers. The 
AutoSlice [59] devel- ops a transparent virtualization 
layer (SDN hypervisor) which automates the deployment 
and operation of vSDN topologies. In contrast to 
FlowVisor, AutoSlice focuses on the scalability aspects 
of the hypervisor design. AutoSlice monitors flow level 
traffic statistics to optimize the resource utilization and to 
mitigate flow-table limitations. With the distributed 
hypervisor architecture, Autoslice can handle large 
numbers of flow table control messages from multiple 
tenants. 

In a virtual machine environment, moving 
applications from one location to another without a 
disruption in service is called Live virtual machine (VM) 
migration. SDN applications can reside and rely on 
multiple VMs. So migrating individual SDN VMs, one by 

one, may disrupt the SDN applications.   So the LIME 
[60] design migrate  an  ensemble:  the  VMs, the 
network, and the management system to a different set     
of physical resources at the same time. LIME uses the 
SDN concept of separation between the controller and 
the data plane state in the switches. LIME clones the 
data plane state to a new set of switches, transparent to 
the application running on the controller. And then 
incrementally migrates the traffic sources. 

The RouteFlow [61] provides virtualized IP 
routing over OpenFlow capable hardware. It is 
composed with a OpenFlow Controller application, a 
server, and a virtual network environ- ment. The virtual 
network environment rebuild the connectivity of the 
physical infrastructure and runs IP  routing  engines. The 
routing engines generate the forwarding information 
base (FIB) according to the routing protocols 
configured. An ex- tension of RouteFlow [62], discusses 
incorporating RCPs [17] in the context of OpenFlow and 
SDN. It proposes a controller centric networking model 
with a prototype implementation of an autonomous 
system-wide abstract BGP routing service. 

V. Final Remarks 

SDNs have emerged in the last  decade  as  a  
very  active research domain, gaining significant 
attention from both academia and industry. This survey 
discussed the state of art in SDN, with a historic 
perspective of the field by describing the SDN 
paradigm, architecture and deployments in detail. 

We first introduced the concepts and definitions 
that enable a clear understanding of SDNs. The idea of 
programmable networks and decoupled control logic 
has been around for many years and the history of SDN 
goes back to the early 1980s. Central network control, 
programmability in networks, network virtualization and 
control of packet switched networks were the four main 
supporting technologies which helped SDN to evolve. 
The survey was extended by exploring the OpenFlow 
project and the standardized SDN architecture. 
Standard SDN three tier architecture includes: SDN 
controller, southbound APIs and northbound APIs. For a  
broader  scope,  the  pa-  per detailed the tools and 
frameworks associated with SDN development in the 
categories of SDN controller platforms, SDN software 
switch platforms, native SDN switches, SDN languages, 
SDN debugging tools, SDN emulation/simulation tools 
and SDN virtualization tools. 
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run by the Flux Group, part of the School of Computing 
at the University of Utah. The ns-3 [56] is a discrete 
event network simulator for internet systems. It is based 
on C++ and Python and widely used for research and 
educational use. Since ns-3 provides support for 
OpenFlow, it can be used to emulate SDNs.
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