Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. *Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.*

Analyzing Political Opinions and Prediction of Voting Patterns in the US Election with Data Mining Approaches

Md. Sohel Ahammed¹, Md. Nahid Newa z^2 and Arunavo Dey³

¹ Bangladesh University of Business and Technology (BUBT)

Received: 16 December 2018 Accepted: 5 January 2019 Published: 15 January 2019

7 Abstract

3

Δ

5

⁸ Data is the precious resources. Data contains the useful patterns which provide the crucial

⁹ information about the prediction of what is going to be happened in the next. In this paper,

¹⁰ we aim to identify the political preferences and tendency of the US populations using

11 classification and data mining techniques. To provide the usefulness of proposed model we

¹² analyze the electoral data sets in US election obtained from the official website which contains

¹³ the information about 1984 United States Congressional voting records. This paper shows the

¹⁴ classification techniques that can be used to predicting voting patterns in the US House of

¹⁵ Representatives and shows the close correspondence between election results and extracted

¹⁶ opinion. This paper also shows the political support of the voters and prediction the

¹⁷ characteristics of the voter with their political tendency.

18

19 Index terms—

20 1 Introduction

21 lection is important because it allows the electorate to decide who's going to make decision for their country for 22 the next couple of years. But this election can be forecasted with a reasonable accuracy. Forecasting election 23 using small polling system is very common approach but this often do not produce reasonable accuracy.

Data mining is a process that examines large preexisting databases in order to generate new information. 24 There are also various works that uses data mining approaches to predict various types of results such as weather 25 forecasting, sports result prediction, future buying decision prediction, etc. But there are very few works that 26 uses data mining approaches to predict voting patterns on election. In this work, we uses data mining approaches 27 to predict voting patterns in USA election. For this study we uses data preprocessing for removing missing value, 28 identifying best attributes and removing duplicate values. We split the dataset into training datasets and test 29 datasets. Then we applied four algorithms Tree J48, Naïve Bayes Classifier, Trees Random Forest and Rules 30 zero or Classifier for predicting voting patterns and also compares the results of those model and finds the best 31 models from those models. 32

33 **2** II.

³⁴ 3 Related Works

Gregg R. Murray and Anthony Scime uses data mining approaches to predict individual voting behavior including
abstention with the intent of segmenting the electorate in useful and meaningful ways [1]. Gregg R. Murray, Chris
Riley, and Anthony Scime, in another study, uses iterative expert data mining to build a likely voter model for
presidential election in USA [2]. Bae, Jung-Hwan, Ji-Eun, Song, Min uses Twitter data for predicting trends
in South Korea Presidential Election by Text Mining techniques [3]. Tariq Mahmood, TasmiyahIqbal, Farnaz
Amin, WaheedaLohanna, Atika Mustafa uses Twitter data to predict 2013 Pakistan Election winner [4].

41 **4 III.**

42 Data Preprocessing

43 5 Experimental Methodology

We used 4 algorithms and 8 models (2 models for each algorithm) to predict the voting pattern in the US election.
We then analyse and compare the results of those models and finds the best models with most accuracy. The

 $_{\rm 46}$ $\,$ algorithms which are applied for generating models are given below.

47 i. Trees J48 ii.

Naive From the above table, the best model was identified based on the value of the parameters accuracy, precision, recall, sensitivity, and specificity. The higher the value of accuracy, precision, recall and (sensitivity> specificity), the higher the rank.

51 6 VI.

1

52 7 Conclusion

53 Though there are lot of techniques and methods for predicting voting patterns, data mining is the most efficient

and effective methods in this fields. In our study, we clearly found that among various data mining algorithms
 Trees Random Forest performs the best with 98.17% accuracy. In future, we will expand our research in most recent dataset for validating our findings with recent ones.

 $\mathbf{2}$

Year

ogy

019 37 E I. Handling with Missing Attributes: In this section, we uses the Volume technique of replacing missing values with mean, median or mode. We XIX uses this approach because it is better approach when the dataset is Issue II small and it can prevent data loss. II. Removing Duplicates: We Version used WEKA tools for removing duplicates from the datasets. I () We С used Remove Duplicates () function in WEKA for removing duplicates. Global III. Best Attributes Selection: We used Gain Ratio Attribute Eval Journal which evaluates the worth of an attribute by measuring the gain ratio of Comwith respect to the class and Ranker which Ranks attributes by their puter individual evaluations. The top 12 attributes from the whole dataset Science according to rank from the attributes are presented in Figure 1. and Technol-

© 2019 Global Journals

Figure 1: Table 1 :

56

¹© 2019 Global Journals

²Table 17: Model-8 Precision, Recall, F-measure rate according to Democrat class

2		
iii.	Trees RandomForest	
iv.	Rules ZeroOR Classifier	
a) Trees J48		
	We used Model 1 for tra	aining dataset and Model
2 for test dataset evaluation.		
Evaluation of Model 1 Training dataset is given below:		
Bayes classifier		
Correctly Classified Instances	421	96.7816%
Incorrectly Classified Instances	14	3.2184%
Kappa statistics	0.9324	
Mean Absolute Error	0.0582	
Root Mean Squared Error	0.1706	
Relative Absolute Error	12.2709%	
Root Relative Squared Error	35.0341%	
Total Number of Instances	435	

Figure 2: Table 2 :

3

TP Rate	\mathbf{FP}	FP PrecisRencalF		aIF	MCCRock PRC Class
	Rate	Э	1	mea-	Area area
				sures	
0.966	0.03	00.98	10.96	60.974	0.93 0.975 0.973 democrat
Sensitivity & Specificity Calculation for Training Data (Me	odel 1)			
Formula of Sensitivity = $TP/(TP+FN)$					
Formula of Specificity = $TN/(TN+FP)$					
So Sensitivity = TP Rate = 0.966 & Specificity = 0.030					
Evaluation of Model 2 test dataset is given below					

Figure 3: Table 3 :

$\mathbf{4}$

Correctly Classified Instances	105	96.3303%
Incorrectly Classified Instances	4	3.6697%
Kappa statistics	0.921	
Mean Absolute Error	0.0619	
Root Mean Squared Error	0.1894	
Relative Absolute Error	13.2259%	
Root Relative Squared Error	39.4312%	
Total Number of Instances	109	

Figure 4: Table 4 :

 $\mathbf{3}$

6

Correctly Classified Instances	395	90.8046%
Incorrectly Classified Instances	40	9.1954%
Kappa statistics	0.8094	
Mean Absolute Error	0.0965	
Root Mean Squared Error	0.2921	
Relative Absolute Error	20.34%	
Root Relative Squared Error	59.9863%	
Total Number of Instances	435	

Figure 5: Table 6 :

$\mathbf{7}$

TP Rate	FP Rate Precision		$\operatorname{Recal} \mathbb{F}$	MCCRock	PRC	Cla
			mea-	Area	area	
			sures			
0.895	0.071	0.952	0.8950.923	0.8120.972	0.983	den
Sensitivity & Specificity Calculation for Training Dat	a (Mode	el 3)				
So Sensitivity = TP Rate = 0.895 & Specificity = 0.6	071					
Evaluation of Model 4 test dataset is given below						

Figure 6: Table 7 :

8

Correctly Classified Instances	99	90.8257%
Incorrectly Classified Instances	10	9.1743%
Kappa statistics	0.8069	
Mean Absolute Error	0.0978	
Root Mean Squared Error	0.2934	
Relative Absolute Error	20.9083%	
Root Relative Squared Error	61.0861%	
Total Number of Instances	109	

Figure 7: Table 8 :

9

TP Rate	FP PrecisiBancalF	MCCRock PRC Class
	Rate mea-	Area area
	sures	
0.886	$0.051\ 0.969\ \ 0.886\ 0.925$	0.8120.969 0.984 democrat
Sensitivity & Specificity Calculation for Model 4		

Sensitivity = TP Rate = 0.886 & Specificity = 0.051

c) Trees Random Forest

Evaluation on Training Data set: Trees Random Forest algorithm

Figure 8: Table 9 :

10

Analyzing Political Opinions and Prediction of Voting Patterns in the US Election with Data Mining Approaches

		Year 2 019
		39
		Volume XIX Issue II
		Version I
		() C
		Global Journal of
		Computer Science and
		Technology
Correctly Classified Instances	427	98.1609%
Incorrectly Classified Instances	8	1.8391%
Kappa statistics	0.9613	
Mean Absolute Error	0.0376	
Root Mean Squared Error	0.1222	
Relative Absolute Error	7.9365%	
Root Relative Squared Error	25.0915%	70
Total Number of Instances	435	
		© 2019 Global Jour-
		nals

Figure 9: Table 10 :

$\mathbf{5}$

TP Rate FP Rate	PrecisiRuecalF		MCRock	PRC	Class
		mea-	Area	area	
		sures			
0.981	0.01 8.989	0.9810.985	0.9610.998	0.999	democrat
Sensitivity & Specificity Calculation for Training Data ((Model 5)				
So Sensitivity = TP Rate = 0.981 & Specificity = 0.018					
Evaluation of Model 6 test dataset is given below					

Figure 10: Table 5 :

12

Correctly Classified Instances	106	97.2477%
Incorrectly Classified Instances	03	2.7523%
Kappa statistics	0.9404	
Mean Absolute Error	0.0432	
Root Mean Squared Error	0.1508	
Relative Absolute Error	9.2437%	
Root Relative Squared Error	31.408%	
Total Number of Instances	109	

Figure 11: Table 12 :

$\mathbf{13}$

TP Rate	FP Rate Precision			MCCRock		Cla
			mea-	Area	area	
			sures			
0.971	0.026	0.986	0.9710.978	0.9410.996	0.997	de
Sensitivity & Specificity Calculation for Model 6						
Sensitivity = TP Rate = 0.971 & Specificity = 0.026						
d) Rules ZeroOR Classifier						
Evaluation on Training Data set: Rules ZeroOR Classif	fier algoi	rithm				

Figure 12: Table 13 :

$\mathbf{14}$

267	61.3793%
168	38.6207%
0	
0.4742	
0.4869	
100%	
100%	
435	
	168 0 0.4742 0.4869 100% 100%

Figure 13: Table 14 :

15

TP Rate	\mathbf{FP}	Precis	siBarec	a⊪	MC R ock	PRC	Class
	Rate	e		mea-	Area	area	
				sures			
1.0	1.0	0.614	1.0	0.761	- 0.500	0.614	democrat
Sensitivity & Specificity Calculation for Training Data	a (Mo	del 7)					
So Sensitivity = TP Rate = 1.0 & Specificity = 1.0							
Evaluation of Model 8 test dataset is given below							

Figure 14: Table 15 :

16

Analyzing Political Opinions and Prediction of Voting Patterns in the US Election with Data Mining Approaches						
Year 2 019						
40						
Volume XIX Issue II Version I						
)						
(C						
Global Journal of Computer Science	Correctly Classified Instances	70	64.2202%			
and Technology						
	Incorrectly Classified Instances	39	35.7798%			
	Kappa statistics	0				
	Mean Absolute Error	0.4678				
	Root Mean Squared Error	0.4802				
	Relative Absolute Error	100%				
	Root Relative Squared Error	100%				
	Total Number of Instances	109				
$\ensuremath{\mathbb{C}}$ 2019 Global Journals						

Figure 15: Table 16 :

$\mathbf{11}$

TP Rate	FP Ra	FP Rate Precision		alF	MCR ock		PRC	Clas
				mea-	Are	ea d	area	
				sures				
1.0	1.0	0.642	1.0	0.782	- 0.5	00	0.642	dem
Sensitivity & Specificity Calculation for Model 8								
Songitivity $-$ TP Rate $-1.0k$ Specificity -1.0								

Sensitivity = TP Rate = 1.0& Specificity = 1.0 V. Revaluation of the Best, Second Best and Third Best Model

Figure 16: Table 11 :

Figure 17: Table 18 :

Model Model Model 2	1	Accuracy 96.7816% 96.3303%	precision reca	ll 0.981 0.966 0.985 0.957	sensitiv	vity spe	cificity 0.966 0.030 0.95
Model 3		90.8046%	0.952	0.895	0.895		0.071
Model	4	90.8257%	0.969 0.989	0.886	0.886	0.981	0.051
Model	5	98.1609%	$0.986 \ \ 0.614$	0.985	0.971	1.00	0.018
Model	6	97.2477%	0.642	0.978	1.00		0.026
Model	$\overline{7}$	61.3793%		1.00			1.00
Model 8		64.2202%		1.00			1.00

Figure 18:

- ⁵⁷ [Bae and Song ()] 'Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques'.
 ⁵⁸ Jung-Hwan Bae , Ji-Eun Song , Min . Journal of intelligence and Information Systems 2013. 19 (3) .
- ⁵⁹ [Gregg et al. ()] 'Micro targeting and Electorate Segmentation: Data Mining the American National Election
 ⁶⁰ Studies'. R Gregg, Anthony Murray, Scime. Journal of political marketing 2010. 9 (3).
- [Mahmood et al.] Mining Twitter, Tariq Mahmood , Farnaz Tasmiyahiqbal , Amin , Atika Waheedalohanna ,
 Mustafa .
- 63 [Murray et al. ()] 'Pre-Election Polling: Identifying Likely Voters Using Iterative Expert Data Mining'. Greg R
- 64 Murray, Chris Riley, Anthony Scime. Public opinion Quarterly 2009. 73 (1).