
© 2019. Leszek Sliwko. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
 

 

  
Global Journal of Computer Science and Technology: B 
Cloud and Distributed 
Volume 19 Issue 1 Version 1.0 Year 2019 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 0975-4172 | Print ISSN: 0975-4350 | DOI: 10.17406   

 

A Taxonomy of Schedulers – Operating Systems, Clusters and 
Big Data Frameworks 

  By
 
Leszek Sliwko

 
                                

Abstract- This review analyzes deployed and actively used workload schedulers’ solutions and 
presents a taxonomy in which those systems are divided into several hierarchical groups based on 
their architecture and design. While other taxonomies do exist, this review has focused on the key 
design factors that affect the throughput and scalability of a given solution, as well as the incremental 
improvements which bettered such an architecture. This review gives special attention to Google’s 
Borg, which is one of the most advanced and published systems of this kind.      

Keywords: schedulers, workload, cluster, cloud, big data, borg. 

GJCST-B Classification : I.2.8 

 

ATaxonomyofSchedulersOperatingSystemsClustersandBigDataFrameworks 
 
 
 
 
 
 
 
 

                                                 Strictly as per the compliance and regulations of: 
 

 

 

 

 

Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, 
and reproduction inany medium, provided the original work is properly cited.



A Taxonomy of Schedulers – Operating 
Systems, Clusters and Big Data Frameworks 

Leszek Sliwko

Abstract- This review analyzes deployed and actively used 
workload schedulers’ solutions and presents a taxonomy in 
which those systems are divided into several hierarchical 
groups based on their architecture and design. While other 
taxonomies do exist, this review has focused on the key 
design factors that affect the throughput and scalability of a 
given solution, as well as the incremental improvements which 
bettered such an architecture. This review gives special 
attention to Google’s Borg, which is one of the most advanced 
and published systems of this kind. 
Keywords: schedulers, workload, cluster, cloud, big 
data, borg. 

I. Taxonomy of Schedulers 

lthough managing workload in a Cloud system is 
a modern challenge, scheduling strategies are a 
well-researched field as well as being an area 

where there has been considerable practical 
implementation. This background review started by 
analyzing deployed and actively used solutions and 
presents a taxonomy in which schedulers are divided 
into several hierarchical groups based on their 
architecture and design. While other taxonomies do 
exist (e.g., Krauter et al., 2002; Yu and Buyya, 2005; Pop 
et al., 2006; Smanchat and Viriyapant, 2015; Rodriguez 
and Buyya, 2017; Zakarya and Gillam, 2017;Tyagi and 
Gupta, 2018), this review has focused on the most 
important design factors that affect the throughput and 
scalability of a given solution, as well as the incremental 
improvements which bettered such an architecture. 

Figure 1 visualizes how the schedulers’ groups 
are split. The sections which follow discusses each of 
these groups separately. 

 
Figure 1: Schedulers taxonomy 

II. Metacomputing 

The concept of connecting computing 
resources has been an active area of research for some 
time. The term ‘metacomputing’ was established as 
early as 1987 (Smarr and Catlett, 2003) and since then 
the topic of scheduling has been the focus of many 
research projects, such as (i) service localizing idle 
workstations and utilizing their spare CPU cycles – 
HTCondor  (Litzkow   et al.,  1988);   (ii)   the   Mentat – a 
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parallel run-time system developed at the University of 
Virginia (Grimshaw, 1990); (iii) blueprints for a national 
supercomputer (Grimshaw et al., 1994), and (iv) the 
Globus metacomputing infrastructure toolkit (Foster and 
Kesselman, 1997). 

Before the work of Foster et al. (2001), there 
was no clear definition to what ‘grid’ systems referred. 
Following this publication, the principle that grid systems 
should allow a set of participants to share several 
connected computer machines and their resources 
became established. A list of rules defines these shared 
system policies. This includes which resources are 
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being shared, who is sharing these resources, the extent 
to which they can use those resources, and what quality 
of service they can expect.  

As shown in the following sections, the 
requirements of a load balancer in a decentralized 
system varies significantly compared to scheduling jobs 
on a single machine (Hamscher et al., 2000). One 
significant difference is the network resources, in that 
transferring data between machines is expensive 
because the nodes tend to be geographically 
distributed. In addition to the high-impact spreading of 
tasks across networked machines, the load balancer in 
Clusters generally provides a mechanism for fault-
tolerance and user session management. The sections 
below also explain the workings of several selected 
current and historical schedulers and distributed 
frameworks. If we can understand these, we will know 
more about how scheduling algorithms developed over 
time, as well as the different ways they have been 
conceptualized. This paper does not purport to be a 
complete taxonomy of all available designs, but rather 
presents an analysis of some of the most important 
concepts and aspects of the history of schedulers. 

III. OS Schedulers 

The Operating System (OS) Scheduler, also 
known as a ‘short-term scheduler’ or ‘CPU scheduler’, 
works within very short time frames, i.e., time-slices. 
During scheduling events, an algorithm must examine 
planned tasks and assign them appropriate CPU times 
(Bulpin, 2005; Arpaci-Dusseau and Arpaci-Dusseau, 
2015). This setting requires schedulers to use highly 
optimized algorithms with very small overheads. 
Process schedulers face the challenge of how to 
maintain the balance between throughput and 
responsiveness (i.e., minimum latency). Prioritizing the 
execution of processes with a higher sleep/processing 
ratio is the way this is generally achieved (Pabla, 2009). 

At present, the most advanced strategies also take into 
consideration the latest CPU core where the process ran 
the previous time, which is known as ‘Non-Uniform 
Memory Access (NUMA) awareness’. The aim is to 
reuse the same CPU cache memory wherever possible 
(Blagodurov et al., 2010). The memory access latency 
differences can be very substantial, for example ca. 3-4 
cycles for L1 cache, ca. 6-10 cycles for L2 cache and 
ca. 40-100 cycles for L3 cache (Drepper, 2007). NUMA 
awareness also involves prioritizing the act of choosing 
a real idle core which must occur before its logical SMT 
sibling, also known as ‘Hyper-Threading (HT) 
awareness’. Given this, NUMA awareness is a crucial 
element in the design of modern OS schedulers. With a 
relatively high data load to examine in a short period, 
implementation needs to be strongly optimized to 
ensure faster execution. 

OS Schedulers tend to provide only a very 
limited set of configurable parameters, wherein the 
access to modify them is not straightforward. Some of 
the parameters can change only during the kernel 
compilation process and require rebooting, such as 
compile-time options CONFIG_FAIR_USER_SCHED 
and CONFIG_FAIR_CGROUP_SCHED, or on the fly 
using the low-level Linux kernel’s tool ‘sysctl’. 

a) Cooperative Multitasking 
Early multitasking Operating Systems, such as 

Windows 3.1x, Windows 95, 96 and Me, Mac OS before 
X, adopted a concept known as Cooperative 
Multitasking or Cooperative Scheduling (CS). In early 
implementations of CS, applications voluntarily ceded 
CPU time to one another. This was later supported 
natively by the OS, although Windows 3.1x used a non-
pre-emptive scheduler which did not interrupt the 
program, wherein the program needed to explicitly tell 
the system that it no longer required the processor time. 
Windows 95 introduced a rudimentary pre-emptive 
scheduler, although this was for 32-bit applications only 
(Hart, 1997). The main issue in CS is the hazard caused 
by the poorly designed program. CS relies on processes 
regularly giving up control to other processes in the 
system, meaning that if one process consumes all the 
available CPU power then all the systems will hang. 

b) Single Queue 
Before Linux kernel version 2.4, the simple 

Circular Queue (CQ) algorithm was used to support the 
execution of multiple processes on the available CPUs. 
A Round Robin policy informed the next process run 
(Shreedhar, 1995). In kernel version 2.2, processes were 
further split into non-real/real-time categories, and 
scheduling classes were introduced. This algorithm was 
replaced by O(n) scheduler in Linux kernel versions 2.4-
2.6. In O(n), processor time is divided into epochs, and 
within each epoch every task can execute up to its 
allocated time slice before being pre-empted. At the 
beginning of each epoch, the time slice is given to each 
task; it is based on the task's static priority added to half 
of any remaining time-slices from the previous epoch 
(Bulpin, 2005). Thus, if a task does not use its entire 
time slice in the current epoch, it can execute for longer 
in the next one. During a scheduling event, an O(n) 
scheduler requires iteration through all the process 
which are currently planned (Jones, 2009), which can be 
seen as a weakness, especially for multi-core 
processors. 

Between Linux kernel versions 2.6-2.6.23 came 
the implementation of the O(1) scheduler. O(1) further 
splits the processes list into active and expired arrays. 
Here, the arrays are switched once all the processes 
from the active array have exhausted their allocated time 
and have been moved to the expired array. The O(1) 
algorithm analyses the average sleep time of the 
process, with more interactive tasks being given higher 
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priority to boost system responsiveness. The 
calculations required are complex and subject to 
potential errors, where O(1) may cause non-interactive 
behavior from an interactive process (Wong et al., 2008; 
Pabla, 2009). 

c) Multilevel Queue 
With Q(n) and O(1) algorithms failing to 

efficiently support the applications’ interactivity, the 
design of OS Scheduler evolved into a multilevel queue. 
In this queue, repeatedly sleeping (interactive) 
processes are pushed to the top and executed more 
frequently. Simultaneously, background processes are 
pushed down and run less frequently, although for 
extended periods. 

Perhaps the most widespread scheduler 
algorithm is Multilevel Feedback Queue (MLFQ), which 
is implemented in all modern versions of Windows NT 
(2000, XP, Vista, 7 and Server), Mac OS X, NetBSD and 
Solaris kernels (up to version 2.6, when it was replaced 
with O(n) scheduler). MLFQ was first described in 1962 
in a system known as the Compatible Time-Sharing 
System (Corbató et al., 1962). Fernando Corbató was 
awarded the Turing Award by the ACM in 1990 ‘for his 
pioneering work organizing the concepts and leading 
the development of the general-purpose, large-scale, 
time-sharing and resource-sharing computer systems, 
CTSS and Multics’. MLFQ organizes jobs into a set of 
queues Q0, Q1, …, Qi wherein a job is promoted to a 
higher queue if it does not finish within 2i time units. The 
algorithm always processes the job from the front of the 
lowest queue, meaning that short processes have 
preference. Although it has a very poor worst-case 
scenario, MLFQ turns out to be very efficient in practice 
(Becchetti et al., 2006). 

Staircase Scheduler (Corbet, 2004), Staircase 
Deadline Scheduler (Corbet, 2007), Brain F. Scheduler 
(Groves et al., 2009) and Multiple Queue Skiplist 
Scheduler (Kolivas, 2016) constitute a line of 
successive schedulers developed by Con Kolivas since 
2004 which are based on a design of Fair Share 
Scheduler from Kay and Lauder (1988). None of these 
schedulers have been merged into the source code of 
mainstream kernels. They are available only as 
experimental ‘-ck’ patches. Although the concept behind 
those schedulers is similar to MLFQ, the implementation 
details differ significantly. The central element is a 
single, ranked array of processes for each CPU 
(‘staircase’). Initially, each process (P1, P2, …) is 
inserted at the rank determined by its base priority; the 
scheduler then picks up the highest ranked process (P) 
and runs it. When P has used up its time slice, it is 
reinserted into the array but at a lower rank, where it will 
continue to run but at a lower priority. When P exhausts 
its next time-slice, its rank is lowered again. P then 
continues until it reaches the bottom of the staircase, at 
which point it is moved up to one rank below its previous 

maximum and is assigned two time-slices. When P 
exhausts these two time-slices, it is reinserted once 
again in the staircase at a lower rank. When P once 
again reaches the bottom of the staircase, it is assigned 
another time-slice and the cycle repeats. P is also 
pushed back up the staircase if it sleeps for a 
predefined period. The result of this is that that 
interactive tasks which tend to sleep more often should 
remain at the top of the staircase, while CPU-intensive 
processes should continuously expend more time-slices 
but at a lower frequency. Additionally, each rank level in 
the staircase has its quota, and once the quota is 
expired all processes on that rank are pushed down. 

Most importantly, Kolivas’ work introduced the 
concept of ‘fairness’. What this means is that each 
process gets a comparable share of CPU time to run, 
proportional to the priority. If the process spends much 
of its time waiting for I/O events, then its spent CPU time 
value is low, meaning that it is automatically prioritized 
for execution. When this happens, interactive tasks 
which spend most of their time waiting for user input get 
execution time when they need it, which is how the term 
‘sleeper fairness’ derives. This design also prevents a 
situation in which the process is ‘starved’, i.e., never 
executed.  

d) Tree-Based Queue 
While the work of Con Kolivas has never been 

merged into the mainstream Linux kernel, it has 
introduced the central concept of ‘fairness’, which is the 
crucial feature of the design of most current OS 
schedulers. At the time of writing, Linux kernel 
implements Completely Fair Scheduler (CFS), which 
was developed by Ingo Molnár and introduced in kernel 
version 2.6.23. A central element in this algorithm is a 
self-balancing red-black tree structure in which 
processes are indexed by spent processor time. CFS 
implements the Weighted Fair Queueing (WFQ) 
algorithm, in which the available CPU time-slices are 
split between processes in proportion to their priority 
weights (‘niceness’). WFQ is based on the idea of the 
‘ideal processor’, which means that each process 
should have an equal share of CPU time adjusted for 
their priority and total CPU load (Jones, 2009; Pabla, 
2009). 

Lozi et al. (2016) presents an in-depth 
explanation of the algorithm’s workings, noting potential 
issues regarding the CFS approach. The main criticism 
revolves around the four problematic areas: 
• Group Imbalance – The authors’ experiments have 

shown that not every core of their 64-core machine 
is equally loaded: some cores run only one process 
or sometimes no processes at all, while the rest of 
the cores were overloaded. It seems that the 
scheduler was not balancing the load because of 
the hierarchical design and complexity of the load 
tracking metric. To limit the complexity of the 
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scheduling algorithm, the CPU cores are grouped 
into scheduling groups, i.e., nodes. When an idle 
core attempts to steal work from another node, it 
compares only the average load of its node with that 
of its victim’s node. It will steal work only if the 
average load of its victim’s group is higher than its 
own. The result is inefficiency since idle cores will be 
concealed by their nodes' average load. 

• Scheduling Group Construction – This concern 
relates to the way scheduling groups are 
constructed which is not adapted to modern NUMA 
machines. Applications in Linux can be pinned to a 
subset of available cores. CFS might assign the 
same cores to multiple scheduling groups with 
those groups then being ranked by distance. This 
could be nodes one hop apart, two hops apart and 
so on. This feature was designed to increase the 
probability that processes would remain close to 
their original NUMA node. However, this could result 
in the application being pinned to particular cores 
which are separated by more than one hop, with 
work never being migrated outside the initial core. 
This might mean that an application uses only one 
core. 

• Overload-on-Wakeup – This problem occurs when a 
process goes to sleep on a particular node and is 
then awoken by a process on the same node. In 
such a scenario, only cores in this scheduling group 
will be considered to run this process. The aim of 
this optimization is to improve cache utilization by 
running a process close to the waker process, 
meaning that there is the possibility of them sharing 
the last-level memory cache. However, the might be 
the scheduling of a process on a busy core when 
there are idle cores in alternative nodes, resulting in 
the severe underutilization of the machine. 

• Missing Scheduling Domains – This is the result of a 
line of code omission while refactoring the Linux 
kernel source code. The number of scheduling 
domains is incorrectly updated when a particular 
code is disabled and then enabled, and a loop exits 
early. As a result, processes can be run only on the 
same scheduling group as their parent process. 

Lozi et al. (2016) have provided a set of patches 
for the above issues and have presented experimental 
results after applying fixes. They have also made 
available a set of tools on their site which could be used 
to detect those glitches early in the Linux kernel lifecycle. 
Moreover, it has been argued that the sheer number of 
optimizations and modifications implemented into CFS 
scheduler changed the initially simple scheduling policy 
into one which was very complex and bug-prone. As of 
12thFebruary 2019, there had been780 commits to CFS 
source code (‘fair.c’ file in github.com/torvalds/linux 
repository) since November 2011. As such, an 
alternative approach is perhaps required, such as a 

scheduler architecture based on pluggable 
components. This work demonstrates the immerse 
complexity of scheduling solutions catering to the 
complexities of modern hardware. 

IV. Cluster Schedulers 

There are many differences between distributed 
computing and traditional computing. For example, the 
physical size of the system means that there may be 
thousands of machines involved, with thousands of 
users being served and millions of API calls or other 
requests needing processing. While responsiveness 
and low overheads are often the focus of process 
schedulers, the focus of cluster schedulers is to focus 
upon high throughput, fault-tolerance, and scalability. 
Cluster schedulers usually work with queues of jobs 
spanning to hundreds of thousands, and indeed 
sometimes even millions of jobs. They also seem to be 
more customized and tailored to the needs of the 
organization which is using them.  

Cluster schedulers often provide complex 
administration tools with a wide spectrum of 
configurable parameters and flexible workload policies. 
All configurable parameters can generally be accessed 
via configuration files or the GUI interface. However, it 
appears that site administrators seldom stray from a 
default configuration (Etsion and Tsafrir, 2005). The 
most used scheduling algorithm is simply a First-Come-
First-Serve (FCFS) strategy with backfilling optimization. 

The most common issues which cluster 
schedulers must deal with are:  
• Unpredictable and varying load (Moreno et al., 

2013); 
• Mixed batch jobs and services (ibid.); 
• Complex policies and constraints (Adaptive 

Computing, 2002); 
• Fairness (ibid.); 
• A rapidly increasing workload and cluster size (Isard 

et al., 2007); 
• Legacy software (ibid.); 
• Heterogeneous nodes with a varying level of 

resources and availability (Thain et al., 2005); 
• The detection of underperforming nodes (Zhang et 

al., 2014); 
• Issues related to fault-tolerance (ibid.) and hardware 

malfunctions (Gabriel et al., 2004). 

Another challenge, although one which is rarely 
tackled by commercial schedulers, is minimizing total 
power consumption. Typically, idle machines consume 
around half of their peak power (McCullough et al., 
2011). Therefore, a Data Center can decrease the total 
power it consumes by concentrating tasks on fewer 
machines and powering down the remaining nodes 
(Pinheiro et al., 2001; Lang and Patel, 2010). 
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The proposed grouping of Cluster schedulers 
loosely follows the taxonomy presented in Schwarzkopf 
et al. (2013). 

a) Monolithic Scheduler 
The earliest Cluster schedulers had a 

centralized architecture in which a single scheduling 
policy allocated all incoming jobs. The tasks would be 
picked from the head of the queue and scheduled on 
system nodes in a serial manner by an allocation loop. 
Examples of centralized schedulers include Maui 
(Jackson et al., 2001) and its successor Moab (Adaptive 
Computing, 2015), Univa Grid Engine (Gentzsch, 2001), 
Load Leveler (Kannan et al., 2001), Load Sharing Facility 
(Etsion and Tsafrir, 2005), Portable Batch System (Bode 
et al., 2000) and its successor TORQUE (Klusáček et al., 
2013), Alibaba’s Fuxi (Zhang et al., 2014), Docker 
Swarm (Naik, 2016), Kubernetes (Vohra, 2017) and 
several others.  

Monolithic schedulers implement a wide array 
of policies and algorithms, such as FCFS, FCFS with 
backfilling and gang scheduling, Shortest Job First 
(SJF), and several others. The Kubernetes (Greek: 
‘κυβερνήτης’) scheduler implements a range of scoring 
functions such as node or pod affinity/anti-affinity, 
resources best-fit and worst-fit, required images locality, 
etc. which can be additionally weighted and combined 
into node’s score values (Lewis and Oppenheimer, 
2017). As an interesting note – one of the functions 
(Balanced Resource Allocation routine) implemented in 
Kubernetes evaluates the balance of utilized resources 
(CPU and memory) on a scored node. 

Monolithic schedulers often face a ‘head-of-
queue’ blocking problem, in which shorter jobs are held 
when a long job is waiting for a free node. To try and

 

counter this problem, the schedulers often implement 
‘backfilling’ optimization, where shorter jobs are allowed 
to execute while the long job is waiting. Perhaps the 
most widespread scheduler is Simple Linux Utility for 
Resource Management (SLURM)(Yoo et al., 2003).

 

SLURM
 

uses a best-fit algorithm which is based on 
either Hilbert curve scheduling or fat tree network 
topology; it can scale to thousands of CPU cores 
(Pascual, 2009). At the time of writing, the fastest 
supercomputer in the world is Sunway TaihuLight 
(Chinese:

 
‘神威·太湖之光’), which uses over 40k CPU 

processors, each of which contains 256 cores. Sunway 
TaihuLight’s workload in managed by SLURM (TOP500 
Project, 2017).

 

The Fuxi (Chinese: ‘伏羲’) scheduler presents a 
unique strategy in that it matches newly-available 
resources against the backlog of tasks rather than 
matching tasks to available resources on nodes. This 
technique allowed Fuxi to achieve very high utilization of 
Cluster resources, namely 95% utilization of memory 
and 91% utilization of CPU. Fuxi has been supporting 

Alibaba’s workload since 2009, and it scales to ca. 5k 
nodes (Zhang et al., 2014). 

While Cluster scheduler designs have generally 
moved towards solutions which are more parallel, as 
demonstrated in the next subsection, centralized 
architecture is still the most common approach in High-
Performance Computing. Approximately half the world’s 
supercomputers use SLURM as their workload 
manager, while Moab is currently deployed on about 
40% of the top 10, top 25 and top 100 on the TOP500 
list (TOP500 Project, 2017). 

b) Concurrent Scheduling 
Historically, monolithic schedulers were 

frequently built on the premise of supporting a single 
‘killer-application’ (Barroso et al., 2003). However, the 
workload of the data center has become more 
heterogeneous as systems and a modern Cluster 
system runs hundreds of unique programs with 
distinctive resource requirements and constraints. A 
single code base of centralized workload manager 
means that it is not easy to add a variety of specialized 
scheduling policies. Furthermore, as workload size is 
increased, the time to reach a scheduling decision is 
progressively limited. The result of this is a restriction in 
the selection of scheduling algorithms to less 
sophisticated ones, which affects the quality of 
allocations. To tackle those challenges, the Cluster 
schedulers developed designs which are more parallel. 

i. Statically Partitioned 
The solution to the numerous policies and the 

lack of parallelism in central schedulers was to split 
Cluster into specialized partitions and manage them 
separately. Quincy (Isard et al., 2009), a scheduler 
managing workload of Microsoft’s Dryad, follows this 
approach.  

The development of an application for Dryad is 
modeled as a Directed Acyclic Graph (DAG) model in 
which the developer defines an application dataflow 
model and supplies subroutines to be executed at 
specified graph vertices. The scheduling policies and 
tuning parameters are specified by adjusting weights 
and capacities on a graph data structure. The Quincy 
implements a Greedy strategy. In this approach, the 
scheduler assumes that the currently scheduled job is 
the only job running on a cluster and so always selects 
the best node available. Tasks are run by remote 
daemon services. From time to time these services 
update the job manager about the execution status of 
the vertex, which in the case of failure might be re-
executed. Should any task fail more than a configured 
number of times, the entire job is marked as failed     
(Isard et al., 2007). 

Microsoft has built several frameworks on top of 
Dryad, such as COSMOS (Helland and Harris, 2011) 
which provided SQL-like language optimized for parallel 
execution. COSMOS was designed to support data-
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driven search and advertising within the Windows Live 
services owned by Microsoft, such as Bing, MSN, and 
Hotmail. It analyzed user behaviors in multiple contexts, 
such as what people searched for, what links they 
clicked, what sites they visited, the browsing order, and 
the ads they clicked on. Although the Dryad project had 
several preview releases, it was eventually dropped 
when Microsoft shifted its focus to the development of 
Hadoop. 

The main criticism of the static partitioning is 
inflexibility, that is, the exclusive sets of machines in a 
Cluster are dedicated to certain types of workload. That 
might result in a part of scheduler being relatively idle, 
while other nodes are very active. This issue leads to the 
Cluster’s fragmentation and the suboptimal utilization of 
available nodes since no machine sharing is allowed. 

ii. Two-Level Hierarchy 
The solution to the inflexibility of static 

partitioning was to introduce two-level architecture in 
which a Cluster is partitioned dynamically by a central 
coordinator. The actual task allocations take place at the 
second level of architecture in one of the specialized 
schedulers. The first two-level scheduler was Mesos 
(Hindman et al., 2011). It was developed at the 
University of California (Berkeley) and is now hosted in 
the Apache Software Foundation. Mesos was a 
foundation base for other Cluster systems such as 
Twitter’s Aurora (Aurora, 2018) and Marathon 
(Mesosphere, 2018). 

Mesos introduces a two-level scheduling 
mechanism in which a centralized Mesos Masteracts as 
a resource manager. It dynamically allocates resources 
to different scheduler frameworks via Mesos Agents, 
e.g., Hadoop, Spark and Kafka. Mesos Agents are 
deployed on cluster nodes and use Linux’s cgroups or 
Docker container (depending upon the environment) for 
resource isolation. Resources are distributed to the 
frameworks in the form of ‘offers’ which contain currently 
unused resources. Scheduling frameworks have 
autonomy in deciding which resources to accept and 
which tasks to run on them. 

Mesos is most effective when tasks are 
relatively small, short-lived and have a high resource 
churn rate, i.e., they relinquish resources more 
frequently. In the current version (1.4.1), only one 
scheduling framework can examine a resource offer at 
any given time. This resource is effectively locked for the 
duration of a scheduling decision, meaning that 
concurrency control is pessimistic. Campbell (2017) 
presents several practical considerations for using 
Mesos in the production environment, in addition to 
advice on best practice.  

Two-level schedulers offered a working solution 
to the lack of parallelization found in central schedulers 
and the low efficiency of statically partitioned Clusters. 
Nevertheless, the mechanism used causes resources to 

remain locked at the same time a specialized scheduled 
examines the resources offer. This means the benefits 
from parallelization are limited due to pessimistic 
locking. Furthermore, the schedulers do not coordinate 
with each other and must rely on a centralized 
coordinator to make them offers. This further restricts 
their visibility of the resources in a Cluster. 

iii. Shared State 
To address the limited parallelism of the two-

level scheduling design, the alternative approach taken 
by some organizations was to redesign schedulers’ 
architecture into several schedulers, all working 
concurrently. The schedulers work on a shared Cluster’s 
state information and manage their resources’ 
reservations using an optimistic concurrency control 
method. A sample of such systems includes: Microsoft’s 
Apollo (Boutin et al., 2014); Omega, Google Borg’s 
spinoff (Schwarzkopf et al., 2013); HashiCorp’s Nomad 
(HashiCorp, 2018); and also Borg (Burns et al., 2016) 
itself. The latter system has been refactored from 
monolithic into parallel architecture after 
experimentations with Omega. 

By default, Nomad runs one scheduling worker 
per CPU core. Scheduling workers pick job submissions 
from the broker queue and then submit it to one of the 
three schedulers: a long-lived services scheduler, a 
short-lived batch jobs scheduler and a system 
scheduler, which is used to run internal maintenance 
routines. Additionally, Nomad can be extended to 
support custom schedulers. Schedulers process and 
generate an action plan, which constitutes a set of 
operations to create new allocations, or to evict and 
update existing ones (HashiCorp, 2018). 

Microsoft’s Apollo design seems to be primarily 
tuned for high tasks churn, and at peak times is capable 
of handling more than 100k of scheduling requests per 
second on a ca. 20k nodes cluster. Apollo uses a set of 
per-job schedulers called Job Managers (JM) wherein a 
single job entity contains a multiplicity of tasks which are 
then scheduled and executed on computing nodes. 
Tasks are generally short-lived batch jobs (Boutin et al., 
2014). Apollo has a centralized Resource Monitor (RM), 
while each node runs its Process Node (PN) with a 
queue of tasks. Each PN is responsible for local 
scheduling decisions and can independently reorder its 
job queue to allow smaller tasks to be executed 
immediately, while larger tasks wait for resources to 
become available. In addition, PN computes a wait-time 
matrix based on its queue which publicizes the future 
availability of the node’s resources. Scheduling 
decisions are made optimistically by JMs based on the 
shared cluster’s resource state, which is continuously 
retrieved and aggregated by RM. 

Furthermore, Apollo categorizes tasks as 
‘regular’ and ‘opportunistic’. Opportunistic tasks are 
used to fill resource gaps left by regular tasks. The 
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system also prevents overloading the cluster by limiting 
the total number of regular tasks that can be run on a 
cluster. Apollo implements locality optimization by taking 
into consideration the location of data for a given task. 
For example, the system will score nodes higher if the 
required files are already on the local drive as opposed 
to machines needing to download data (Boutin et al., 
2014). 

Historically, Omega was a spinoff from 
Google’s Borg scheduler. Despite the various 
optimizations acquired by Borg over the years, including 
internal parallelism and multi-threading, to address the 
issues of head-of-line blocking and scalability problems, 
Google decided to create an Omega scheduler from the 
ground up (Schwarzkopf et al., 2013). Omega 
introduced several innovations, such as storing the state 
of the cluster in a centralized Paxos-based store that 
was accessed by multiple components simultaneously. 
Optimistic locking concurrency control resolved the 
conflicts which emerged. This feature allowed Omega to 
run several schedulers at the same time and improve 
the throughput. Many of Omega’s innovations have 
since been folded into Borg (Burns et al., 2016). 

Omega’s authors highlight the disadvantages of 
the shared state and parallel reservation of resources, 
namely: (i) the state of a node could have changed 
considerably when the allocation decision was being 
made, and it is no longer possible for this node to 
accept a job; (ii) two or more allocations to the same 
node could have conflicted and both scheduling 
decisions are nullified; and (iii) this strategy introduces 
significant difficulties when gang-scheduling a batch of 
jobs as (i) or (ii) are happening (Schwarzkopf et al., 
2013). 

In this research, Google’s Borg received special 
attention, as one of the most advanced and published 
schedulers. Moreover, while other schedulers are 
designed to support either a high churn of short-term 
jobs, e.g., Microsoft’s Apollo (Boutin et al., 2014), 
Alibaba’s Fuxi (Zhang et al., 2014), or else a limited 
number of long-term services, such as Twitter’s Aurora 
(Aurora, 2018), Google’s engineers have created a 
system which supports a mixed workload. Borg has 
replaced two previous systems, Babysitter and the 
Global Work Queue, which were used to manage long-
running services and batch jobs separately (Burns et al., 
2016). Given the significance of Borg’s design for this 
research, it is discussed separately in section 2.4. 

iv. Decentralised Load Balancer 

The research (Sliwko, 2018) proposes a new 
type of Cluster’s workload orchestration model in which 
the actual scheduling logic is processed on nodes 
themselves. This is a significant step towards 
completely decentralized Cluster orchestration. The 
cluster state is retrieved from a subnetwork of BAs, 
although this system does not rely on the accuracy of 

this information and uses it exclusively to retrieve an 
initial set of candidate nodes where a task could 
potentially run. The actual task to machine matching is 
performed between the nodes themselves. As such, this 
design avoids the pitfalls of the concurrent resource 
locking, which includes conflicting scheduling decisions 
and the non-current state of nodes’ information. 
Moreover, the decentralization of the scheduling logic 
also lifts complexity restrictions on scheduling logic, 
meaning that a wider range of scheduling algorithms 
can be used, such as metaheuristic methods. 

c) Big Data Schedulers 
In taxonomy presented in this paper, Big Data 

schedulers are visualized as a separate branch from 
Cluster Schedulers. Although Big Data Schedulers seem 
to belong to one of the Cluster schedulers designs 
discussed previously, this separation signifies their over-
specialization, and that only a very restricted set of 
operations is supported (Isard et al., 2007; Zaharia et 
al., 2010). The scheduling mechanisms are often 
intertwined with the programming language features, 
with Big Data frameworks often providing their own API 
(Zaharia et al., 2009; White, 2012) and indeed 
sometimes even their own custom programming 
language, as seen with Skywriting in CIEL (Murray et al., 
2011). 

Generally speaking, Big Data frameworks 
provide very fine-grained control over how data is 
accessed and processed over the cluster, such as 
Spark RDD objects persist operations or partitioners 
(Zaharia et al., 2012). Such a deep integration of 
scheduling logic with applications is a distinctive feature 
of Big Data technology. At the time of writing, Big Data 
is also the most active distributed computing research 
area, with new technologies, frameworks and algorithms 
being released regularly. 

Big Data is the term which describes the 
storage and processing of any data sets so large and 
complex that they become unrealistic to process using 
traditional data processing applications based on 
relational database management systems. It depends 
on the individual organization as to how much data is 
described as Big Data. The following examples provide 
an idea of scale: 
• The NYSE (The New York Stock Exchange) 

produces about 15 TB of new trade data per day 
(Singh, 2017); 

• Facebook warehouse stores upwards of 300 PB of 
data, with an incoming daily rate of about 600 TB 
(Vagata and Wilfong, 2014); 

• The Large Hadron Collider (Geneva, Switzerland) 
produces about fifteen petabytes of data per year 
(White, 2012). 

As a result of a massive size of the stored and 
processed data, the central element of a Big Data 
framework is its distributed file system, such as Hadoop 
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Distributed File System (Gog, 2012), Google File System 
(Ghemawat et al., 2003) and its successor Colossus 
(Corbett et al., 2013). The nodes in a Big Data cluster 
fulfill the dual purposes of storing the distributed file 
system parts, usually in a few replicas for fault-tolerance 
means, and also providing a parallel execution 
environment for system tasks. The speed difference 
between locally-accessed and remotely stored input 
data is very substantial, meaning that Big Data 
schedulers are very focused on providing ‘data locality’, 
which means running a given task on a node where 
input data are stored or are in the closest proximity to it. 
The origins of the Big Data technology are in the 
‘MapReduce’ programming model, which implements 
the concept of Google’s inverted search index. 
Developed in 2003 (Dean and Ghemawat, 2010) and 
later patented in 2010 (U.S. Patent 7,650,331), the Big 
Data design has evolved significantly in the years since. 
It is presented in the subsections below. 

i. Mapreduce 
MapReduce is the most widespread principle 

which has been adopted for processing large sets of 
data in parallel. Originally, the name MapReduce only 
referred to Google’s proprietary technology, but the term 
is now broadly used to describe a wide range of 
software, such as Hadoop, CouchDB, Infinispan, and 
MongoDB. The most important features of MapReduce 
are its scalability and fine-grained fault-tolerance. The 
‘map’ and ‘reduce’ operations present in Lisp and other 
functional programming languages inspired the original 
thinking behind MapReduce (Dean and Ghemawat, 
2010): 
• ‘Map’ is an operation used in the first step of 

computation and is applied to all available data that 
performs the filtering and transforming of all key-
value pairs from the input data set. The ‘map’ 
operation is executed in parallel on multiple 
machines on a distributed file system. Each ‘map’ 
task can be restarted individually, and a failure in 
the middle of a multi-hour execution does not 
require restarting the whole job from scratch. 

• The ‘Reduce’ operation is executed after the ‘map’ 
operations complete. It performs finalizing 
operations, such as counting the number of rows 
matching specified conditions and yielding fields 
frequencies. The ‘Reduce’ operation is fed using a 
stream iterator, thereby allowing the framework to 
process the list of items one at the time, thus 
ensuring that the machine memory is not 
overloaded (Dean and Ghemawat, 2010; Gog, 
2012). 

Following the development of the MapReduce 
concept, Yahoo! engineers began the Open Source 
project Hadoop. In February 2008, Yahoo! announced 
that its production search index was being generated by 
a 10k-core Hadoop cluster (White, 2012). Subsequently, 

many other major Internet companies, including 
Facebook, LinkedIn, Amazon and Last.fm, joined the 
project and deployed it within their architectures. 
Hadoop is currently hosted in the Apache Software 
Foundation as an Open Source project. 

As in Google’s original MapReduce, Hadoop’s 
users submit jobs which consist of ‘map’ and ‘reduce’ 
operation implementations. Hadoop splits each job into 
multiple ‘map’ and ‘reduce’ tasks. These tasks 
subsequently process each block of input data, typically 
64MB or 128MB (Gog, 2012). Hadoop’s scheduler 
allocates a ‘map’ task to the closest possible node to 
the input data required – so-called ‘data locality’ 
optimization. In so doing, we can see the following 
allocation order: the same node, the same rack and 
finally a remote rack (Zaharia et al., 2009). To further 
improve performance, the Hadoop framework uses 
‘backup tasks’ in which a speculative copy of a task is 
run on a separate machine. The purpose of this is to 
finish the computation more quickly. If the first node is 
available but behaving poorly, it is known as a 
‘straggler’, with the result that the job is as slow as the 
misbehaving task. This behavior can occur for many 
reasons, such as faulty hardware or misconfiguration. 
Google estimated that using ‘backup tasks’ could 
improve job response times by 44% (Dean and 
Ghemawat, 2010). 

At the time of writing, Hadoop comes with a 
selection of schedulers, as outlined below: 
• ‘FIFO Scheduler’ is a default scheduling system in 

which the user jobs are scheduled using a queue 
with five priority levels. Typically, jobs use the whole 
cluster, so they must wait their turn. When another 
job scheduler chooses the next job to run, it selects 
jobs with the highest priority, resulting in low-priority 
jobs being endlessly delayed (Zaharia et al., 2009; 
White, 2012). 

• ‘Fair Scheduler’ is part of the cluster management 
technology Yet Another Resource Negotiator 
(YARN) (Vavilapalli et al., 2013), which replaced the 
original Hadoop engine in 2012. In Fair Scheduler, 
each user has their own pool of jobs, and the 
system focuses on giving each user a proportional 
share of cluster resources over time. The scheduler 
uses a version of ‘max-min fairness’ (Bonald et al., 
2006) with minimum capacity guarantees that are 
specified as the number of ‘map’ and ‘reduce’ task 
slots to allocate tasks across users’ job pools. 
When one pool is idle, and the minimum share of 
the tasks slots is not being used, other pools can 
use its available task slots. 

• ‘Capacity Scheduler’ is the second scheduler 
introduced within the YARN framework. Essentially, 
this scheduled is a number of separate MapReduce 
engines, which contains FCFS scheduling for each 
user or organization. Those queues can be 
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hierarchical, with a queue having children queues, 
and with each queue being allocated task slots 
capacity which can be divided into ‘map’ and 
‘reduce’ tasks. Task slots allocation between 
queues is similar to the sharing mechanism 
between pools found in Fair Scheduler (White, 
2012).  

The main criticism of MapReduce is the acyclic 
dataflow programming model. The stateless ‘map’ task 
must be followed by a stateless ‘reduce’ task, which is 
then executed by the MapReduce engine. This model 
makes it challenging to repeatedly access the same 
dataset, a common action during the execution of 
iterative algorithms (Zaharia et al., 2009).  

ii. Iterative Computations 
Following the success of Apache Hadoop, 

several alternative designs were created to address 
Hadoop’s suboptimal performance when running 
iterative MapReduce jobs. Examples of such systems 
include HaLoop (Bu et al., 2010) and Spark (Zaharia et 
al., 2010). 

HaLoop has been developed on top of Hadoop, 
with various caching mechanisms and optimizations 
added. This makes the framework loop-aware, for 
example by adding programming support for iterative 
application and storing the output data on the local disk. 
Additionally, HaLoop’s scheduler keeps a record of 
every data block processed by each task on physical 
machines. It considers inter-iteration locality when 
scheduling tasks which follow. This feature helps to 
minimize costly remote data retrieval, meaning that 
tasks can use data cached on a local machine (Bu et 
al., 2010; Gog, 2012). 

Similar to HaLoop, Spark’s authors noted a 
suboptimal performance of iterative MapReduce jobs in 
the Hadoop framework. In certain kinds of application, 
such as iterative Machine Learning algorithms and 
interactive data analysis tools, the same data are 
repeatedly accessed in multiple steps and then 
discarded; therefore, it does not make sense to send it 
back and forward to a central node. In such scenarios, 
Spark will outperform Hadoop (Zaharia et al., 2012). 

Spark is built on top of HDSF, but it does not 
follow the two-stage model of Hadoop. Instead, it 
introduces resilient distributed datasets (RDD) and 
parallel operations on these datasets (Gog, 2012):  
• ‘reduce’ - combines dataset elements using a 

provided function;  
• ‘collect’ - sends all the elements of the dataset to 

the user program; 
• ‘foreach’ - applies a provided function onto every 

element of a dataset. 

Spark provides two types of shared variables: 
• ‘accumulators’ - variables onto each worker can 

apply associative operations, meaning that they are 
efficiently supported in parallel; 

• ‘broadcast variables’ - sent once to every node, with 
nodes then keeping a read-only copy of those 
variables (Zecevic, 2016). 

The Spark job scheduler implementation is 
conceptually similar to that of Dryad’s Quincy. However, 
it considers which partitions of RDD are available in the 
memory. The framework then re-computes missing 
partitions, and tasks are sent to the closest possible 
node to the input data required (Zaharia et al., 2012).  

Another significant feature implemented in 
Spark is the concept of ‘delayed scheduling’. In 
situations when a head-of-line job that should be 
scheduled next cannot launch a local task, Spark’s 
scheduler delays the task execution and lets other jobs 
start their tasks instead. However, if the job has been 
skipped long enough, typically a period of up to ten 
seconds, it launches a non-local task. Since a typical 
Spark workload consists of short tasks, meaning that it 
has a high task slots churn, tasks have a higher chance 
of being executed locally. This feature helps to achieve 
‘data locality’ which is nearly optimal, and which has a 
very small effect on fairness; in addition, the cluster 
throughput can be almost doubled, as shown in an 
analysis performed on Facebook’s workload traces 
(Zaharia et al., 2010).  

iii. Distributed Stream Processing 
The core concept behind distributed stream 

processing engines is the processing of incoming data 
items in real time by modelling a data flow in which there 
are several stages which can be processed in parallel. 
Other techniques include splitting the data stream into 
multiple sub-streams and redirecting them into a set of 
networked nodes (Liu and Buyya, 2017). 

Inspired by Microsoft’s research into DAG 
models (Isard et al., 2009), Apache Storm (Storm) is a 
distributed stream processing engine used by Twitter 
following extensive development (Toshniwal et al., 
2014). Its initial release was 17 September 2011, and by 
September 2014 it had become open-source and an 
Apache Top-Level Project. 

The defined topology acts as a distributed data 
transformation pipeline. The programs in Storm are 
designed as a topology in the shape of DAG, consisting 
of ‘spouts’ and ‘bolts’: 
• ‘Spouts’ read the data from external sources and 

emit them into the topology as a stream of ‘tuples’. 
This structure is accompanied by a schema which 
defines the names of the tuples’ fields. Tuples can 
contain primitive values such as integers, longs, 
shorts, bytes, strings, doubles, floats, booleans, and 
byte arrays. Additionally, custom serializers can be 
defined to interpret this data. 

• The processing stages of a stream are defined in 
‘bolts’ which can perform data manipulation, 
filtering, aggregations, joins, and so on. Bolts can 
also constitute more complex transforming 
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structures that require multiple steps (thus, multiple 
bolts). The bolts can communicate with external 
applications such as databases and Kafka queues 
(Toshniwal et al., 2014). 

In comparison to MapReduce and iterative 
algorithms introduced in the subsections above, Storm 
topologies, once created, run indefinitely until killed. 
Given this, the inefficient scattering of application’s tasks 
among Cluster nodes has a lasting impact on 
performance. Storm’s default scheduler implements a 
Round Robin strategy. For resource allocation 
purposes, Storm assumes that every worker is 
homogenous. This design results in frequent resource 
over-allocation and inefficient use of inter-system 
communications (Kulkarni et al., 2018). To try and solve 
this issue, more complex solutions are proposed such 
as D-Storm (Liu and Buyya, 2017). D-Storm’s 
scheduling strategy is based on a metaheuristic 
algorithm Greedy, which also monitors the volume of the 
incoming workload and is resource-aware. 

Typical examples of Storm’s usage include:  

• Processing a stream of new data and updating 
databases in real time, for example in trading 
systems wherein data accuracy is crucial;  

• Continuously querying and forwarding the results to 
clients in real time, for example streaming trending 
topics on Twitter into browsers, and  

• A parallelization of a computing-intensive query on 
the fly, i.e., a distributed Remote Procedure Call 
(RPC) wherein a large number of sets are probed 
(Marz, 2011). 

Storm has gained widespread popularity and is 
used by companies such as Groupon, Yahoo!, Spotify, 
Verisign, Alibaba, Baidu, Yelp, and many more. A 
comprehensive list of users is available at the 
storm.apache.org website. 

At the time of writing, Storm is being replaced at 
Twitter by newer distributed stream processing engine – 

Heron (Kulkarni et al., 2018) which continues the DAG 
model approach, but focuses on various architectural 
improvements such as reduced overhead, testability, 
and easier access to debug data. 

V. Google’s Borg 

To support its operations, Google utilizes a high 
number of data centers around the world, which at the 
time of writing number sixteen. Borg admits, schedules, 
starts, restarts and monitors the full range of 
applications run by Google. Borg users are Google 
developers and system administrators, and users 
submit their workload in the form of jobs. A job may 
consist of one or more tasks that all run the same 
program (Burns et al., 2016).

 
 
 

a) Design Concepts 
The central module of the Borg architecture is 

BorgMaster, which maintains an in-memory copy of 
most of the state of the cell. This state is also saved in a 
distributed Paxos-based store (Lamport, 1998). While 
BorgMaster is logically a single process, it is replicated 
five times to improve fault-tolerance. The main design 
priority of Borg was resilience rather than performance. 
Google services are seen as very durable and reliable, 
the result of multi-tier architecture, where no component 
is a single point of failure exists. Current allocations of 
tasks are saved to Paxos-based storage, and the 
system can recover even if all five BorgMaster instances 
fail. Each cell in the Google Cluster in managed by a 
single BorgMaster controller. Each machine in a cell 
runs BorgLet, an agent process responsible for starting 
and stopping tasks and also restarting them should they 
fail. BorgLet manages local resources by adjusting local 
OS kernel settings and reporting the state of its node to 
the BorgMaster and other monitoring systems. 

The Borg system offers extensive options to 
control and shape its workload, including priority bands 
for tasks (i.e., monitoring, production, batch, and best 
effort), resources quota and admission control. Higher 
priority tasks can pre-empt locally-running tasks to 
obtain the resources which are required. The exception 
is made for production tasks which cannot be pre-
empted. Resource quotas are part of admission control 
and are expressed as a resource vector at a given 
priority, for some time (usually months). Jobs with 
insufficient quotas are rejected immediately upon 
submission. Production jobs are limited to actual 
resources available to BorgMaster in a given cell. The 
Borg system also exposes a web-based interface called 
Sigma, which displays the state of all users’ jobs, shows 
details of their execution history and, if the job has not 
been scheduled, also provides a ‘why pending?’ 
annotation where there is guidance about how to modify 
the job’s resource requests to better fit the cell (Verma et 
al., 2015). 

The dynamic nature of the Borg system means 
that tasks might be started, stopped and then 
rescheduled on an alternative node. Google engineers 
have created the concept of a static Borg Name Service 
(BNS) which is used to identify a task run within a cell 
and to retrieve its endpoint address. The BNS address is 
predominantly used by load balancers to transparently 
redirect RPC calls to the endpoint of a given task.  
Meanwhile, the Borg's resource reclamation 
mechanisms help to reclaim under-utilized resources 
from cell nodes for non-production tasks. Although in 
theory users may request high resource quotas for their 
tasks, in practice they are rarely fully utilized 
continuously. Instead, they have peak times of the day 
or are used in this way when coping with a denial-of-
service attack. BorgMaster has routines that estimate 
resource usage levels for a task and reclaim the rest for 
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low-priority jobs from the batch or the best effort bands 
(Verma et al., 2015). 

b) Jobs Schedulers 
Early versions of Borg had a simple, 

synchronous loop that accepted jobs requests and 
evaluated on which node to execute them. The current 
design of Borg deploys several schedulers working in 
parallel – the scheduler instances use a shared state of 
the available resources, but the resource offers are not 
locked during scheduling decisions (optimistic 
concurrency control). Where there is a conflicting 
situation where two or more schedulers allocate jobs to 
the same resources, all the jobs involved are returned to 
the jobs queue (Schwarzkopf et al., 2013). 

When allocating a task, Borg’s scheduler scores 
a set of available nodes and selects the most feasible 
machine for this task. Initially, Borg implemented a 
variation of the Enhanced Parallel Virtual Machine 
algorithm (E-PVM) (Amir et al., 2000) for calculating the 
task allocation score. Although this resulted in the fair 
distribution of tasks across nodes, it also resulted in 
increased fragmentation and later difficulties when fitting 
large jobs which required the most of the node’s 
resources or even the whole node itself. An opposite to 
the E-PVM approach is a best-fit strategy, which, in turn, 
packs tasks very tightly. The best-fit approach may 
result in the excessive pre-empting of other tasks 
running on the same node, especially when the user 
miscalculates the resources required, or when the 
application has frequent load spikes. The current model 
used by Borg’s scheduler is a hybrid approach that tries 
to reduce resource usage gaps (Verma et al., 2015). 

Borg also takes advantage of resources pre-
allocation using 'allocs' (short for allocation). Allocs can 
be used to pre-allocate resources for future tasks to 
retain resources between restarting a task or to gather 
class-equivalent or related tasks, such as web 
applications and associated log-saver tasks, onto the 
same machine. If an alloc is moved to another machine, 
its tasks are also rescheduled. 

One point to note is that, similar to 
MetaCentrum users (Klusáček and Rudová, 2010), 
Google’s users tend to overestimate the memory 
resources needed to complete their jobs, to prevent 
jobs being killed due to exceeding the allocated 
memory. In over 90% of cases, users overestimate how 
many resources are required, which in certain cases can 
waste up to 98% of the requested resource (Moreno et 
al., 2013; Ray et al., 2017). 

c) Optimisations 
Over the years, Borg design has acquired 

several optimizations, namely: 
• Score caching – checking the node’s feasibility and 

scoring it is a computation-expensive process. 
Therefore, scores for nodes are cached and small 
differences in the required resources are ignored; 

• Equivalence classes – submitted jobs often consist 
of several tasks which use the same binary and 
which have identical requirements. Borg’s scheduler 
considers such a group of tasks to be in the same 
equivalence class. It evaluates only one task per 
equivalence class against a set of nodes, and later 
reuses this score for each task from this group; 

• Relaxed randomization – instead of evaluating a 
task against all available nodes, Borg examines 
machines in random order until it finds enough 
feasible nodes. It then selects the highest scoring 
node in this set. 

While the Borg architecture remains heavily 
centralized, this approach does seem to be successful. 
Although this eliminates head-of-line job blocking 
problems and offers better scalability, it also generates 
additional overheads for solving resource collisions. 
Nevertheless, the benefits from better scalability often 
outweigh the incurred additional computation costs 
which arise when scalability targets are achieved 
(Schwarzkopf et al., 2013). 

VI. Summary and Conclusions 

This paper has presented a taxonomy of 
available schedulers, ranging from early 
implementations to modern versions. Aside from 
optimizing throughput, different class schedulers have 
evolved to solve different problems. For example, while 
OS schedulers maximize responsiveness, Cluster 
schedulers focus on scalability, provide support a wide 
range of unique (often legacy) applications, and 
maintain fairness. Big Data schedulers are specialized 
to solve issues accompanying operations on large 
datasets, and their scheduling mechanisms are often 
extensively intertwined with programming language 
features.  

Table 1 presents a comparison of the presented 
schedulers with their main features and deployed             
scheduling algorithms: 
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OS 
Schedulers

 

No
 

No
 

Simple 
(compile-time 
and runtime 
parameters)

 

CS, CQ, MLFQ, 
O(n), O(1), 

Staircase, WFQ
 

very low 
–
 
low

 

•
 

single machine
 •

 
NUMA awareness

 •
 

Responsiveness
 •

 
simple configuration

 

Cluster 
Schedulers

 

Yes1

 
Yes

 

Complex
 (configuratio

n files and 
GUI)

 

FCFS (backfilling 
and gang-

scheduling), 
SJF, Best-Fit, 

Scoring 
F i

 

low -
 high
 

•
 

distributed nodes
 •

 
fairness

 •
 

complex sharing 
policy

 •
 

power consumption
 

   
Big Data 

Schedulers
 

Yes2

 
Yes

 

Complex
 (configuratio

n files and 
GUI)

 

Best-Fit, FCFS 
(locality and 

gang-
scheduling), 
Greedy, Fair 

S h d l  
  

low -
 medium

 

•
 

specialized 
frameworks

 •
 

parallelism
 •

 
distributed data 
storage

 
   1. Cluster users are notorious in overestimating resources needed for the completion of their tasks, 

which results in cluster system job schedulers often over-allocating resources (Klusáček and 
Rudová, 2010; Moreno et al., 2013). 

2. MapReduce jobs tend to have consistent resource requirements, i.e., in majority of cases, every 
‘map’ task processes roughly the same amount of data (input data block size is constant), while 
‘reduce’ task requirements shall be directly correlated to the size of returned data. 

 
OS schedulers have evolved in such a way that 

their focus is on maximizing responsiveness while still 
providing good performance. Interactive processes 
which sleep more often should be allocated time-slices 
more frequently, while background processes should be 
allocated longer, but less frequent execution times. CPU 
switches between processes extremely rapidly which is 
why modern OS scheduling algorithms were designed 
with very low overhead (Wong et al., 2008; Pinel et al., 
2011). Most end-users for this class of schedulers are 
non-technical. As such, those schedulers usually have a 
minimum set of configuration parameters (Groves et al., 
2009). 

OS scheduling was previously deemed to be a 
solved problem (Torvalds, 2001), but the introduction 
and popularization of multi-core processors by Intel 
(Intel Core™2 Duo) and AMD (AMD Phenom™ II) in the 
early 2000s enabled applications to execute in parallel. 
This meant that scheduling algorithms needed to be re-
implemented tobe efficient once more. Modern OS 
schedulers also consider NUMA properties when 
deciding which CPU core the task will be allocated to. 
Furthermore, the most recent research explores the 
potential application of dynamic voltage and frequency 
scaling technology in scheduling to minimize power 
consumption by CPU cores (Sarood et al., 2012; Padoin 

et al., 2014). Given that it is hard to build a good 
universal solution which caters to the complexities of 
modern hardware, it is reasonable to develop the 
modular scheduler architecture suggested in Lozi et al. 
(2016). 

Cluster schedulers have a difficult mission in 
ensuring ‘fairness’. In this context, namely a very 
dynamic environment consisting of variety of 
applications, fairness means sharing cluster resources 
proportionally while simultaneously ensuring a stable 
throughput. Cluster systems tend to allow administrators 
to implement complex resource sharing policies with 
multiple input parameters (Adaptive Computing, 2002). 
Cluster systems implement extensive fault-tolerance 
strategies and sometimes also focus on minimizing 
power consumption (Lang and Patel, 2010). 
Surprisingly, it appears that the most popular scheduling 
approach is a simple FCFS strategy with variants of 
backfilling. However, due to the rapidly increasing 
cluster size, the current research focuses on 
parallelization, as seen with systems such as Google’s 
Borg and Microsoft’s Apollo. 

Big Data systems are still rapidly developing. 
Nodes in Big Data systems fulfil the dual purposes of 
storing distributed file system parts and providing a 
parallel execution environment for system tasks. Big 
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Data schedulers inherit their general design from the 
cluster system’s jobs schedulers. However, they are 
usually much more specialized for the framework and 
are also intertwined with the programming language 
features. Big Data schedulers are often focused on 
‘locality optimization’ or running a given task on a node 
where input data is stored or in the closest proximity      
to it.  

The design of modern scheduling strategies 
and algorithms is a challenging and evolving field of 
study. While early implementations often used simplistic 
approaches, such as a CS, modern solutions use 
complex scheduling schemas. Moreover, the literature 
frequently mentions the need for a modular scheduler 
architecture (Vavilapalli et al., 2013; Lozi et al., 2016) 
which could customize scheduling strategies to 
hardware configuration or applications. 
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