
© 2019. W. Rankothge. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 19 Issue 1 Version 1.0 Year 2019
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Past before Future: A Comprehensive Review on Software
Defined Networks Road Map

By W. Rankothge

Abstract - Software Defined Networking (SDN) is a paradigm that moves out the network switch’s control plane
(routing protocols) from the switch and leaves only the data plane (user traffic) inside the switch. Since the
control plane has been decoupled from hardware and given to a logically centralized software application
called a controller; network devices become simple packet forwarding devices that can be programmed via
open interfaces. The SDN’s concepts: decoupled control logic and programmable networks provide a range
of benefits for management process and has gained significant attention from both academia and industry.
Since the SDN field is growing very fast, it is an active research area. This review paper discusses the state of
art in SDN, with a historic perspective of the field by describing the SDN paradigm, architecture and
deployments in detail.

Keywords: software defined network (SDN), review.

GJCST-C Classification: H.3

PastbeforeFutureAComprehensiveReviewonSoftwareDefinedNetworksRoadMap

 Strictly as per the compliance and regulations of:

Past before Future: A Comprehensive Review on
Software Defined Networks Road Map

W. Rankothge

Abstract- Software Defined Networking (SDN) is a paradigm
that moves out the network switch’s control plane (routing
protocols) from the switch and leaves only the data plane
(user traffic) inside the switch. Since the control plane has
been decoupled from hardware and given to a logically
centralized software application called a controller; network
devices become simple packet forwarding devices that can be
programmed via open interfaces. The SDN’s concepts:
decoupled control logic and programmable networks provide
a range of benefits for management process and has gained
significant attention from both academia and industry. Since
the SDN field is growing very fast, it is an active research area.
This review paper discusses the state of art in SDN, with a
historic perspective of the field by describing the SDN
paradigm, architecture and deployments in detail.
Keywords: software defined network (SDN), review.

I. Introduction

hree components of the network architecture are
control plane, data plane, and management plane
[1]. The control plane carries control traffic (routing

protocols) and is responsible for maintaining the routing
tables. The management plane carries administrative
traffic and is considered a subset of the control plane.
The data plane bears the user traffic that the network
exists to carry. It forwards the user traffic based upon
information learned by the control plane. In a
conventional network, all these three planes are
implemented in the firmware of routers and switches.

Software Defined Networking (SDN) is a new
paradigm that moves out the network switch’s control
plane from the switch and leaves only data plane inside
the switch [2]. Since the control plane is decoupled from
hardware and given to a logically centralized software
application called a controller, network devices become
simple packet forwarding devices that can be
programmed via open interfaces. The SDN’s concepts:
decoupled control logic and programmable networks
provide a range of benefits for the network
management process. They include centralized control,
simplified algorithms, commoditizing network hardware,
eliminating middle-boxes and enabling the design and
deployment of third-party applications.

The promise of SDN has gained significant
attention from both academia and industry. The Open
Network Foundation (ONF) is an industrial driven
organization, founded in the year 2011 by a group of

Author: Sri Lanka Institute of Information Technology Sri Lanka.
e-mail: windhya.r@sliit.lk

network operators, service providers, and vendors to
promote SDN and standardize the OpenFlow protocol
[3]. Deutsche Telekom, Facebook, Google, Microsoft,
Verizon and Yahoo are among the founders. Currently,
ONF has around 95 members including several major
vendors. The OpenFlow Network Research Center
(ONRC) was created by the academia with a focus on
SDN research [4]. Since the SDN field is growing very
fast, it is a very active research area. This review paper
discusses the state of art in SDN, with a historic
perspective of the field by describing the SDN
paradigm, architecture and deployments in detail.

II. SDN History

The idea of programmable networks and
decoupled control logic has a story of years. The
history of SDN goes back to 1980s [5]. This section
provides an overview of four technologies which helped
SDN to evolve.

a) Central network control
In earlier days telephone networks were using

in-band signaling where the data (voice) and the control
signals are sent over the same channel. The resulting
networks were always complex and insecure. In 1980s,
AT&T separated data and control planes of their
telephone network and introduced the concept of
“Network Control Point” (NCP) [6]. The idea was to
separate voice and control, and the control resided on
NCP. NCP allowed operators to have a central network-
wide vantage point and directly observe the network-
wide behavior. Elimination of in-band signaling lead to
independent evolution of infrastructure, data, and
services where new services were able to be introduced
to customers easily. So NCP was the origin of the SDN’s
concept: separating control and data plane, and to have
centralized control over the network [5].

b) Programmability in networks
In the mid-1990s, DARPA research community

introduced “Active Networks” with the idea of a network
infrastructure that would be programmable for
customized services [7]. There were two main
approaches: user programmable switches, with in-band
data transfer and out-of-band management channels
and capsules, which were program fragments that
carried in user messages. Program fragments would be
interpreted and executed by routers [8]. A Cambridge
project in the year 1998, Tempset developed

T

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 7

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

programmable, virtualizable switches called switchlets
[9]. Switchware project of Penn, introduced a
programmable switch and a scripting language to
support switchlets [10]. Smart Packets, research by
BBN was focused on applying the active networks
framework to network management process [11]. The
Open Signaling project of Columbia, introduced
NetScript, a language to provide programmable
processing of packet streams [12] [13]. Pro- grammable
switches accelerated the innovation of middle- boxes
(firewalls and proxies) which are programmed to per-
form specific functions. Providing programming
functions in networks and compose these functions
together were the legacy of active networks for SDN [5].

c) Network virtualization
Network virtualization is the representation of

one or more logical network topologies on top of the
same infrastructure. It separates the logical
infrastructure from underlying physical infrastructure.
There are many different instantiations such as Virtual
LANs (VLANs), network testbeds and VMWare. In the
Switchlets, the control framework has been separated
from the switch and allowed virtualization of the switch
[9]. In the year 2006, VINI provided a Virtual Network
Infrastructure to support different experiments on
virtual topologies using a single infrastructure [14]. VINI
used the concept of separating control and data planes,
and its control plane was a software routing protocol
called XORP, which allowed to run routing protocols on
virtual network topologies. VINI’s data plane “Click”
provided the appearance of the virtual network topolo-
gies to experimenters. In the year 2007, CABO, a
network infrastructure, separated the infrastructure and
services to allow service providers to operate
independently [15]. The concepts of separating services
from infrastructure, using multiple con- trollers to control
a single switch and exposing multiple logical switches
on top of a single physical switch were the legacy of
network virtualization for SDN [5].

d) Control of packet switched networks
With the above evolution of network

technologies, the separation of control was needed for
rapid innovation of networks. Since the control logic is
tied to hardware, it was easier to modify the existing
control logics of the telephone network. Having a
separate control channel made it possible to have a
separate software controller and could easily introduce
new services to the telephone network. Software
controllers also allowed operators to have a centralized
network-wide vantage point and directly observe the
network-wide behavior of the telephone network. With
these motivations, packet switched networks also tried
to separate the control plane from the data plane. There
are four main ways that packet switched networks
achieved separation of control: separate control

channel, in- band protocols, customizing the hardware
in the data plane and open Hardware [5].

The first approach of a separate control channel
for packet switched network came from the Internet
Engineering Task Force (IETF) with the protocol
“FORCES” in the year 2003 [16]. The FORCES
redefined the network device’s internal architecture by
separating the control element (CE) from the forwarding
elements (FE). The CE executes control and signaling
functions and uses the ForCES protocol to instruct FEs
on how to forward packets. The FEs forwards packets
according to the instructions given by the CE. Each FE
has a Logical Function Block in its data plane which
enables the CE to control the FEs’ configuration and
used to process packets. The communication between
FEs and CE are achieved by the FORCES protocol. The
protocol works based on a master- slave model; FEs
are slaves and CE is the master. Even though the
FORCES architecture separated the control plane from
the data plane, both the planes were kept in the same
network device and was represented as a single entity.
However, the FORCES required standardization,
adoption and deployment of new hardware.

The second approach was to use existing
protocols as control channels to send control messages
to FEs, and it was called in-band protocols. With the
Routing Control Platform (RCP) in the year 2004, each
autonomous system in the network had a controller in
the form of an RCP [17]. An RCP computed the routes
on behalf of routers and, it used existing routing
protocols to communicate routes to routers. The
limitation with this approach was, the control process
was constrained by what the existing protocols can
support.

Customizing the hardware in the data plane,
supported a wide range of applications in the control
plane. In the year 2007, Ethane presented a network
architecture for enterprise networks, which used a
centralized controller to manage policies and security in
a network [18]. Ethane directly enforced a single,
network policy at an element called “Domain Controller.”
A Domain controller computes the flow table entries that
should be installed in each of the enterprise switches
based on access control policies defined at the Domain
Controller. OpenWrt, NetFPGA, and Linux built custom
switches to sup- port the Ethane protocol. However,
they required new hardware deployments that support
Ethane protocol.

The solution was the last approach, to use a
method that can operate on existing routing protocols,
and did not require customized hardware [19]. It is
called open hardware and in the year 2008, the
OpenFlow project started with this concept [20] [21].
OpenFlow took the capabilities of existing hardware and
opened those capabilities, such that standard control
protocols could control the behavior of that hardware.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 8

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

e) OpenFlow
The OpenFlow network has been deployed in

academic campus networks initially [20] [21] and today
more than nine universities in the US have deployed
OpenFlow networks [22]. OpenFlow has gained
significant attention from both academia and industry as
a strategy to increase the functionality of the network,
but at the same time reducing costs and hardware
complexity. The OpenFlow architecture consists of three
modules: a Flow Table in each switch, a Secure
Channel that connects the switch to a remote control
process (called the controller) and the OpenFlow
Protocol [20] [21] as shown in Figure 1.

The forwarding device (OpenFlow enabled
switch/router) has one or more flow tables. A flow table
consists of flow entries, each of which determines how
packets belonging to a flow will be processed and
forwarded. Flow entries are stored according to their
priorities. A flow table entry consists of three main fields
[23] and shown in Figure 2.
• Match fields (information found in the packet

header): used to match incoming packets
• Counters: used to collect statistics for the particular

flow (number of received packets, number of bytes
and duration of the flow)

Fig. 1: OpenFlow Architecture [20]

A set of instructions, or actions, to be applied
upon a match; they dictate how to handle matching
packets. The actions include dropping the packet,
continuing the matching process on the next flow table,
or for- ward the packet to the controller over the
OpenFlow channel.

Fig. 2: OpenFlow Flow Table Entry [23]

Fig. 3: High-level description of how an OpenFlow
switch processes a packet

An OpenFlow enabled switch/router has the
capability of forwarding packets according to the rules
defined in the flow table. Figure 3 shows a high-level
description of how an OpenFlow enabled switch/router
processes a packet. Internally, a switch uses Ternary
Content Addressable Memory (TCAM) and Random
Access Memory (RAM) to process each packet [24].
When a packet arrives at the OpenFlow enabled
switch/router, packet header fields are extracted and
matched against the matching fields of the first flow
table entries. If a matching entry is found, the switch
applies the appropriate set of instructions associated
with the matched flow entry. If a matching entry is not
found, depends on the instructions defined by the table-
miss flow entry, the switch will take action. To handle
table misses, every flow table must contain a table-miss
entry which specifies a set of actions to be performed
when no match is found for an incoming packet [23].
Figure 4 shows a low-level description of how an
OpenFlow switch processes a packet.

Fig. 4: Low-level description of how an OpenFlow switch
processes a packet

The communication between the controller and
switch is achieved through the OpenFlow protocol [20]
[21]. It defines a set of messages that is exchanged
between the controller and a switch over a secure
channel. Using the OpenFlow protocol, a controller can
add, update, or delete flow entries from the switch flow

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 9

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

tables reactively (in response to a packet arrival) or pro-
actively.

The OpenFlow specifications have different
versions [23] and the first version was the OpenFlow
version 0.2.0 released in March 2008. OpenFlow version
1.0, which is the most widely deployed version was
released in December 2009. A switch which supports
OpenFlow specification 1.0.0 uses 12 header fields in
the Ethernet header and payload of the Ethernet
packets are coming into the switch. The header fields
include: Ingress port, Ethernet source address, Ethernet
destination address, Ethernet destination address,
Ethernet type, VLAN priority QoS, IP source address, IP
destination address, IP protocol, IP type of service bits,
TCP/UDP source port and TCP/UDP destination port. A
packet is matched to a flow entry in the flow table by
using one or more header fields of the packet.

Fig. 5:

Main components of the OpenFlow 1.1.0 switch

In the OpenFlow 1.1.0 specification, instead of a
single flow table, a switch contains several flow tables
and a group

table. Figure 5 shows the main

components of the OpenFlow

1.1.0 switch with multiple flow tables. Three
extra fields (Metadata, MPLS label and MPLS EXP traffic
class) have been added to the header fields with
OpenFlow 1.1.0. The metadata field acts as a register
which can be used to pass information between the
tables as the packet traverses through them. The Multi-
Protocol Label Switching (MPLS) fields are included to
support MPLS tagging. Since there are multiple flow
tables available in the switch, the processing of a packet
entering the switch is changed. The flow tables in the
switch are linked together using a process called
“pipeline processing.” When the packet first enters the
switch, it is sent to the first flow table to look for the flow
entry

to be matched. If there is a match, the packet gets

processed there. If there is another flow table that the
particular flow entry points to, the packet is then sent to
that flow table. The process is repeated until a particular
flow entry does not point to any other flow table. The
flow entries in the flow tables can also point to the group
table. The group table is specially designed to perform
operations that are common across multiple flows. The
OpenFlow 1.1.0 also replaced actions with instructions.

In OpenFlow 1.0.0 an action could be to forward the
packet or to drop it, as well as processing it normally

as it would be in a regular switch. Instructions are more
complex and they include modifying a packet, updating
an action set or updating the metadata.

The OpenFlow 1.2.0 specification was released
in De-

cember 2011 and it included support to IPv6

addressing. Matching could be done using the IPv6
source and destination addresses. With OpenFlow 1.2.0
specifications, a switch could be connected to

multiple

controllers concurrently. The switch maintains
connections with all the controllers. Controllers can
communicate with each other. Having multiple
controllers facilitated load balancing and faster recovery
during a failure. The OpenFlow 1.3.0 specification was
released in June 2012. It included features to (1) control
the rate of packets through per flow meters, (2) have
auxiliary connections between the switch and the
controller and (3) add cookies to the packets sent from
the switch to the controller. Table I shows a
summarization of OpenFlow specifications.

Table

I:

Comparison of OpenFlow Specifications

Specification

1.0.0

1.1.0

1.2.0

1.3.0

Widely deployed

Yes

No

No

No

Flow tables

One

Multiple

Multiple

Multiple

Group tables

No

Yes

Yes

Yes

MPLS matching

No

Yes

Yes

Yes

Group tables

No

Yes

Yes

Yes

IPV6 Support

No

No

Yes

Yes

Simultaneous
communication

 No

No

Yes

Yes

III.

SDN Architecture

In SDN, the control plane is decoupled from the
hard-

ware data plane and given to a software

application called

a controller. The controller is the core

of an SDN network and it lies between network devices
and applications [25] [26]. This section gives a brief
introduction to the SDN architecture. SDN architecture is
shown in figure 6 and it includes: SDN Controllers,
Southbound Interfaces, and Northbound Interfaces [25].

Fig. 6:

SDN Architecture

a)

SDN controller

The controller is as an operating system for the
network that provides a uniform and centralized view

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 10

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

point to the network (network operating system) [27].
While a computer operating system provides read and
write access to various resources, a network operating
system provides the ability to observe and control a
network. The network operating system which is referred
to as the controller here after, does not manage the
network, but it provides a programmatic interface which
can be used to implement applications to perform
the actual management tasks. SDN controllers presents
two possible behaviors: reactive and proactive [28].

When the controller behaves reactively, it listens
to switches passively and configures routes on-demand.
The first packet of each new flow, received by a switch
(flow request) triggers the controller to insert flow entries
in each switch of the network [28]. Every new flow
introduces a small delay because of the additional set-
up time. Also with the hard dependency of the controller,
if a switch losses the connection to the controller, the
switch will not be able to forward packets of new flows.
When the controller behaves pro-actively, it pre-
populates a flow table for each switch. So it has zero
additional flow set-up time because the forwarding rules
are already defined [28]. With this approach, if the
switch loss the connection with the controller, it will not
disrupt traffic. However, the proactive approach requires
the controller to know the traffic flows in advanced to
configure the paths before it is used. Current controllers
are implemented to facilitates both approaches. The
Controller behaves reactively in the initial state of the
network and, after getting to know the network it starts to
behave pro-actively.

b) Southbound Interfaces
The southbound interfaces allow switches to

communicate with the controller. The OpenFlow
protocol is the most popular implementation of the
southbound interface. OpenFlow 1.3.0 and above
provide optional support for encrypted Transport Layer
Security (TLS) communication and a certificate
exchange between the switches and the controller for
secure communication [23]. The OpenFlow protocol
consists of three types of messages.

1) Controller-to-switch messages: Sent by the
controller: The Features messages are used to
request information on switch capabilities, while
configuration messages are used to set or query
configuration parameters. Evermore, modify state
messages are used to specify, modify or delete flow
definitions. The Read state messages are used to
retrieve information like counters from the switch
and the Role request messages are used to set or
query the state of the OpenFlow channel when the
switch is connected to multiple controllers. Finally,
the Packet out messages are used to send a packet
back to a switch for processing after a new flow is
created.

2) Asynchronous messages: Sent by the switch: The
Packet-in messages are used to inform the
controller about a packet that does not match an
existing flow. The Flow Removed messages are
used to inform the controller that a flow has been
removed because of its time to live parameter or
inactivity timer has expired. Finally, the Port status
messages are used to inform the controller of a
change in port status or that an error has occurred
on the switch.

3) Symmetric messages: Sent by both the switch or
the con- troller: The Hello messages exchanged
between the controller and switch on startup, and
the Echo messages are used to determine the
latency of the controller-to-switch connection and to
verify that the controller-to-switch connection is still
operative. The Error messages are used to notify the
other side of the connection of problems. Finally,
the Experimenter messages are used to provide a
path for future extensions to OpenFlow technology.

The Border Gateway Protocol (BGP), a well-
known core Internet routing protocol is used by Juniper
Network’s in their SDNs [29]. The controller uses BGP
as a control plane protocol and leverage NETCONF (an
IETF network management protocol) as a management
plane protocol to interact with physical routers, switches
and networking services like firewalls. This approach
enables SDN to exist in a multi vendor environment
without requiring infrastructure upgrades. OpenFlow
does not address the issue of the controller inter-
operability and requires physical changes to the
network, so Juniper is introducing BGP to be the
standard of the SDN. Extensible Messaging and
Presence Protocol (XMPP) which was originally
developed for instant messaging and online presence
detection is also emerging as an alternative SDN
protocol [30]. XMPP can be used by the controller to
distribute control plane information to the server
endpoints because XMPP manages information at all
levels of abstraction down to the flow, not only to
network devices.

c) Northbound APIs
The southbound interfaces allowed controller -

switches communication and provided basic operations
to access the network system. But they could not
retrieve complex information from the switches and
therefore programming the network to perform high-level
tasks (load balancing, implementing security policies)
was difficult. Also, it was difficult to perform multiple
independent tasks (routing, access control) concurrently
using the south bound interfaces. So the northbound
interface, a programming interface that allows
applications to program the network with higher level
abstraction [25] [26] was introduced. Developers can
use the northbound interface to extract information
about the underlying network and to implement complex

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 11

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

applications such as path computation, loop avoidance,
routing, and security. Additionally, northbound interface
can be used by controllers to communicate with each
other to share resources and synchronize policies. The
North- bound interface offers vendor in-dependability
and ability to modify or customize control through
popular programming languages. Unlike southbound
interfaces, there is no currently accepted standard for
northbound interfaces and they are more likely to be
implemented depending on the application
requirements.

IV. SDN Development Tools and
Frameworks

The concept of decoupling control plane from
the data plane allows SDN to facilitate network evolution
and innovation by introducing new services and
protocols easily. This section gives an overview of
currently available tools and environments for
developing services and protocols with SDN.

a) SDN controller platforms
Many controller implementations are available

for SDNs and a suitable controller can be selected by
considering the programming language and
performances of the controller [31] [32] [33]. The
popular controller platforms include ovs [23], NOX [27],

POX [34], Beacon [31], Maestro [35], Trema [36] Ryu
[37] and Floodlight [38]. Table II shows a comparison of
the SDN controller platforms according to their general
details and Figure 7 (taken from [31]) shows a
comparison of the performances of SDN controller
platforms.

The current standard for evaluating SDN
controller performance is Cbench. The Cbench
simulates OpenFlow switches and operates in either
throughput or latency mode. In through- put mode, each
of 64 emulated switches constantly sends as many
Packet In messages as possible to the controller,
ensuring that the controller always has messages to
process. Evaluation tests have been run on Amazon’s
Elastic Computer Cloud using a Cluster Compute Eight
Extra Large instance, containing 16 physical cores from
2 x Intel Xeon E5-2670 processors, 60.5GB of RAM,
using a 64-bit Ubuntu 11.10 VM image. Figure 7 shows
Cbench throughput mode results using controllers with
a single thread. Beacon shows the highest throughput
at 1.35 million responses per second, followed by
NOX with 828,000, Maestro with 420,000, Beacon
Queue with 206,000, Floodlight with 135,000, and
Beacon Immediate with 118,000. Both Python-based
controllers run significantly slower, POX serving 35,000
responses per second and Ryu with 20,000.

Table II: General comparison of SDN controller platforms

Name

Language

License

Original
authors

 Can
Extend

 Currently
active

 Notes

Ovs

C
 OpenFlow

license Stanford/ Nicira

No

No

A reference controller, act as a learning switch

NOX

C++

GPL

Nicira

Yes

Yes

Event-based

POX

Python

GPL

Nicira

Yes

Yes

Event-based

Beacon

Java

GPL

Stanford

Yes

Yes
 Web Interface, Regression test framework, Event

based and Multi-thread based

Maestro Java LGPL Rice Yes No Multi-thread based

Trema Ruby, C GPL NEC Yes No Emulator and Regression test framework

Floodlight Java Apache Big switch Yes Yes REST APIs, Supports multi-tenant clouds

Fig. 7: SDN Controller Platforms Performances Comparison [31]

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 12

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

b) SDN software switch platforms
With SDN, the switch architecture has become

very simple, because it is left only with the data plane. It
has reduced functions of switches and introduced
concepts of software switch implementation and switch
virtualization. The result was rapid innovations in
software switch platforms. The software switch platforms
can be used to replace the firmware of physical
switches that do not support SDN. The popular software
switch platforms include Open vSwitch [23],
Pantou/OpenWRT [39] and ofsoftswitch13 [40]. Table III
shows a comparison of the SDN software switch
platforms.

c) Native SDN switches
As explained at the beginning of the paper, the

promise of SDN has gained significant attention from
many network de- vices vendors. One clear evidence of
industry strong commitment to SDN is the availability of
OpenFlow enabled commodity network hardware.
Hewlett-Packard, Brocade, IBM, NEC, Pronto, Juniper,
and Pica8 have introduced many OpenFlow enabled
switch models. Table IV shows a partial list of native
SDN switches.

d) SDN languages
SDN programming languages are used for

higher level abstraction of programming for network
management. They consist of high-level abstractions for
querying network state, defining forwarding policies and
updating policies in a consistent way [41]. SDN
languages is an area of very active research and several
languages have been proposed and are still under
development. Table V shows a classification of different
SDN languages.

The FatTire [42] allows programmers to
declaratively specify sets of legal paths through the
network and fault tolerance requirements for those
paths. The FatTire compiler takes programs specified
regarding paths and translates them to OpenFlow
switch configurations. Since the backup paths are
configured with those programs, responding to link

failures can be done automatically without controller
intervention.

The Nettle [43] was originally designed for
programming OpenFlow networks. Using the discrete
nature of Functional Reactive Programming, Nettle can
capture control messages to and from OpenFlow
switches as streams of Nettle events. The Nettle model
messages from switches with a data type
SwitchMessage and commands to switches with a data
type SwitchCommand. A Nettle program is a signal
function (SF) having an input carrying switch messages
from all switches in the network and output carrying
switch commands to any switches in the network, SF
(Event SwitchMessage) (Event SwitchCommand).

The Flow-based Management Language (FML)
[44] comes with high-level built-in policy operators that
allow or deny certain flows flowing through a firewall or
provide quality of service. If network forwarding policy
falls into the space of policies that can be described by
an FML program, the code for implementing the policy
is easy. But adding new policy operators to the system
requires coding outside the FML language. Moreover, a
resulting policy decision applies equally to all packets
within the same flow and it is not possible to move or
redirect a flow as it is processed. So, even though FML
provides network operators with a very useful set of SDN
abstractions, the programming model, is inflexible.

The Procera [45] is an extension to Nettle,
which has been designed to incorporate events that
originated from sources other than OpenFlow switches.
It supports policies that react to conditions such as user
authentications, time of day, bandwidth use and server
load. Procera is expressive and extensible, so users can
easily extend the language by adding new constructs.
The input to the main Procera signal function is a world
signal whose instantaneous values have the abstract
World type. The output of a Procera program is a signal
carrying flow constraint functions. A flow constraint
function determines the constraints that are applied to a
flow: allow or deny.

Table III: General comparison of software switch platforms

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 13

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

Software switch Language OpenFlow
Version Notes

OpenVSwitch C, Python V 1.0 Implements a switch platform in a virtualized server environment. Supports standard
Ethernet switching with VLANs and access control lists. Provides interfaces for
managing configuration state and a method to remotely manipulate the forwarding
path.

Pantou/
OpenWRT

C V 1.0 Turns a commercial wireless router/access point to an OpenFlow enabled switch.
OpenFlow is implemented as an application on top of OpenWRT. Pantou is based on
the BackFire OpenWRT release and the OpenFlow module is based on the Stanford
reference implementation.

ofsoftswitch13 C, C++ V 1.3 A user space software switch implementation. The code is based on the Ericsson’s
Traffic Lab 1.1 soft switch implementation.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 14

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

Table IV: Native SDN switches

The Frenetic language is embedded in Python
and comprises two integrated sub-languages: a
declarative network query language and a network
policy management library. The results of such queries
may be used for security monitoring and for decisions
about the forwarding policy.

The Flog [46] combines features of both FML
and in Frenetic. From FML, Flog uses logic
programming as the central paradigm for controlling
SDNs. Logic programming fits the SDN domain
because SDN programming is table driven collection
and processing of network statistics. From Frenetic,
Flog uses the concept that controller programs may be
factored into three key components: a mechanism for
querying network state, a mechanism for processing
data learned from queries and a component for
generating packet forwarding policies. Flog is designed
as an event-driven and forward chaining logic
programming language. Each time a networking event
occurs, the logic program executes. It can have two
effects: generates a packet forwarding policy that is
compiled and deployed on switches and generates a
state that is used to help the logic program to be
executed when the next network event is processed.

The Pyretic system [47] enables programmers
to specify network policies, compose them together and
execute them on abstract network topologies. The
Pyretic’s static policy lan-network), and policy
combinators, which are used to mix primitive actions,
predicates, and queries together to craft so- phisticated
policies from simple components. The policies can be
composed together in two ways: parallel and sequential.
In parallel composition, multiple policies operate
concurrently on separate copies of the same packets. In
sequential composition, one module operates on the
packets produced by another.

e) SDN debugging tools
The emergence of SDN enables adding new

network functionalities easily, at the risk of programming

errors. Even though the centralized programming model
has reduced the likelihood of bugs, the ultimate
success of SDN depends on having effective ways to
test applications in pursuit of avoiding bugs. There are
many SDN debugging tools have been developed and
they can be divided into four categories based on the
layers they are working with. Table VI shows a
classification of different debugging tools according to
the layers they are working with.

The NICE [48] is an automated testing tool that
can be used to identify bugs in OpenFlow programs
though model checking and symbolic execution. It
automatically generates streams of packets under
possible events and tests unmodified controller
programs. The programmer must supply the controller
program and the specification of a topology with
switches and hosts, to use with NICE. NICE can be
instructed by the programmer to check for generic
correctness properties (no forwarding loops or no black
holes), and optionally application-specific correctness
properties. NICE is developed to explores the space of
possible system behaviors systematically and checks
them against the desired correctness properties. As the
output, NICE reports property violations with the traces
to deterministically reproduce them.

Anteater [49] is the first design and
implementation of a data plane analysis system which
can be used to find bugs in real networks. The system
detects problems by analysing the contents of
forwarding tables in routers, switches, firewalls and
other networking equipment. It checks network
invariants

Switch Company Series

Cisco Cisco cat6k, catalyst 3750,6500 series

Juniper Juniper MX-240,T-640

HP HP pro-curve 5400zl,8200zl,6200zl,3500zl,6600

NEC NEC IP8800

Pronto Pronto 3240, 3290

Dell Dell Z9000 and S4810

Toroki Toroki Light switch 4810

Ciena Ciena Core-director running firmware version 6.1.1

Quanta Quanta LB4G

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 15

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

Table V: General comparison of SDN Languages

Table VI: Classification of SDN debugging tools
according to the layers they are working with

(connectivity

or consistency) that exist in the data plane.

Violations of these invariants are considered as a bug in
the network. Anteater translates the detected high-level
network invariants into instances of boolean satisfiability
problems (SAT). Then checks them against network
state using an SAT solver. And finally, if violations have
been found, it reports counter examples.

The ndb [50] is a prototype network debugger

inspired by gdb (a popular debugger for software
programs). It implements two primitives useful for
debugging a SDN control plane: breakpoints and
packet back-traces. A packet back-trace in ndb allows
the user to define a packet breakpoint (an un-forwarded
packet or a packet filter). Then it shows the sequence of
for-

warding actions seen by that packet leading to the

breakpoint.

OFRewind

[51] allows SDN control plane traffic

to be recorded at different granularities. Later they can
be replayed to reproduce a specific scenario, giving the
opportunity to localize and troubleshoot the events that
caused the network anomaly. It records flow table state
via a proxy and logs packet traces and aids debugging
via scenario re-creation. The VeriFlow [52] is a SDN
debugging tool which finds faulty rules issued by SDN
applications and prevents them from reaching the
network and causing anomalous network behavior.

VeriFlow operates as a layer between the controller and
the devices, and checks the validity of invariants as
each rule is inserted. To ensure a real-time response,
VeriFlow introduces new algorithms to search for
potential violation of key network invariants: availability
of a path to the destination, absence of routing loops,
access control policies or isolation between virtual
networks.

Other than the SDN debugging tools which
were described earlier, there are two SDN
troubleshooting simulators: STS (SDN Troubleshooting
Simulator) [53] and OpenSketch [54]. STS [53] is a SDN
troubleshooting simulator which is written in python and
depends on POX controller [34]. It simulates the devices
of the network to allow operators to easily generate test
cases, examine the state of the network interactively and
find the exact inputs that are responsible for triggering a
given ment architecture, which separates the
measurement data plane from the control plane. In the
data plane, OpenSketch provides a simple three-stage
pipeline (hashing, filtering, and counting). They can be
implemented with commodity switch components and
support many measurement tasks. In the control plane,
OpenSketch provides a measurement library that
automatically configures the pipeline and allocates
resources for different measurement tasks.

f) SDN emulation and simulation tools
The Mininet [55], the Emulab and the ns-3 [56]

are popular emulation and simulation Tools used with
SDN. Mininet [55] is an emulation environment which
creates a complete network of hosts, links, and switches
on a single machine. It creates virtual networks using
process-based virtualization and network namespaces
(features available in Linux kernels). In Mininet, hosts are
emulated as bash processes running in a network
namespace. So any code that would run on a Linux
server can be run within a Mininet “Host”. The Mininet
“Host” has its private network interface and can only see
its own processes. Switches in Mininet are software-

Language Supports Type Based on Used for

FatTire Only OpenFlow - Regular expressions Fault tolerant programming

Nettle Only OpenFlow Functional Functional Reactive Program-
ming

Load balancing programming

FML Only OpenFlow Logical datalog Policy implementation programming

Procera Any type of hard-
ware

Functional Functional Reactive Program-
ming

General programming

Flog Any type of hard-
ware

Logical datalog General programming

Frenetic Any type of hard-
ware

Logical Query language General programming

Pyretic Any type of hard-
ware

Logical Query language General programming

Layer Tools

Application layer NICE

Data Plane Anteater

Control Plane ndb, OFrewind

A new layer between Data Plane and Control Plane VeriFlow

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 16

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

based OpenFlow switches. Links are virtual ethernet
pairs, which resides in the Linux kernel and connect
emulated switches to emulated hosts. Mininet is useful
for SDN interactive development, testing, and
demonstrations. SDN prototypes in Mininet can be
transferred to hardware with minimal changes for real-
time execution.

The Emulab [57] is a network emulation testbed
which includes a network facility and a software system.
Emulab is widely used by computer science researchers
in the fields of networking and distributed systems and it
support OpenFlow. So currently it is used also used for
SDN research works. The primary Emulab installation is

g) SDN virtualization tools
The OpenFlow has opened the control of a

network for innovation, but only one network
administrator can do experiments on the network at a
time. If there is a way to divide, slice or replicate network
resources, more than one network administrator can use
them in parallel to do experiments. Actions in one slice
or replication should not negatively affect other, even if
they share the same underlying physical hardware. SDN
Virtualization concepts have been introduced to achieve
these goals.

The FlowVisor [58] is a special purpose
OpenFlow controller that allows multiple researchers to
run experiments independently on the same production
OpenFlow network. It uses a new approach to switch
virtualization, in which the same hardware forwarding
plane is shared among multiple logical networks, each
with distinct forwarding logic. FlowVisor acts as a middle
layer between the underlying physical hardware and the
software that controls it. It is implemented as an
OpenFlow proxy that intercepts messages between
OpenFlow switches and OpenFlow controllers. The
AutoSlice [59] devel- ops a transparent virtualization
layer (SDN hypervisor) which automates the deployment
and operation of vSDN topologies. In contrast to
FlowVisor, AutoSlice focuses on the scalability aspects
of the hypervisor design. AutoSlice monitors flow level
traffic statistics to optimize the resource utilization and to
mitigate flow-table limitations. With the distributed
hypervisor architecture, Autoslice can handle large
numbers of flow table control messages from multiple
tenants.

In a virtual machine environment, moving
applications from one location to another without a
disruption in service is called Live virtual machine (VM)
migration. SDN applications can reside and rely on
multiple VMs. So migrating individual SDN VMs, one by

one, may disrupt the SDN applications. So the LIME
[60] design migrate an ensemble: the VMs, the
network, and the management system to a different set
of physical resources at the same time. LIME uses the
SDN concept of separation between the controller and
the data plane state in the switches. LIME clones the
data plane state to a new set of switches, transparent to
the application running on the controller. And then
incrementally migrates the traffic sources.

The RouteFlow [61] provides virtualized IP
routing over OpenFlow capable hardware. It is
composed with a OpenFlow Controller application, a
server, and a virtual network environ- ment. The virtual
network environment rebuild the connectivity of the
physical infrastructure and runs IP routing engines. The
routing engines generate the forwarding information
base (FIB) according to the routing protocols
configured. An ex- tension of RouteFlow [62], discusses
incorporating RCPs [17] in the context of OpenFlow and
SDN. It proposes a controller centric networking model
with a prototype implementation of an autonomous
system-wide abstract BGP routing service.

V. Final Remarks

SDNs have emerged in the last decade as a
very active research domain, gaining significant
attention from both academia and industry. This survey
discussed the state of art in SDN, with a historic
perspective of the field by describing the SDN
paradigm, architecture and deployments in detail.

We first introduced the concepts and definitions
that enable a clear understanding of SDNs. The idea of
programmable networks and decoupled control logic
has been around for many years and the history of SDN
goes back to the early 1980s. Central network control,
programmability in networks, network virtualization and
control of packet switched networks were the four main
supporting technologies which helped SDN to evolve.
The survey was extended by exploring the OpenFlow
project and the standardized SDN architecture.
Standard SDN three tier architecture includes: SDN
controller, southbound APIs and northbound APIs. For a
broader scope, the pa- per detailed the tools and
frameworks associated with SDN development in the
categories of SDN controller platforms, SDN software
switch platforms, native SDN switches, SDN languages,
SDN debugging tools, SDN emulation/simulation tools
and SDN virtualization tools.

Acknowledgment

I would like to thank Prof. Jorge Lobo, Prof. A.
Russo, Dr. Frank Le, Dr. C. Makaya and Prof. H.
Ramalhino, who collaborated in all my SDN related
research work [63], [64], [65], [66], [67], [68].

run by the Flux Group, part of the School of Computing
at the University of Utah. The ns-3 [56] is a discrete
event network simulator for internet systems. It is based
on C++ and Python and widely used for research and
educational use. Since ns-3 provides support for
OpenFlow, it can be used to emulate SDNs.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 17

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

References Références Referencias

1. J. Menga, “Ccnp practical studies: Layer 3
switching,” 2003. [Online]. Available: http://www.
ciscopress.com/articles/article.asp?p=102093

2. H. Kim and N. Feamster, “Improving network
management with software defined networking,”
IEEE Communications Magazine.

3. “Open networking foundation,” 2011.
[Online]. Available: https://www.opennetworking.
org/about/onf-overview

4. “Open networking research center (onrc),” 2011.
[Online]. Available: http://onrc.net

5. N. Feamster, “Sdn course,” 2013. [Online].
Available: http://https://www.coursera.org/
course/sdn

6. J. J. Lawser, LeCronier, and at el., “Stored program
controlled network: Generic network plan,” Bell
System Technical Journal, 1982.

7. D. L. Tennenhouse, J. M. Smith, and at.el, “A survey
of active network research,” IEEE Communications
Magazine, 1997.

8. D. Wetherall, “Active network vision and reality:
lessons from a capsule-based system,” ACM
Operating Systems Review, 1999.

9. J. E. van and at el., “The tempest: A practical
framework for network programmability,” IEEE
Networks Magazine, 1998.

10. J. M. Smith, D. J. Farber, and at el., “Switchware:
Accelerating network evolution,” Tech. Rep., 1996.

11. B. Schwartz, A. W. Jackson, and at el., “Smart
packets: applying active networks to network
management,” ACM Transactions on Computer
Systems, 2000.

12. Y. Yemini and S. D. Silva, “Towards
programmable networks,” in IEEE International
Workshop on Distributed Systems: Operations and
Management, 1996.

13. A. T. Campbell, I. Katzela, and at el., “Open
signaling for atm, internet and mobile networks,”
Computer Communication Review (ACM
SIGCOMM), 1998.

14. A. Bavier, N. Feamster, and at el., “In vini veritas:
Realistic and con- trolled network experimentation,”
Computer Communication Review, 2006.

15. N. Feamster, L. Gao, and J. Rexford, “How to lease
the internet in your spare time,” ACM SIGCOMM,
2007.

16. A. Doria, J. H. Salim, and at el., “Forwarding and
control element separation (forces) protocol
specification,” RFC 5810, 2010.

17. M. Caesar, D. Caldwell, and at el., “Design and
implementation of a routing control platform,” in
NSDI 2005.

18. M. Casado and M. J. F. at el., “Ethane: Taking
control of the enterprise,” Computer Communication
Review (ACM SIGCOMM), 2007.

19. H. J. S. X. Wang Z., Tsou T. and Y. X.,
“Analysis of comparisons between openflow and
forces draft-wang-forces-compare- openflow-
forces.” [Online]. Available: http://tools.ietf.org/html/
draft- wang-forces-compare-openflow-forces-01

20. N. McKeown, T. Anderson, and at el., “Openflow:
enabling innovation in campus networks,” ACM
SIGCOMM, 2008.

21. T. A. Limoncelli, “Openflow: a radical new idea in
networking,” ACM Queue - Performance, 2012.

22. “Openflow current deployments,” 2012. [Online].
Available: http://www.openflow.org/wp/current-
deployments/

23. “Openflow switch specification 1.4.0,” Open
Networking Foundation, Tech. Rep., 2013.

24. T. Santhanam, “Cisco support community: Cam vs
tcam,” 2011. [Online]. Available:
https://supportforums.cisco.com/docs/DOC-15833

25. M.-K. Shin, H.-J. Kim, and K.-H. Nam, “Software-
defined networking (sdn): A reference architecture
and open apis,” in ICTC 2012.

26. M. S. Jonathan and J. F. David, “The open sdn
architecture - big switch networks,” Tech. Rep.,
2011.

27. N. Gude, T. Koponen, and at el., “Nox: towards an
operating system for networks,” ACM SIGCOMM
2008.

28. F. M. Fernandez, “Comparing openflow controller
paradigms scalability: Reactive and proactive,” in
AINA 2013.

29. S. Johnson, “Border gateway protocol as a hybrid
sdn protocol,” 2012. [Online]. Available:
http://searchsdn.techtarget.com/feature/Border-
Gateway-Protocol-as-a-hybrid-SDN-protocol

30. “The role for xmpp as a southbound sdn protocol,”
2012. [Online]. Available: http://searchsdn.

southbound-SDN-protocol
31. D. Erickson, “The beacon openflow controller,” in

HotSDN 2013. [32]A. Tootoonchian, S. Gorbunov,
and at el., “On controller performance in software-
defined networks,” in Hot-ICE 2012.

32. “Controller performance comparisons,” 2011.
[Online]. Available: http://archive.openflow.org/wk/
index.php/ControllerPerformanceComparisons

33. “About pox,” 2012. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

34. Z. Cai, A. L. Cox, and at el., “Maestro: A system for
scalable openflow control,” Tech. Rep., 2010.

35. “Trema openflow controller framework,” 2012.
[Online]. Available: https://github.com/trema/trema

36. “Ryu : a component-based software-defined
networking framework,” 2012. [Online]. Available:
http://osrg.github.io/ryu/

37. “Floodlight is an open sdn controller,” 2012.
[Online]. Available: http://floodlight.openflowhub.
org/

techtarget.com/feature/The-role-for-XMPP-as-a-

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

 18

Y
e
a
r

2
01

9

 (
)

C

© 2019 Global Journals

Past before Future: A Comprehensive Review on Software Defined Networks Road Map

38. “Pantou: openflow 1.0 for openwrt,” 2011. [Online].
Available: http://www.openflow.org/wk/index.php/
Open-Flow 1.0 for OpenWRT

39. “ofsoftswitch13,” 2011. [Online]. Available:
https://github.com/CPqD/ofsoftswitch13

40. N. F. et al, “Languages for software-defined
networks,” IEEE Communications Magazine, 2013.

41. M. Reitblatt, M. Canini, and at el., “Fattire:
Declarative fault tolerance for software-defined
networks,” in HotSDN 2013.

42. A. Voellmy and P. Hudak, “Nettle: Functional
reactive programming of openflow networks,” in
International Conference on Practical aspects of
declarative languages, 2011.

43. T. L. Hinrichs, N. S. Gude, and at el., “Practical
declarative network management,” in Proceedings
of the 1st ACM Workshop on Research on
enterprise networking, 2009.

44. A. Voellmy, H. Kim, and N. Feamster, “Procera:
A language for high- level reactive network control,”
in HotSDN 2012.

45. N. P. Kaia, J. Rexford, and D. Walker, “Logic
programming for software-defined networks: Flog,”
in ACM SIGPLAN Workshop on Cross-model
Language Design and Implementation, 2012.

46. C. Monsanto, J. Reich, and at el., “Composing
software defined networks,” in USENIX Conference
on Networked Systems Design and Implementation,
2013.

47. M. Canini, D. Venzano, and at el., “A nice way to
test openflow applications,” in USENIX conference
on Networked Systems Design and Implementation,
2012.

48. H. Mai, A. Khurshid, and at el., “Debugging the data
plane with anteater,” in ACM SIGCOMM 2011.

49. N. Handigol, B. Heller, and at el., “Where is the
debugger for my software-defined network?” in
HotSDN 2012.

50. A. Wundsam, D. Levin, and at el., “Of rewind:
enabling record and re- play troubleshooting for
networks,” in USENIX conference on USENIX
annual technical conference, 2011.

51. A. Khurshid, W. Zhou, and at el., “Veriflow: verifying
network-wide invariants in real time,” in HotSDN
2011.

52. “Sdn troubleshooting simulator (sts),” 2013.
[Online]. Available: http://ucb-sts.github.com/sts/

53. M. Yu, L. Jose, and R. Miao, “Software defined
traffic measurement with opensketch,” in USENIX
Symposium on Networked Systems Design and
Implementation, 2013.

54. B. Lantz, B. Heller, and N. McKeown, “A network
in a laptop: rapid prototyping for software-defined
networks,” in ACM SIGCOMM Workshop on Hot
Topics in Networks, 2010.

55. T. R. Henderson, M. Lacage, and G. F. Riley,
“Network simulations with the ns-3 simulator,” in

ACM SIGCOMM Workshop on Hot Topics in
Networks, 2008.

56. “Emulab - network emulation testbed home,” 2013.
[Online]. Available: http://www.emulab.net/

57. R. Sherwood, M. Chan, and et al., “Carving research
slices out of your production networks with
openflow,” ACM SIGCOMM 2008.

58. Z. Bozakov and P. Papadimitriou, “Autoslice:
automated and scalable slicing for software-defined
networks,” in CoNEXT Student 12.

59. E. Keller, D. Arora, and at el., “Live migration of an
entire network and its hosts,” in HotNets-XI 2012.

60. M. R. Nascimento, C. E. Rothenberg, and at el.,
“Virtual routers as a service: the routeflow approach
leveraging software-defined networks,” in Future
Internet Technologies, 2011.

61. C. E. Rothenberg, M. R. Nascimento, and et al,
“Revisiting routing.

62. W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo,
“Towards making network function virtualization a
cloud computing service,” in IEEE IM 2015.

63. W. Rankothge, F. Le, A. Russo, and J. Lobo,
“Experimental results on the use of genetic
algorithms for scaling virtualized network functions,”
in IEEE SDN/NFV 2015.

64. W. Rankothge, F. Le, and at el., “Optimizing
resources allocation for virtualized network
functions in a cloud center using genetic
algorithms.” in IEEE TNSM 2017.

65. W. Rankothge, F. Le, J. Lobo, and at el., “Data
modelling for the eval- uation of virtualized network
functions resource allocation algorithms.” in
arXiv:1702.00369.

66. J. Ma, W. Rankothge, C. Makaya, C. Morales, F.
Le, and J. Lobo, “An overview of a load balancer
architecture for vnf chains horizontal scaling,” in
IEEE IFIP CNSM 2018.

 67.

J. Ma, W. Rankothge, C. Makaya, C. Morales, and
at el, “A compre- hensive study on load balancers
for vnf chains horizontal scaling.” in
arXiv:1810.03238.

	Past before Future: A Comprehensive Review on SoftwareDefined Networks Road Map
	Author
	Keywords
	I. Introduction
	II. SDN History
	a) Central network control
	b) Programmability in networks
	c) Network virtualization
	d) Control of packet switched networks
	e) OpenFlow

	III. SDN Architecture
	a) SDN controller
	b) Southbound Interfaces
	c) Northbound APIs

	IV. SDN Development Tools andFrameworks
	a) SDN controller platforms
	b) SDN software switch platforms
	c) Native SDN switches
	d) SDN languages
	e) SDN debugging tools
	f) SDN emulation and simulation tools
	g) SDN virtualization tools

	V. Final Remarks
	Acknowledgment
	References Références Referencias

