
© 2019. Leszek Sliwko. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 19 Issue 1 Version 1.0 Year 2019
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 | Print ISSN: 0975-4350 | DOI: 10.17406

A Taxonomy of Schedulers – Operating Systems, Clusters and
Big Data Frameworks

 By

Leszek Sliwko

Abstract- This review analyzes deployed and actively used workload schedulers’ solutions and
presents a taxonomy in which those systems are divided into several hierarchical groups based on
their architecture and design. While other taxonomies do exist, this review has focused on the key
design factors that affect the throughput and scalability of a given solution, as well as the incremental
improvements which bettered such an architecture. This review gives special attention to Google’s
Borg, which is one of the most advanced and published systems of this kind.

Keywords: schedulers, workload, cluster, cloud, big data, borg.

GJCST-B Classification : I.2.8

ATaxonomyofSchedulersOperatingSystemsClustersandBigDataFrameworks

 Strictly as per the compliance and regulations of:

Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

A Taxonomy of Schedulers – Operating
Systems, Clusters and Big Data Frameworks

Leszek Sliwko

Abstract- This review analyzes deployed and actively used
workload schedulers’ solutions and presents a taxonomy in
which those systems are divided into several hierarchical
groups based on their architecture and design. While other
taxonomies do exist, this review has focused on the key
design factors that affect the throughput and scalability of a
given solution, as well as the incremental improvements which
bettered such an architecture. This review gives special
attention to Google’s Borg, which is one of the most advanced
and published systems of this kind.
Keywords: schedulers, workload, cluster, cloud, big
data, borg.

I. Taxonomy of Schedulers

lthough managing workload in a Cloud system is
a modern challenge, scheduling strategies are a
well-researched field as well as being an area

where there has been considerable practical
implementation. This background review started by
analyzing deployed and actively used solutions and
presents a taxonomy in which schedulers are divided
into several hierarchical groups based on their
architecture and design. While other taxonomies do
exist (e.g., Krauter et al., 2002; Yu and Buyya, 2005; Pop
et al., 2006; Smanchat and Viriyapant, 2015; Rodriguez
and Buyya, 2017; Zakarya and Gillam, 2017;Tyagi and
Gupta, 2018), this review has focused on the most
important design factors that affect the throughput and
scalability of a given solution, as well as the incremental
improvements which bettered such an architecture.

Figure 1 visualizes how the schedulers’ groups
are split. The sections which follow discusses each of
these groups separately.

Figure 1: Schedulers taxonomy

II. Metacomputing

The concept of connecting computing
resources has been an active area of research for some
time. The term ‘metacomputing’ was established as
early as 1987 (Smarr and Catlett, 2003) and since then
the topic of scheduling has been the focus of many
research projects, such as (i) service localizing idle
workstations and utilizing their spare CPU cycles –
HTCondor (Litzkow et al., 1988); (ii) the Mentat – a

Author: Axis Applications Ltd, London, Uk. e-mail: Lsliwko@gmail.com

parallel run-time system developed at the University of
Virginia (Grimshaw, 1990); (iii) blueprints for a national
supercomputer (Grimshaw et al., 1994), and (iv) the
Globus metacomputing infrastructure toolkit (Foster and
Kesselman, 1997).

Before the work of Foster et al. (2001), there
was no clear definition to what ‘grid’ systems referred.
Following this publication, the principle that grid systems
should allow a set of participants to share several
connected computer machines and their resources
became established. A list of rules defines these shared
system policies. This includes which resources are

A

25

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

being shared, who is sharing these resources, the extent
to which they can use those resources, and what quality
of service they can expect.

As shown in the following sections, the
requirements of a load balancer in a decentralized
system varies significantly compared to scheduling jobs
on a single machine (Hamscher et al., 2000). One
significant difference is the network resources, in that
transferring data between machines is expensive
because the nodes tend to be geographically
distributed. In addition to the high-impact spreading of
tasks across networked machines, the load balancer in
Clusters generally provides a mechanism for fault-
tolerance and user session management. The sections
below also explain the workings of several selected
current and historical schedulers and distributed
frameworks. If we can understand these, we will know
more about how scheduling algorithms developed over
time, as well as the different ways they have been
conceptualized. This paper does not purport to be a
complete taxonomy of all available designs, but rather
presents an analysis of some of the most important
concepts and aspects of the history of schedulers.

III. OS Schedulers

The Operating System (OS) Scheduler, also
known as a ‘short-term scheduler’ or ‘CPU scheduler’,
works within very short time frames, i.e., time-slices.
During scheduling events, an algorithm must examine
planned tasks and assign them appropriate CPU times
(Bulpin, 2005; Arpaci-Dusseau and Arpaci-Dusseau,
2015). This setting requires schedulers to use highly
optimized algorithms with very small overheads.
Process schedulers face the challenge of how to
maintain the balance between throughput and
responsiveness (i.e., minimum latency). Prioritizing the
execution of processes with a higher sleep/processing
ratio is the way this is generally achieved (Pabla, 2009).

At present, the most advanced strategies also take into
consideration the latest CPU core where the process ran
the previous time, which is known as ‘Non-Uniform
Memory Access (NUMA) awareness’. The aim is to
reuse the same CPU cache memory wherever possible
(Blagodurov et al., 2010). The memory access latency
differences can be very substantial, for example ca. 3-4
cycles for L1 cache, ca. 6-10 cycles for L2 cache and
ca. 40-100 cycles for L3 cache (Drepper, 2007). NUMA
awareness also involves prioritizing the act of choosing
a real idle core which must occur before its logical SMT
sibling, also known as ‘Hyper-Threading (HT)
awareness’. Given this, NUMA awareness is a crucial
element in the design of modern OS schedulers. With a
relatively high data load to examine in a short period,
implementation needs to be strongly optimized to
ensure faster execution.

OS Schedulers tend to provide only a very
limited set of configurable parameters, wherein the
access to modify them is not straightforward. Some of
the parameters can change only during the kernel
compilation process and require rebooting, such as
compile-time options CONFIG_FAIR_USER_SCHED
and CONFIG_FAIR_CGROUP_SCHED, or on the fly
using the low-level Linux kernel’s tool ‘sysctl’.

a) Cooperative Multitasking
Early multitasking Operating Systems, such as

Windows 3.1x, Windows 95, 96 and Me, Mac OS before
X, adopted a concept known as Cooperative
Multitasking or Cooperative Scheduling (CS). In early
implementations of CS, applications voluntarily ceded
CPU time to one another. This was later supported
natively by the OS, although Windows 3.1x used a non-
pre-emptive scheduler which did not interrupt the
program, wherein the program needed to explicitly tell
the system that it no longer required the processor time.
Windows 95 introduced a rudimentary pre-emptive
scheduler, although this was for 32-bit applications only
(Hart, 1997). The main issue in CS is the hazard caused
by the poorly designed program. CS relies on processes
regularly giving up control to other processes in the
system, meaning that if one process consumes all the
available CPU power then all the systems will hang.

b) Single Queue
Before Linux kernel version 2.4, the simple

Circular Queue (CQ) algorithm was used to support the
execution of multiple processes on the available CPUs.
A Round Robin policy informed the next process run
(Shreedhar, 1995). In kernel version 2.2, processes were
further split into non-real/real-time categories, and
scheduling classes were introduced. This algorithm was
replaced by O(n) scheduler in Linux kernel versions 2.4-
2.6. In O(n), processor time is divided into epochs, and
within each epoch every task can execute up to its
allocated time slice before being pre-empted. At the
beginning of each epoch, the time slice is given to each
task; it is based on the task's static priority added to half
of any remaining time-slices from the previous epoch
(Bulpin, 2005). Thus, if a task does not use its entire
time slice in the current epoch, it can execute for longer
in the next one. During a scheduling event, an O(n)
scheduler requires iteration through all the process
which are currently planned (Jones, 2009), which can be
seen as a weakness, especially for multi-core
processors.

Between Linux kernel versions 2.6-2.6.23 came
the implementation of the O(1) scheduler. O(1) further
splits the processes list into active and expired arrays.
Here, the arrays are switched once all the processes
from the active array have exhausted their allocated time
and have been moved to the expired array. The O(1)
algorithm analyses the average sleep time of the
process, with more interactive tasks being given higher

26

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

priority to boost system responsiveness. The
calculations required are complex and subject to
potential errors, where O(1) may cause non-interactive
behavior from an interactive process (Wong et al., 2008;
Pabla, 2009).

c) Multilevel Queue
With Q(n) and O(1) algorithms failing to

efficiently support the applications’ interactivity, the
design of OS Scheduler evolved into a multilevel queue.
In this queue, repeatedly sleeping (interactive)
processes are pushed to the top and executed more
frequently. Simultaneously, background processes are
pushed down and run less frequently, although for
extended periods.

Perhaps the most widespread scheduler
algorithm is Multilevel Feedback Queue (MLFQ), which
is implemented in all modern versions of Windows NT
(2000, XP, Vista, 7 and Server), Mac OS X, NetBSD and
Solaris kernels (up to version 2.6, when it was replaced
with O(n) scheduler). MLFQ was first described in 1962
in a system known as the Compatible Time-Sharing
System (Corbató et al., 1962). Fernando Corbató was
awarded the Turing Award by the ACM in 1990 ‘for his
pioneering work organizing the concepts and leading
the development of the general-purpose, large-scale,
time-sharing and resource-sharing computer systems,
CTSS and Multics’. MLFQ organizes jobs into a set of
queues Q0, Q1, …, Qi wherein a job is promoted to a
higher queue if it does not finish within 2i time units. The
algorithm always processes the job from the front of the
lowest queue, meaning that short processes have
preference. Although it has a very poor worst-case
scenario, MLFQ turns out to be very efficient in practice
(Becchetti et al., 2006).

Staircase Scheduler (Corbet, 2004), Staircase
Deadline Scheduler (Corbet, 2007), Brain F. Scheduler
(Groves et al., 2009) and Multiple Queue Skiplist
Scheduler (Kolivas, 2016) constitute a line of
successive schedulers developed by Con Kolivas since
2004 which are based on a design of Fair Share
Scheduler from Kay and Lauder (1988). None of these
schedulers have been merged into the source code of
mainstream kernels. They are available only as
experimental ‘-ck’ patches. Although the concept behind
those schedulers is similar to MLFQ, the implementation
details differ significantly. The central element is a
single, ranked array of processes for each CPU
(‘staircase’). Initially, each process (P1, P2, …) is
inserted at the rank determined by its base priority; the
scheduler then picks up the highest ranked process (P)
and runs it. When P has used up its time slice, it is
reinserted into the array but at a lower rank, where it will
continue to run but at a lower priority. When P exhausts
its next time-slice, its rank is lowered again. P then
continues until it reaches the bottom of the staircase, at
which point it is moved up to one rank below its previous

maximum and is assigned two time-slices. When P
exhausts these two time-slices, it is reinserted once
again in the staircase at a lower rank. When P once
again reaches the bottom of the staircase, it is assigned
another time-slice and the cycle repeats. P is also
pushed back up the staircase if it sleeps for a
predefined period. The result of this is that that
interactive tasks which tend to sleep more often should
remain at the top of the staircase, while CPU-intensive
processes should continuously expend more time-slices
but at a lower frequency. Additionally, each rank level in
the staircase has its quota, and once the quota is
expired all processes on that rank are pushed down.

Most importantly, Kolivas’ work introduced the
concept of ‘fairness’. What this means is that each
process gets a comparable share of CPU time to run,
proportional to the priority. If the process spends much
of its time waiting for I/O events, then its spent CPU time
value is low, meaning that it is automatically prioritized
for execution. When this happens, interactive tasks
which spend most of their time waiting for user input get
execution time when they need it, which is how the term
‘sleeper fairness’ derives. This design also prevents a
situation in which the process is ‘starved’, i.e., never
executed.

d) Tree-Based Queue
While the work of Con Kolivas has never been

merged into the mainstream Linux kernel, it has
introduced the central concept of ‘fairness’, which is the
crucial feature of the design of most current OS
schedulers. At the time of writing, Linux kernel
implements Completely Fair Scheduler (CFS), which
was developed by Ingo Molnár and introduced in kernel
version 2.6.23. A central element in this algorithm is a
self-balancing red-black tree structure in which
processes are indexed by spent processor time. CFS
implements the Weighted Fair Queueing (WFQ)
algorithm, in which the available CPU time-slices are
split between processes in proportion to their priority
weights (‘niceness’). WFQ is based on the idea of the
‘ideal processor’, which means that each process
should have an equal share of CPU time adjusted for
their priority and total CPU load (Jones, 2009; Pabla,
2009).

Lozi et al. (2016) presents an in-depth
explanation of the algorithm’s workings, noting potential
issues regarding the CFS approach. The main criticism
revolves around the four problematic areas:
• Group Imbalance – The authors’ experiments have

shown that not every core of their 64-core machine
is equally loaded: some cores run only one process
or sometimes no processes at all, while the rest of
the cores were overloaded. It seems that the
scheduler was not balancing the load because of
the hierarchical design and complexity of the load
tracking metric. To limit the complexity of the

27

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

scheduling algorithm, the CPU cores are grouped
into scheduling groups, i.e., nodes. When an idle
core attempts to steal work from another node, it
compares only the average load of its node with that
of its victim’s node. It will steal work only if the
average load of its victim’s group is higher than its
own. The result is inefficiency since idle cores will be
concealed by their nodes' average load.

• Scheduling Group Construction – This concern
relates to the way scheduling groups are
constructed which is not adapted to modern NUMA
machines. Applications in Linux can be pinned to a
subset of available cores. CFS might assign the
same cores to multiple scheduling groups with
those groups then being ranked by distance. This
could be nodes one hop apart, two hops apart and
so on. This feature was designed to increase the
probability that processes would remain close to
their original NUMA node. However, this could result
in the application being pinned to particular cores
which are separated by more than one hop, with
work never being migrated outside the initial core.
This might mean that an application uses only one
core.

• Overload-on-Wakeup – This problem occurs when a
process goes to sleep on a particular node and is
then awoken by a process on the same node. In
such a scenario, only cores in this scheduling group
will be considered to run this process. The aim of
this optimization is to improve cache utilization by
running a process close to the waker process,
meaning that there is the possibility of them sharing
the last-level memory cache. However, the might be
the scheduling of a process on a busy core when
there are idle cores in alternative nodes, resulting in
the severe underutilization of the machine.

• Missing Scheduling Domains – This is the result of a
line of code omission while refactoring the Linux
kernel source code. The number of scheduling
domains is incorrectly updated when a particular
code is disabled and then enabled, and a loop exits
early. As a result, processes can be run only on the
same scheduling group as their parent process.

Lozi et al. (2016) have provided a set of patches
for the above issues and have presented experimental
results after applying fixes. They have also made
available a set of tools on their site which could be used
to detect those glitches early in the Linux kernel lifecycle.
Moreover, it has been argued that the sheer number of
optimizations and modifications implemented into CFS
scheduler changed the initially simple scheduling policy
into one which was very complex and bug-prone. As of
12thFebruary 2019, there had been780 commits to CFS
source code (‘fair.c’ file in github.com/torvalds/linux
repository) since November 2011. As such, an
alternative approach is perhaps required, such as a

scheduler architecture based on pluggable
components. This work demonstrates the immerse
complexity of scheduling solutions catering to the
complexities of modern hardware.

IV. Cluster Schedulers

There are many differences between distributed
computing and traditional computing. For example, the
physical size of the system means that there may be
thousands of machines involved, with thousands of
users being served and millions of API calls or other
requests needing processing. While responsiveness
and low overheads are often the focus of process
schedulers, the focus of cluster schedulers is to focus
upon high throughput, fault-tolerance, and scalability.
Cluster schedulers usually work with queues of jobs
spanning to hundreds of thousands, and indeed
sometimes even millions of jobs. They also seem to be
more customized and tailored to the needs of the
organization which is using them.

Cluster schedulers often provide complex
administration tools with a wide spectrum of
configurable parameters and flexible workload policies.
All configurable parameters can generally be accessed
via configuration files or the GUI interface. However, it
appears that site administrators seldom stray from a
default configuration (Etsion and Tsafrir, 2005). The
most used scheduling algorithm is simply a First-Come-
First-Serve (FCFS) strategy with backfilling optimization.

The most common issues which cluster
schedulers must deal with are:
• Unpredictable and varying load (Moreno et al.,

2013);
• Mixed batch jobs and services (ibid.);
• Complex policies and constraints (Adaptive

Computing, 2002);
• Fairness (ibid.);
• A rapidly increasing workload and cluster size (Isard

et al., 2007);
• Legacy software (ibid.);
• Heterogeneous nodes with a varying level of

resources and availability (Thain et al., 2005);
• The detection of underperforming nodes (Zhang et

al., 2014);
• Issues related to fault-tolerance (ibid.) and hardware

malfunctions (Gabriel et al., 2004).

Another challenge, although one which is rarely
tackled by commercial schedulers, is minimizing total
power consumption. Typically, idle machines consume
around half of their peak power (McCullough et al.,
2011). Therefore, a Data Center can decrease the total
power it consumes by concentrating tasks on fewer
machines and powering down the remaining nodes
(Pinheiro et al., 2001; Lang and Patel, 2010).

28

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

The proposed grouping of Cluster schedulers
loosely follows the taxonomy presented in Schwarzkopf
et al. (2013).

a) Monolithic Scheduler
The earliest Cluster schedulers had a

centralized architecture in which a single scheduling
policy allocated all incoming jobs. The tasks would be
picked from the head of the queue and scheduled on
system nodes in a serial manner by an allocation loop.
Examples of centralized schedulers include Maui
(Jackson et al., 2001) and its successor Moab (Adaptive
Computing, 2015), Univa Grid Engine (Gentzsch, 2001),
Load Leveler (Kannan et al., 2001), Load Sharing Facility
(Etsion and Tsafrir, 2005), Portable Batch System (Bode
et al., 2000) and its successor TORQUE (Klusáček et al.,
2013), Alibaba’s Fuxi (Zhang et al., 2014), Docker
Swarm (Naik, 2016), Kubernetes (Vohra, 2017) and
several others.

Monolithic schedulers implement a wide array
of policies and algorithms, such as FCFS, FCFS with
backfilling and gang scheduling, Shortest Job First
(SJF), and several others. The Kubernetes (Greek:
‘κυβερνήτης’) scheduler implements a range of scoring
functions such as node or pod affinity/anti-affinity,
resources best-fit and worst-fit, required images locality,
etc. which can be additionally weighted and combined
into node’s score values (Lewis and Oppenheimer,
2017). As an interesting note – one of the functions
(Balanced Resource Allocation routine) implemented in
Kubernetes evaluates the balance of utilized resources
(CPU and memory) on a scored node.

Monolithic schedulers often face a ‘head-of-
queue’ blocking problem, in which shorter jobs are held
when a long job is waiting for a free node. To try and

counter this problem, the schedulers often implement
‘backfilling’ optimization, where shorter jobs are allowed
to execute while the long job is waiting. Perhaps the
most widespread scheduler is Simple Linux Utility for
Resource Management (SLURM)(Yoo et al., 2003).

SLURM

uses a best-fit algorithm which is based on
either Hilbert curve scheduling or fat tree network
topology; it can scale to thousands of CPU cores
(Pascual, 2009). At the time of writing, the fastest
supercomputer in the world is Sunway TaihuLight
(Chinese:

‘神威·太湖之光’), which uses over 40k CPU

processors, each of which contains 256 cores. Sunway
TaihuLight’s workload in managed by SLURM (TOP500
Project, 2017).

The Fuxi (Chinese: ‘伏羲’) scheduler presents a
unique strategy in that it matches newly-available
resources against the backlog of tasks rather than
matching tasks to available resources on nodes. This
technique allowed Fuxi to achieve very high utilization of
Cluster resources, namely 95% utilization of memory
and 91% utilization of CPU. Fuxi has been supporting

Alibaba’s workload since 2009, and it scales to ca. 5k
nodes (Zhang et al., 2014).

While Cluster scheduler designs have generally
moved towards solutions which are more parallel, as
demonstrated in the next subsection, centralized
architecture is still the most common approach in High-
Performance Computing. Approximately half the world’s
supercomputers use SLURM as their workload
manager, while Moab is currently deployed on about
40% of the top 10, top 25 and top 100 on the TOP500
list (TOP500 Project, 2017).

b) Concurrent Scheduling
Historically, monolithic schedulers were

frequently built on the premise of supporting a single
‘killer-application’ (Barroso et al., 2003). However, the
workload of the data center has become more
heterogeneous as systems and a modern Cluster
system runs hundreds of unique programs with
distinctive resource requirements and constraints. A
single code base of centralized workload manager
means that it is not easy to add a variety of specialized
scheduling policies. Furthermore, as workload size is
increased, the time to reach a scheduling decision is
progressively limited. The result of this is a restriction in
the selection of scheduling algorithms to less
sophisticated ones, which affects the quality of
allocations. To tackle those challenges, the Cluster
schedulers developed designs which are more parallel.

i. Statically Partitioned
The solution to the numerous policies and the

lack of parallelism in central schedulers was to split
Cluster into specialized partitions and manage them
separately. Quincy (Isard et al., 2009), a scheduler
managing workload of Microsoft’s Dryad, follows this
approach.

The development of an application for Dryad is
modeled as a Directed Acyclic Graph (DAG) model in
which the developer defines an application dataflow
model and supplies subroutines to be executed at
specified graph vertices. The scheduling policies and
tuning parameters are specified by adjusting weights
and capacities on a graph data structure. The Quincy
implements a Greedy strategy. In this approach, the
scheduler assumes that the currently scheduled job is
the only job running on a cluster and so always selects
the best node available. Tasks are run by remote
daemon services. From time to time these services
update the job manager about the execution status of
the vertex, which in the case of failure might be re-
executed. Should any task fail more than a configured
number of times, the entire job is marked as failed
(Isard et al., 2007).

Microsoft has built several frameworks on top of
Dryad, such as COSMOS (Helland and Harris, 2011)
which provided SQL-like language optimized for parallel
execution. COSMOS was designed to support data-

29

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

driven search and advertising within the Windows Live
services owned by Microsoft, such as Bing, MSN, and
Hotmail. It analyzed user behaviors in multiple contexts,
such as what people searched for, what links they
clicked, what sites they visited, the browsing order, and
the ads they clicked on. Although the Dryad project had
several preview releases, it was eventually dropped
when Microsoft shifted its focus to the development of
Hadoop.

The main criticism of the static partitioning is
inflexibility, that is, the exclusive sets of machines in a
Cluster are dedicated to certain types of workload. That
might result in a part of scheduler being relatively idle,
while other nodes are very active. This issue leads to the
Cluster’s fragmentation and the suboptimal utilization of
available nodes since no machine sharing is allowed.

ii. Two-Level Hierarchy
The solution to the inflexibility of static

partitioning was to introduce two-level architecture in
which a Cluster is partitioned dynamically by a central
coordinator. The actual task allocations take place at the
second level of architecture in one of the specialized
schedulers. The first two-level scheduler was Mesos
(Hindman et al., 2011). It was developed at the
University of California (Berkeley) and is now hosted in
the Apache Software Foundation. Mesos was a
foundation base for other Cluster systems such as
Twitter’s Aurora (Aurora, 2018) and Marathon
(Mesosphere, 2018).

Mesos introduces a two-level scheduling
mechanism in which a centralized Mesos Masteracts as
a resource manager. It dynamically allocates resources
to different scheduler frameworks via Mesos Agents,
e.g., Hadoop, Spark and Kafka. Mesos Agents are
deployed on cluster nodes and use Linux’s cgroups or
Docker container (depending upon the environment) for
resource isolation. Resources are distributed to the
frameworks in the form of ‘offers’ which contain currently
unused resources. Scheduling frameworks have
autonomy in deciding which resources to accept and
which tasks to run on them.

Mesos is most effective when tasks are
relatively small, short-lived and have a high resource
churn rate, i.e., they relinquish resources more
frequently. In the current version (1.4.1), only one
scheduling framework can examine a resource offer at
any given time. This resource is effectively locked for the
duration of a scheduling decision, meaning that
concurrency control is pessimistic. Campbell (2017)
presents several practical considerations for using
Mesos in the production environment, in addition to
advice on best practice.

Two-level schedulers offered a working solution
to the lack of parallelization found in central schedulers
and the low efficiency of statically partitioned Clusters.
Nevertheless, the mechanism used causes resources to

remain locked at the same time a specialized scheduled
examines the resources offer. This means the benefits
from parallelization are limited due to pessimistic
locking. Furthermore, the schedulers do not coordinate
with each other and must rely on a centralized
coordinator to make them offers. This further restricts
their visibility of the resources in a Cluster.

iii. Shared State
To address the limited parallelism of the two-

level scheduling design, the alternative approach taken
by some organizations was to redesign schedulers’
architecture into several schedulers, all working
concurrently. The schedulers work on a shared Cluster’s
state information and manage their resources’
reservations using an optimistic concurrency control
method. A sample of such systems includes: Microsoft’s
Apollo (Boutin et al., 2014); Omega, Google Borg’s
spinoff (Schwarzkopf et al., 2013); HashiCorp’s Nomad
(HashiCorp, 2018); and also Borg (Burns et al., 2016)
itself. The latter system has been refactored from
monolithic into parallel architecture after
experimentations with Omega.

By default, Nomad runs one scheduling worker
per CPU core. Scheduling workers pick job submissions
from the broker queue and then submit it to one of the
three schedulers: a long-lived services scheduler, a
short-lived batch jobs scheduler and a system
scheduler, which is used to run internal maintenance
routines. Additionally, Nomad can be extended to
support custom schedulers. Schedulers process and
generate an action plan, which constitutes a set of
operations to create new allocations, or to evict and
update existing ones (HashiCorp, 2018).

Microsoft’s Apollo design seems to be primarily
tuned for high tasks churn, and at peak times is capable
of handling more than 100k of scheduling requests per
second on a ca. 20k nodes cluster. Apollo uses a set of
per-job schedulers called Job Managers (JM) wherein a
single job entity contains a multiplicity of tasks which are
then scheduled and executed on computing nodes.
Tasks are generally short-lived batch jobs (Boutin et al.,
2014). Apollo has a centralized Resource Monitor (RM),
while each node runs its Process Node (PN) with a
queue of tasks. Each PN is responsible for local
scheduling decisions and can independently reorder its
job queue to allow smaller tasks to be executed
immediately, while larger tasks wait for resources to
become available. In addition, PN computes a wait-time
matrix based on its queue which publicizes the future
availability of the node’s resources. Scheduling
decisions are made optimistically by JMs based on the
shared cluster’s resource state, which is continuously
retrieved and aggregated by RM.

Furthermore, Apollo categorizes tasks as
‘regular’ and ‘opportunistic’. Opportunistic tasks are
used to fill resource gaps left by regular tasks. The

30

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

system also prevents overloading the cluster by limiting
the total number of regular tasks that can be run on a
cluster. Apollo implements locality optimization by taking
into consideration the location of data for a given task.
For example, the system will score nodes higher if the
required files are already on the local drive as opposed
to machines needing to download data (Boutin et al.,
2014).

Historically, Omega was a spinoff from
Google’s Borg scheduler. Despite the various
optimizations acquired by Borg over the years, including
internal parallelism and multi-threading, to address the
issues of head-of-line blocking and scalability problems,
Google decided to create an Omega scheduler from the
ground up (Schwarzkopf et al., 2013). Omega
introduced several innovations, such as storing the state
of the cluster in a centralized Paxos-based store that
was accessed by multiple components simultaneously.
Optimistic locking concurrency control resolved the
conflicts which emerged. This feature allowed Omega to
run several schedulers at the same time and improve
the throughput. Many of Omega’s innovations have
since been folded into Borg (Burns et al., 2016).

Omega’s authors highlight the disadvantages of
the shared state and parallel reservation of resources,
namely: (i) the state of a node could have changed
considerably when the allocation decision was being
made, and it is no longer possible for this node to
accept a job; (ii) two or more allocations to the same
node could have conflicted and both scheduling
decisions are nullified; and (iii) this strategy introduces
significant difficulties when gang-scheduling a batch of
jobs as (i) or (ii) are happening (Schwarzkopf et al.,
2013).

In this research, Google’s Borg received special
attention, as one of the most advanced and published
schedulers. Moreover, while other schedulers are
designed to support either a high churn of short-term
jobs, e.g., Microsoft’s Apollo (Boutin et al., 2014),
Alibaba’s Fuxi (Zhang et al., 2014), or else a limited
number of long-term services, such as Twitter’s Aurora
(Aurora, 2018), Google’s engineers have created a
system which supports a mixed workload. Borg has
replaced two previous systems, Babysitter and the
Global Work Queue, which were used to manage long-
running services and batch jobs separately (Burns et al.,
2016). Given the significance of Borg’s design for this
research, it is discussed separately in section 2.4.

iv. Decentralised Load Balancer

The research (Sliwko, 2018) proposes a new
type of Cluster’s workload orchestration model in which
the actual scheduling logic is processed on nodes
themselves. This is a significant step towards
completely decentralized Cluster orchestration. The
cluster state is retrieved from a subnetwork of BAs,
although this system does not rely on the accuracy of

this information and uses it exclusively to retrieve an
initial set of candidate nodes where a task could
potentially run. The actual task to machine matching is
performed between the nodes themselves. As such, this
design avoids the pitfalls of the concurrent resource
locking, which includes conflicting scheduling decisions
and the non-current state of nodes’ information.
Moreover, the decentralization of the scheduling logic
also lifts complexity restrictions on scheduling logic,
meaning that a wider range of scheduling algorithms
can be used, such as metaheuristic methods.

c) Big Data Schedulers
In taxonomy presented in this paper, Big Data

schedulers are visualized as a separate branch from
Cluster Schedulers. Although Big Data Schedulers seem
to belong to one of the Cluster schedulers designs
discussed previously, this separation signifies their over-
specialization, and that only a very restricted set of
operations is supported (Isard et al., 2007; Zaharia et
al., 2010). The scheduling mechanisms are often
intertwined with the programming language features,
with Big Data frameworks often providing their own API
(Zaharia et al., 2009; White, 2012) and indeed
sometimes even their own custom programming
language, as seen with Skywriting in CIEL (Murray et al.,
2011).

Generally speaking, Big Data frameworks
provide very fine-grained control over how data is
accessed and processed over the cluster, such as
Spark RDD objects persist operations or partitioners
(Zaharia et al., 2012). Such a deep integration of
scheduling logic with applications is a distinctive feature
of Big Data technology. At the time of writing, Big Data
is also the most active distributed computing research
area, with new technologies, frameworks and algorithms
being released regularly.

Big Data is the term which describes the
storage and processing of any data sets so large and
complex that they become unrealistic to process using
traditional data processing applications based on
relational database management systems. It depends
on the individual organization as to how much data is
described as Big Data. The following examples provide
an idea of scale:
• The NYSE (The New York Stock Exchange)

produces about 15 TB of new trade data per day
(Singh, 2017);

• Facebook warehouse stores upwards of 300 PB of
data, with an incoming daily rate of about 600 TB
(Vagata and Wilfong, 2014);

• The Large Hadron Collider (Geneva, Switzerland)
produces about fifteen petabytes of data per year
(White, 2012).

As a result of a massive size of the stored and
processed data, the central element of a Big Data
framework is its distributed file system, such as Hadoop

31

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

Distributed File System (Gog, 2012), Google File System
(Ghemawat et al., 2003) and its successor Colossus
(Corbett et al., 2013). The nodes in a Big Data cluster
fulfill the dual purposes of storing the distributed file
system parts, usually in a few replicas for fault-tolerance
means, and also providing a parallel execution
environment for system tasks. The speed difference
between locally-accessed and remotely stored input
data is very substantial, meaning that Big Data
schedulers are very focused on providing ‘data locality’,
which means running a given task on a node where
input data are stored or are in the closest proximity to it.
The origins of the Big Data technology are in the
‘MapReduce’ programming model, which implements
the concept of Google’s inverted search index.
Developed in 2003 (Dean and Ghemawat, 2010) and
later patented in 2010 (U.S. Patent 7,650,331), the Big
Data design has evolved significantly in the years since.
It is presented in the subsections below.

i. Mapreduce
MapReduce is the most widespread principle

which has been adopted for processing large sets of
data in parallel. Originally, the name MapReduce only
referred to Google’s proprietary technology, but the term
is now broadly used to describe a wide range of
software, such as Hadoop, CouchDB, Infinispan, and
MongoDB. The most important features of MapReduce
are its scalability and fine-grained fault-tolerance. The
‘map’ and ‘reduce’ operations present in Lisp and other
functional programming languages inspired the original
thinking behind MapReduce (Dean and Ghemawat,
2010):
• ‘Map’ is an operation used in the first step of

computation and is applied to all available data that
performs the filtering and transforming of all key-
value pairs from the input data set. The ‘map’
operation is executed in parallel on multiple
machines on a distributed file system. Each ‘map’
task can be restarted individually, and a failure in
the middle of a multi-hour execution does not
require restarting the whole job from scratch.

• The ‘Reduce’ operation is executed after the ‘map’
operations complete. It performs finalizing
operations, such as counting the number of rows
matching specified conditions and yielding fields
frequencies. The ‘Reduce’ operation is fed using a
stream iterator, thereby allowing the framework to
process the list of items one at the time, thus
ensuring that the machine memory is not
overloaded (Dean and Ghemawat, 2010; Gog,
2012).

Following the development of the MapReduce
concept, Yahoo! engineers began the Open Source
project Hadoop. In February 2008, Yahoo! announced
that its production search index was being generated by
a 10k-core Hadoop cluster (White, 2012). Subsequently,

many other major Internet companies, including
Facebook, LinkedIn, Amazon and Last.fm, joined the
project and deployed it within their architectures.
Hadoop is currently hosted in the Apache Software
Foundation as an Open Source project.

As in Google’s original MapReduce, Hadoop’s
users submit jobs which consist of ‘map’ and ‘reduce’
operation implementations. Hadoop splits each job into
multiple ‘map’ and ‘reduce’ tasks. These tasks
subsequently process each block of input data, typically
64MB or 128MB (Gog, 2012). Hadoop’s scheduler
allocates a ‘map’ task to the closest possible node to
the input data required – so-called ‘data locality’
optimization. In so doing, we can see the following
allocation order: the same node, the same rack and
finally a remote rack (Zaharia et al., 2009). To further
improve performance, the Hadoop framework uses
‘backup tasks’ in which a speculative copy of a task is
run on a separate machine. The purpose of this is to
finish the computation more quickly. If the first node is
available but behaving poorly, it is known as a
‘straggler’, with the result that the job is as slow as the
misbehaving task. This behavior can occur for many
reasons, such as faulty hardware or misconfiguration.
Google estimated that using ‘backup tasks’ could
improve job response times by 44% (Dean and
Ghemawat, 2010).

At the time of writing, Hadoop comes with a
selection of schedulers, as outlined below:
• ‘FIFO Scheduler’ is a default scheduling system in

which the user jobs are scheduled using a queue
with five priority levels. Typically, jobs use the whole
cluster, so they must wait their turn. When another
job scheduler chooses the next job to run, it selects
jobs with the highest priority, resulting in low-priority
jobs being endlessly delayed (Zaharia et al., 2009;
White, 2012).

• ‘Fair Scheduler’ is part of the cluster management
technology Yet Another Resource Negotiator
(YARN) (Vavilapalli et al., 2013), which replaced the
original Hadoop engine in 2012. In Fair Scheduler,
each user has their own pool of jobs, and the
system focuses on giving each user a proportional
share of cluster resources over time. The scheduler
uses a version of ‘max-min fairness’ (Bonald et al.,
2006) with minimum capacity guarantees that are
specified as the number of ‘map’ and ‘reduce’ task
slots to allocate tasks across users’ job pools.
When one pool is idle, and the minimum share of
the tasks slots is not being used, other pools can
use its available task slots.

• ‘Capacity Scheduler’ is the second scheduler
introduced within the YARN framework. Essentially,
this scheduled is a number of separate MapReduce
engines, which contains FCFS scheduling for each
user or organization. Those queues can be

32

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

hierarchical, with a queue having children queues,
and with each queue being allocated task slots
capacity which can be divided into ‘map’ and
‘reduce’ tasks. Task slots allocation between
queues is similar to the sharing mechanism
between pools found in Fair Scheduler (White,
2012).

The main criticism of MapReduce is the acyclic
dataflow programming model. The stateless ‘map’ task
must be followed by a stateless ‘reduce’ task, which is
then executed by the MapReduce engine. This model
makes it challenging to repeatedly access the same
dataset, a common action during the execution of
iterative algorithms (Zaharia et al., 2009).

ii. Iterative Computations
Following the success of Apache Hadoop,

several alternative designs were created to address
Hadoop’s suboptimal performance when running
iterative MapReduce jobs. Examples of such systems
include HaLoop (Bu et al., 2010) and Spark (Zaharia et
al., 2010).

HaLoop has been developed on top of Hadoop,
with various caching mechanisms and optimizations
added. This makes the framework loop-aware, for
example by adding programming support for iterative
application and storing the output data on the local disk.
Additionally, HaLoop’s scheduler keeps a record of
every data block processed by each task on physical
machines. It considers inter-iteration locality when
scheduling tasks which follow. This feature helps to
minimize costly remote data retrieval, meaning that
tasks can use data cached on a local machine (Bu et
al., 2010; Gog, 2012).

Similar to HaLoop, Spark’s authors noted a
suboptimal performance of iterative MapReduce jobs in
the Hadoop framework. In certain kinds of application,
such as iterative Machine Learning algorithms and
interactive data analysis tools, the same data are
repeatedly accessed in multiple steps and then
discarded; therefore, it does not make sense to send it
back and forward to a central node. In such scenarios,
Spark will outperform Hadoop (Zaharia et al., 2012).

Spark is built on top of HDSF, but it does not
follow the two-stage model of Hadoop. Instead, it
introduces resilient distributed datasets (RDD) and
parallel operations on these datasets (Gog, 2012):
• ‘reduce’ - combines dataset elements using a

provided function;
• ‘collect’ - sends all the elements of the dataset to

the user program;
• ‘foreach’ - applies a provided function onto every

element of a dataset.

Spark provides two types of shared variables:
• ‘accumulators’ - variables onto each worker can

apply associative operations, meaning that they are
efficiently supported in parallel;

• ‘broadcast variables’ - sent once to every node, with
nodes then keeping a read-only copy of those
variables (Zecevic, 2016).

The Spark job scheduler implementation is
conceptually similar to that of Dryad’s Quincy. However,
it considers which partitions of RDD are available in the
memory. The framework then re-computes missing
partitions, and tasks are sent to the closest possible
node to the input data required (Zaharia et al., 2012).

Another significant feature implemented in
Spark is the concept of ‘delayed scheduling’. In
situations when a head-of-line job that should be
scheduled next cannot launch a local task, Spark’s
scheduler delays the task execution and lets other jobs
start their tasks instead. However, if the job has been
skipped long enough, typically a period of up to ten
seconds, it launches a non-local task. Since a typical
Spark workload consists of short tasks, meaning that it
has a high task slots churn, tasks have a higher chance
of being executed locally. This feature helps to achieve
‘data locality’ which is nearly optimal, and which has a
very small effect on fairness; in addition, the cluster
throughput can be almost doubled, as shown in an
analysis performed on Facebook’s workload traces
(Zaharia et al., 2010).

iii. Distributed Stream Processing
The core concept behind distributed stream

processing engines is the processing of incoming data
items in real time by modelling a data flow in which there
are several stages which can be processed in parallel.
Other techniques include splitting the data stream into
multiple sub-streams and redirecting them into a set of
networked nodes (Liu and Buyya, 2017).

Inspired by Microsoft’s research into DAG
models (Isard et al., 2009), Apache Storm (Storm) is a
distributed stream processing engine used by Twitter
following extensive development (Toshniwal et al.,
2014). Its initial release was 17 September 2011, and by
September 2014 it had become open-source and an
Apache Top-Level Project.

The defined topology acts as a distributed data
transformation pipeline. The programs in Storm are
designed as a topology in the shape of DAG, consisting
of ‘spouts’ and ‘bolts’:
• ‘Spouts’ read the data from external sources and

emit them into the topology as a stream of ‘tuples’.
This structure is accompanied by a schema which
defines the names of the tuples’ fields. Tuples can
contain primitive values such as integers, longs,
shorts, bytes, strings, doubles, floats, booleans, and
byte arrays. Additionally, custom serializers can be
defined to interpret this data.

• The processing stages of a stream are defined in
‘bolts’ which can perform data manipulation,
filtering, aggregations, joins, and so on. Bolts can
also constitute more complex transforming

33

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

structures that require multiple steps (thus, multiple
bolts). The bolts can communicate with external
applications such as databases and Kafka queues
(Toshniwal et al., 2014).

In comparison to MapReduce and iterative
algorithms introduced in the subsections above, Storm
topologies, once created, run indefinitely until killed.
Given this, the inefficient scattering of application’s tasks
among Cluster nodes has a lasting impact on
performance. Storm’s default scheduler implements a
Round Robin strategy. For resource allocation
purposes, Storm assumes that every worker is
homogenous. This design results in frequent resource
over-allocation and inefficient use of inter-system
communications (Kulkarni et al., 2018). To try and solve
this issue, more complex solutions are proposed such
as D-Storm (Liu and Buyya, 2017). D-Storm’s
scheduling strategy is based on a metaheuristic
algorithm Greedy, which also monitors the volume of the
incoming workload and is resource-aware.

Typical examples of Storm’s usage include:

• Processing a stream of new data and updating
databases in real time, for example in trading
systems wherein data accuracy is crucial;

• Continuously querying and forwarding the results to
clients in real time, for example streaming trending
topics on Twitter into browsers, and

• A parallelization of a computing-intensive query on
the fly, i.e., a distributed Remote Procedure Call
(RPC) wherein a large number of sets are probed
(Marz, 2011).

Storm has gained widespread popularity and is
used by companies such as Groupon, Yahoo!, Spotify,
Verisign, Alibaba, Baidu, Yelp, and many more. A
comprehensive list of users is available at the
storm.apache.org website.

At the time of writing, Storm is being replaced at
Twitter by newer distributed stream processing engine –

Heron (Kulkarni et al., 2018) which continues the DAG
model approach, but focuses on various architectural
improvements such as reduced overhead, testability,
and easier access to debug data.

V. Google’s Borg

To support its operations, Google utilizes a high
number of data centers around the world, which at the
time of writing number sixteen. Borg admits, schedules,
starts, restarts and monitors the full range of
applications run by Google. Borg users are Google
developers and system administrators, and users
submit their workload in the form of jobs. A job may
consist of one or more tasks that all run the same
program (Burns et al., 2016).

a) Design Concepts
The central module of the Borg architecture is

BorgMaster, which maintains an in-memory copy of
most of the state of the cell. This state is also saved in a
distributed Paxos-based store (Lamport, 1998). While
BorgMaster is logically a single process, it is replicated
five times to improve fault-tolerance. The main design
priority of Borg was resilience rather than performance.
Google services are seen as very durable and reliable,
the result of multi-tier architecture, where no component
is a single point of failure exists. Current allocations of
tasks are saved to Paxos-based storage, and the
system can recover even if all five BorgMaster instances
fail. Each cell in the Google Cluster in managed by a
single BorgMaster controller. Each machine in a cell
runs BorgLet, an agent process responsible for starting
and stopping tasks and also restarting them should they
fail. BorgLet manages local resources by adjusting local
OS kernel settings and reporting the state of its node to
the BorgMaster and other monitoring systems.

The Borg system offers extensive options to
control and shape its workload, including priority bands
for tasks (i.e., monitoring, production, batch, and best
effort), resources quota and admission control. Higher
priority tasks can pre-empt locally-running tasks to
obtain the resources which are required. The exception
is made for production tasks which cannot be pre-
empted. Resource quotas are part of admission control
and are expressed as a resource vector at a given
priority, for some time (usually months). Jobs with
insufficient quotas are rejected immediately upon
submission. Production jobs are limited to actual
resources available to BorgMaster in a given cell. The
Borg system also exposes a web-based interface called
Sigma, which displays the state of all users’ jobs, shows
details of their execution history and, if the job has not
been scheduled, also provides a ‘why pending?’
annotation where there is guidance about how to modify
the job’s resource requests to better fit the cell (Verma et
al., 2015).

The dynamic nature of the Borg system means
that tasks might be started, stopped and then
rescheduled on an alternative node. Google engineers
have created the concept of a static Borg Name Service
(BNS) which is used to identify a task run within a cell
and to retrieve its endpoint address. The BNS address is
predominantly used by load balancers to transparently
redirect RPC calls to the endpoint of a given task.
Meanwhile, the Borg's resource reclamation
mechanisms help to reclaim under-utilized resources
from cell nodes for non-production tasks. Although in
theory users may request high resource quotas for their
tasks, in practice they are rarely fully utilized
continuously. Instead, they have peak times of the day
or are used in this way when coping with a denial-of-
service attack. BorgMaster has routines that estimate
resource usage levels for a task and reclaim the rest for

34

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

low-priority jobs from the batch or the best effort bands
(Verma et al., 2015).

b) Jobs Schedulers
Early versions of Borg had a simple,

synchronous loop that accepted jobs requests and
evaluated on which node to execute them. The current
design of Borg deploys several schedulers working in
parallel – the scheduler instances use a shared state of
the available resources, but the resource offers are not
locked during scheduling decisions (optimistic
concurrency control). Where there is a conflicting
situation where two or more schedulers allocate jobs to
the same resources, all the jobs involved are returned to
the jobs queue (Schwarzkopf et al., 2013).

When allocating a task, Borg’s scheduler scores
a set of available nodes and selects the most feasible
machine for this task. Initially, Borg implemented a
variation of the Enhanced Parallel Virtual Machine
algorithm (E-PVM) (Amir et al., 2000) for calculating the
task allocation score. Although this resulted in the fair
distribution of tasks across nodes, it also resulted in
increased fragmentation and later difficulties when fitting
large jobs which required the most of the node’s
resources or even the whole node itself. An opposite to
the E-PVM approach is a best-fit strategy, which, in turn,
packs tasks very tightly. The best-fit approach may
result in the excessive pre-empting of other tasks
running on the same node, especially when the user
miscalculates the resources required, or when the
application has frequent load spikes. The current model
used by Borg’s scheduler is a hybrid approach that tries
to reduce resource usage gaps (Verma et al., 2015).

Borg also takes advantage of resources pre-
allocation using 'allocs' (short for allocation). Allocs can
be used to pre-allocate resources for future tasks to
retain resources between restarting a task or to gather
class-equivalent or related tasks, such as web
applications and associated log-saver tasks, onto the
same machine. If an alloc is moved to another machine,
its tasks are also rescheduled.

One point to note is that, similar to
MetaCentrum users (Klusáček and Rudová, 2010),
Google’s users tend to overestimate the memory
resources needed to complete their jobs, to prevent
jobs being killed due to exceeding the allocated
memory. In over 90% of cases, users overestimate how
many resources are required, which in certain cases can
waste up to 98% of the requested resource (Moreno et
al., 2013; Ray et al., 2017).

c) Optimisations
Over the years, Borg design has acquired

several optimizations, namely:
• Score caching – checking the node’s feasibility and

scoring it is a computation-expensive process.
Therefore, scores for nodes are cached and small
differences in the required resources are ignored;

• Equivalence classes – submitted jobs often consist
of several tasks which use the same binary and
which have identical requirements. Borg’s scheduler
considers such a group of tasks to be in the same
equivalence class. It evaluates only one task per
equivalence class against a set of nodes, and later
reuses this score for each task from this group;

• Relaxed randomization – instead of evaluating a
task against all available nodes, Borg examines
machines in random order until it finds enough
feasible nodes. It then selects the highest scoring
node in this set.

While the Borg architecture remains heavily
centralized, this approach does seem to be successful.
Although this eliminates head-of-line job blocking
problems and offers better scalability, it also generates
additional overheads for solving resource collisions.
Nevertheless, the benefits from better scalability often
outweigh the incurred additional computation costs
which arise when scalability targets are achieved
(Schwarzkopf et al., 2013).

VI. Summary and Conclusions

This paper has presented a taxonomy of
available schedulers, ranging from early
implementations to modern versions. Aside from
optimizing throughput, different class schedulers have
evolved to solve different problems. For example, while
OS schedulers maximize responsiveness, Cluster
schedulers focus on scalability, provide support a wide
range of unique (often legacy) applications, and
maintain fairness. Big Data schedulers are specialized
to solve issues accompanying operations on large
datasets, and their scheduling mechanisms are often
extensively intertwined with programming language
features.

Table 1 presents a comparison of the presented
schedulers with their main features and deployed
scheduling algorithms:

35

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

Table 1: Schedulers comparison

S
ch

ed
ul

er
cl

as
s

R
eq

ui
re

m
en

ts
 k

no
w

n

pr
e -

ex
ec

ut
io

n

Fa
ul

t-
to

le
ra

nc
e

m
ec

ha
ni

sm
s

C
o n

fig
ur

at
io

n

C
o m

m
on

 a
lg

or
ith

m
s

S
c h

ed
ul

in
g

de
ci

si
on

ov

e r
he

ad

D
e s

ig
n

fo
cu

s

(a
si

de
 th

ro
ug

hp
ut

)

OS
Schedulers

No

No

Simple
(compile-time
and runtime
parameters)

CS, CQ, MLFQ,
O(n), O(1),

Staircase, WFQ

very low
–

low

•

single machine
 •

NUMA awareness

 •

Responsiveness
 •

simple configuration

Cluster
Schedulers

Yes1

Yes

Complex
 (configuratio

n files and
GUI)

FCFS (backfilling
and gang-

scheduling),
SJF, Best-Fit,

Scoring
F i

low -
 high

•

distributed nodes
 •

fairness

 •

complex sharing
policy

 •

power consumption

Big Data

Schedulers

Yes2

Yes

Complex
 (configuratio

n files and
GUI)

Best-Fit, FCFS
(locality and

gang-
scheduling),
Greedy, Fair

S h d l

low -
 medium

•

specialized
frameworks

 •

parallelism
 •

distributed data
storage

 1. Cluster users are notorious in overestimating resources needed for the completion of their tasks,

which results in cluster system job schedulers often over-allocating resources (Klusáček and
Rudová, 2010; Moreno et al., 2013).

2. MapReduce jobs tend to have consistent resource requirements, i.e., in majority of cases, every
‘map’ task processes roughly the same amount of data (input data block size is constant), while
‘reduce’ task requirements shall be directly correlated to the size of returned data.

OS schedulers have evolved in such a way that

their focus is on maximizing responsiveness while still
providing good performance. Interactive processes
which sleep more often should be allocated time-slices
more frequently, while background processes should be
allocated longer, but less frequent execution times. CPU
switches between processes extremely rapidly which is
why modern OS scheduling algorithms were designed
with very low overhead (Wong et al., 2008; Pinel et al.,
2011). Most end-users for this class of schedulers are
non-technical. As such, those schedulers usually have a
minimum set of configuration parameters (Groves et al.,
2009).

OS scheduling was previously deemed to be a
solved problem (Torvalds, 2001), but the introduction
and popularization of multi-core processors by Intel
(Intel Core™2 Duo) and AMD (AMD Phenom™ II) in the
early 2000s enabled applications to execute in parallel.
This meant that scheduling algorithms needed to be re-
implemented tobe efficient once more. Modern OS
schedulers also consider NUMA properties when
deciding which CPU core the task will be allocated to.
Furthermore, the most recent research explores the
potential application of dynamic voltage and frequency
scaling technology in scheduling to minimize power
consumption by CPU cores (Sarood et al., 2012; Padoin

et al., 2014). Given that it is hard to build a good
universal solution which caters to the complexities of
modern hardware, it is reasonable to develop the
modular scheduler architecture suggested in Lozi et al.
(2016).

Cluster schedulers have a difficult mission in
ensuring ‘fairness’. In this context, namely a very
dynamic environment consisting of variety of
applications, fairness means sharing cluster resources
proportionally while simultaneously ensuring a stable
throughput. Cluster systems tend to allow administrators
to implement complex resource sharing policies with
multiple input parameters (Adaptive Computing, 2002).
Cluster systems implement extensive fault-tolerance
strategies and sometimes also focus on minimizing
power consumption (Lang and Patel, 2010).
Surprisingly, it appears that the most popular scheduling
approach is a simple FCFS strategy with variants of
backfilling. However, due to the rapidly increasing
cluster size, the current research focuses on
parallelization, as seen with systems such as Google’s
Borg and Microsoft’s Apollo.

Big Data systems are still rapidly developing.
Nodes in Big Data systems fulfil the dual purposes of
storing distributed file system parts and providing a
parallel execution environment for system tasks. Big

36

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

Data schedulers inherit their general design from the
cluster system’s jobs schedulers. However, they are
usually much more specialized for the framework and
are also intertwined with the programming language
features. Big Data schedulers are often focused on
‘locality optimization’ or running a given task on a node
where input data is stored or in the closest proximity
to it.

The design of modern scheduling strategies
and algorithms is a challenging and evolving field of
study. While early implementations often used simplistic
approaches, such as a CS, modern solutions use
complex scheduling schemas. Moreover, the literature
frequently mentions the need for a modular scheduler
architecture (Vavilapalli et al., 2013; Lozi et al., 2016)
which could customize scheduling strategies to
hardware configuration or applications.

References Références Referencias

1. "Apache Aurora." Aurora. Available from:
http://aurora.apache.org/ Retrieved December 5,
2018. Version 0.19.0.

2. "Marathon: A container orchestration platform for
Mesos and DC/OS." Mesosphere, Inc. January 10,
2018. Available from: https://mesosphere.github.io/
marathon/ Retrieved February 7, 2018.

3. "Maui Administrator's Guide." Adaptive Computing
Enterprises, Inc. May 16, 2002. Available from:
http://docs.adaptivecomputing.com/maui/pdf/mauia
dmin.pdf Retrieved November 5, 2014. Version 3.2.

4. "Nomad - Easily Deploy Applications at Any Scale",
HashiCorp. Available from: https://www.nomad
project.ioRetrieved March 19, 2018. Version 0.7.1.

5. "Top500 List - November 2017". TOP500 Project.
November, 2017. Available from: https://www.
top500.org/lists/2017/11/ Retrieved November 17,
2017.

6. "TORQUE Resource Manager. Administration Guide
5.1.2." Adaptive Computing Enterprises, Inc.
November 2015. Available from: http://docs.
adaptivecomputing.com/torque/5-1-2/torqueAdmin
Guide-5.1.2.pdf Retrieved November 15, 2016.

7. Amir, Yair, Baruch Awerbuch, Amnon Barak, R.
Sean Borgstrom, and Arie Keren. "An opportunity
cost approach for job assignment in a scalable
computing cluster." IEEE Transactions on parallel
and distributed Systems 11, no. 7 (2000): 760-768.

8. Arpaci-Dusseau, Remzi H., and Andrea C. Arpaci-
Dusseau. "Operating systems: Three easy pieces."
Arpaci-Dusseau Books, 2015.

9. Barroso, Luiz André, Jeffrey Dean, and UrsHölzle.
"Web search for a planet: The Google cluster
architecture." Micro, IEEE 23, no. 2 (2003): 22-28.

10. Becchetti, L, Stefano Leonardi, Alberto Marchetti-
Spaccamela, Guido Schäfer, and TjarkVredeveld.
(2006) "Average-case and smoothed competitive

analysis of the multilevel feedback algorithm."
Mathematics of Operations Research 31, no. 1:
85-108.

11. Blagodurov, Sergey, Sergey Zhuravlev, Alexandra
Fedorova, and Ali Kamali. "A case for NUMA-aware
contention management on multicore systems." In
Proceedings of the 19th international conference on
Parallel architectures and compilation techniques,
pp. 557-558. ACM, 2010.

12. Bode, Brett, David M. Halstead, Ricky Kendall, Zhou
Lei, and David Jackson. "The Portable Batch
Scheduler and the Maui Scheduler on Linux
Clusters." In Annual Linux Showcase & Conference.
2000.

13. Bonald, Thomas, Laurent Massoulié, Alexandre
Proutiere, and JormaVirtamo. "A queueing analysis
of max-min fairness, proportional fairness and
balanced fairness." Queueing systems 53, no. 1
(2006): 65-84.

14. Boutin, Eric, JaliyaEkanayake, Wei Lin, Bing Shi,
Jingren Zhou, Zhengping Qian, Ming Wu, and
Lidong Zhou. "Apollo: Scalable and Coordinated
Scheduling for Cloud-Scale Computing." In OSDI,
vol. 14, pp. 285-300. 2014.

15. Bu, Yingyi, Bill Howe, Magdalena Balazinska, and
Michael D. Ernst. "HaLoop: Efficient iterative data
processing on large clusters." Proceedings of the
VLDB Endowment 3, no. 1-2 (2010): 285-296.

16. Bulpin, James R. "Operating system support for
simultaneous multithreaded processors." No.
UCAM-CL-TR-619. University of Cambridge,
Computer Laboratory, 2005.

17. Burns, Brendan, Brian Grant, David Oppenheimer,
Eric Brewer, and John Wilkes. "Borg, Omega, and
Kubernetes." Communications of the ACM 59, no. 5
(2016): 50-57.

18. Campbell, Matthew. "Distributed Scheduler Hell."
DigitalOcean. SREcon17 Asia/Australia. May 24,
2017.

19. Corbató, Fernando J., Marjorie Merwin-Daggett, and
Robert C. Daley. "An experimental time-sharing
system." In Proceedings of the May 1-3, 1962,
spring joint computer conference, pp. 335-344.
ACM, 1962.

20. Corbet, Jonathan. "The staircase scheduler."
LWN.net. June 2, 2004. Available from:
https://lwn.net/Articles/87729/ Retrieved September
25, 2017.

21. Corbet, Jonathan. "The Rotating Staircase Deadline
Scheduler." LWN.net. March 6, 2007. Available from:
https://lwn.net/Articles/224865/ Retrieved
September 25, 2017.

22. Corbett, James C., Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, Jeffrey John
Furman, Sanjay Ghemawat et al. "Spanner:
Google’s globally distributed database." ACM

37

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

Transactions on Computer Systems (TOCS) 31, no.
3 (2013): 8.

23. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
a flexible data processing tool." Communications of
the ACM 53, no. 1 (2010): 72-77.

24. Drepper, Ulrich. "What every programmer should
know about memory." Red Hat, Inc. 11 (2007): 2007.

25. Etsion, Yoav, and Dan Tsafrir. "A short survey of
commercial cluster batch schedulers." School of
Computer Science and Engineering, the Hebrew
University of Jerusalem 44221 (2005): 2005-13.

26. Foster, Ian, and Carl Kesselman. "Globus: A
metacomputing infrastructure toolkit." The
International Journal of Supercomputer Applications
and High Performance Computing 11, no. 2 (1997):
115-128.

27. Foster, Ian, Carl Kesselman, and Steven Tuecke.
"The anatomy of the grid: Enabling scalable virtual
organizations." The International Journal of High
Performance Computing Applications 15, no. 3
(2001): 200-222.

28. Gabriel, Edgar, Graham E. Fagg, George Bosilca,
TharaAngskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay et al. "Open MPI: Goals,
concept, and design of a next generation MPI
implementation." In European Parallel Virtual
Machine/Message Passing Interface Users’ Group
Meeting, pp. 97-104. Springer Berlin Heidelberg,
2004.

29. Gentzsch, Wolfgang. "Sun grid engine: Towards
creating a compute power grid." In Cluster
Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on, pp. 35-36.
IEEE, 2001.

30. Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak
Leung. "The Google file system." In ACM SIGOPS
operating systems review, vol. 37, no. 5, pp. 29-43.
ACM, 2003.

31. Gog, I. "Dron: An Integration Job Scheduler."
Imperial College London (2012).

32. Grimshaw, Andrew S. "The Mentat run-time system:
support for medium grain parallel computation." In
Distributed Memory Computing Conference, 1990.,
Proceedings of the Fifth, vol. 2, pp. 1064-1073.
IEEE, 1990.

33. Grimshaw, Andrew S., William A. Wulf, James C.
French, Alfred C. Weaver, and Paul Reynolds Jr.
"Legion: The next logical step toward a nationwide
virtual computer.” Technical Report CS-94-21,
University of Virginia, 1994.

34. Groves, Taylor, Jeff Knockel, and Eric Schulte. "BFS
vs. CFS - Scheduler Comparison." The University of
New Mexico, 11 December 2009.

35. Hamscher, Volker, Uwe Schwiegelshohn, Achim
Streit, and RaminYahyapour. "Evaluation of job-
scheduling strategies for grid computing." Grid
Computing—GRID 2000 (2000): 191-202.

36. Hart, Johnson M. "Win32 systems programming."
Addison-Wesley Longman Publishing Co., Inc.,
1997.

37. Helland, Pat, and Harris Ed "Cosmos: Big Data and
Big Challenges." Stanford University, October 26,
2011.

38. Hindman, Benjamin, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy H. Katz,
Scott Shenker, and Ion Stoica. "Mesos: A Platform
for Fine-Grained Resource Sharing in the Data
Center." In NSDI, vol. 11, no. 2011, pp. 22-22. 2011.

39. Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. "Dryad: distributed data-parallel
programs from sequential building blocks." In ACM
SIGOPS operating systems review, vol. 41, no. 3,
pp. 59-72. ACM, 2007.

40. Isard, Michael, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar, and Andrew Goldberg.
"Quincy: fair scheduling for distributed computing
clusters." In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp.
261-276. ACM, 2009.

41. Jackson, David, Quinn Snell, and Mark Clement.
"Core algorithms of the Maui scheduler." In
Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 87-102. Springer, Berlin,
Heidelberg, 2001.

42. Jones, M. Tim. "Inside the Linux 2.6 Completely Fair
Scheduler - Providing fair access to CPUs since
2.6.23" In IBM Developer Works. December 15,
2009.

43. Kannan, Subramanian, Mark Roberts, Peter Mayes,
Dave Brelsford, and Joseph F. Skovira. "Workload
management with LoadLeveler." IBM Redbooks 2,
no. 2 (2001).

44. Kay, Judy, and Piers Lauder. "A fair share
scheduler." Communications of the ACM 31, no. 1
(1988): 44-55.

45. Klusáček, Dalibor, and Hana Rudová. "The Use of
Incremental Schedule-based Approach for Efficient
Job Scheduling." In Sixth Doctoral Workshop on
Mathematical and Engineering Methods in
Computer Science, 2010.

46. Klusáček, Dalibor, Václav Chlumský, and Hana
Rudová. "Optimizing user oriented job scheduling
within TORQUE." In Super Computing the 25th
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’13). 2013.

47. Kolivas, Con. "linux-4.8-ck2, MuQSS version 0.114."
-ck hacking. October 21, 2016. Available from:
https://ck-hack.blogspot.co.uk/2016/10/linux-48-
ck2-muqss-version-0114.html Retrieved December
8, 2016.

48. Krauter, Klaus, Rajkumar Buyya, and Muthucumaru
Maheswaran. "A taxonomy and survey of grid
resource management systems for distributed

38

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

computing." Software: Practice and Experience 32,
no. 2 (2002): 135-164.

49. Kulkarni, Sanjeev, Nikunj Bhagat, Maosong Fu,
VikasKedigehalli, Christopher Kellogg, Sailesh
Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. "Twitter Heron: Stream processing
at scale." In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
pp. 239-250. ACM, 2015.

50. Lamport, Leslie. "The part-time parliament." ACM
Transactions on Computer Systems (TOCS) 16, no.
2 (1998): 133-169.

51. Lang, Willis, and Jignesh M. Patel. (2010) "Energy
management for mapreduce clusters." Proceedings
of the VLDB Endowment 3, no. 1-2: 129-139.

52. Lewis, Ian, and David Oppenheimer. "Advanced
Scheduling in Kubernetes". Kubernetes.io. Google,
Inc. March 31, 2017. Available https://kubernetes.
io/blog/2017/03/advanced-scheduling-in-
kubernetes Retrieved January 4, 2018.

53. Litzkow, Michael J., MironLivny, and Matt W. Mutka.
"Condor-a hunter of idle workstations." In Distributed
Computing Systems, 1988., 8th International
Conference on, pp. 104-111. IEEE, 1988.

54. Liu, Xunyun, and Rajkumar Buyya. "D-Storm:
Dynamic Resource-Efficient Scheduling of Stream
Processing Applications." In Parallel and Distributed
Systems (ICPADS), 2017 IEEE 23rd International
Conference on, pp. 485-492. IEEE, 2017.

55. Lozi, Jean-Pierre, Baptiste Lepers, Justin Funston,
Fabien Gaud, Vivien Quéma, and Alexandra
Fedorova. "The Linux scheduler: a decade of
wasted cores." In Proceedings of the Eleventh
European Conference on Computer Systems, p. 1.
ACM, 2016.

56. Marz, Nathan. "A Storm is coming: more details and
plans for release." Engineering Blog. Twitter, Inc.
August 4, 2011. Available from: https://blog.twitter.
com/engineering/en_us/a/2011/a-storm-is-coming-
more-details-and-plans-for-release.html Retrieved
July 16, 2018.

57. McCullough, John C., Yuvraj Agarwal, Jaideep
Chandrashekar, Sathyanarayan Kuppuswamy, Alex
C. Snoeren, and Rajesh K. Gupta. "Evaluating the
effectiveness of model-based power
characterization." In USENIX Annual Technical Conf,
vol. 20. 2011.

58. Moreno, Ismael Solis, Peter Garraghan, Paul
Townend, and Jie Xu. "An approach for
characterizing workloads in google cloud to derive
realistic resource utilization models." In Service
Oriented System Engineering (SOSE), 2013 IEEE
7th International Symposium on, pp. 49-60. IEEE,
2013.

59. Murray, Derek G., Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. "CIEL: a universal execution engine

for distributed data-flow computing." In Proc. 8th
ACM/USENIX Symposium on Networked Systems
Design and Implementation, pp. 113-126. 2011.

60. Naik, Nitin. "Building a virtual system of systems
using Docker Swarm in multiple clouds." In Systems
Engineering (ISSE), 2016 IEEE International
Symposium on, pp. 1-3. IEEE, 2016.

61. Pabla, Chandandeep Singh. "Completely fair
scheduler." Linux Journal 2009, no. 184 (2009): 4.

62. Padoin, Edson L., Márcio Castro, Laércio L. Pilla,
Philippe OA Navaux, and Jean-François Méhaut.
"Saving energy by exploiting residual imbalances on
iterative applications." In High Performance
Computing (HiPC), 2014 21st International
Conference on, pp. 1-10. IEEE, 2014.

63. Pascual, Jose, Javier Navaridas, and Jose Miguel-
Alonso. "Effects of topology-aware allocation
policies on scheduling performance." In Job
Scheduling Strategies for Parallel Processing, pp.
138-156. Springer Berlin/Heidelberg, 2009.

64. Pinel, Frédéric, Johnatan E. Pecero, Pascal Bouvry,
and Samee U. Khan. "A review on task performance
prediction in multi-core based systems." In
Computer and Information Technology (CIT), 2011
IEEE 11th International Conference on, pp. 615-620.
IEEE, 2011.

65. Pinheiro, Eduardo, Ricardo Bianchini, Enrique V.
Carrera, and Taliver Heath. "Load balancing and
unbalancing for power and performance in cluster-
based systems." In Workshop on compilers and
operating systems for low power, vol. 180, pp. 182-
195. 2001.

66. Pop, Florin, CiprianDobre, Gavril Godza, and
Valentin Cristea. "A simulation model for grid
scheduling analysis and optimization." In Parallel
Computing in Electrical Engineering, 2006. PAR
ELEC 2006. International Symposium on, pp. 133-
138. IEEE, 2006.

67. Ray, Biplob R., Morshed Chowdhury, and Usman
Atif. "Is High Performance Computing (HPC) Ready
to Handle Big Data?" In International Conference on

Future Network Systems and Security, pp. 97-112.
Springer, Cham, 2017.

68. Rodriguez, Maria Alejandra, and Rajkumar Buyya.
"A taxonomy and survey on scheduling algorithms
for scientific workflows in IaaS cloud computing
environments." Concurrency and Computation:
Practice and Experience 29, no. 8 (2017).

69.

Sarood, Osman, Phil Miller, Ehsan Totoni, and
Laxmikant V. Kale. "“Cool” Load Balancing for High
Performance Computing Data Centers." IEEE
Transactions on Computers 61, no. 12 (2012): 1752-
1764.

70.

Schwarzkopf, Malte, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. "Omega: flexible,
scalable schedulers for large compute clusters." In

39

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

Y
e
a
r

2
01

9

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

Proceedings of the 8th ACM European Conference
on Computer Systems, pp. 351-364. ACM, 2013.

71. Shreedhar, Madhavapeddi, and George Varghese.
"Efficient fair queueing using deficit round robin." In
ACM SIGCOMM Computer Communication Review,
vol. 25, no. 4, pp. 231-242. ACM, 1995.

72. Singh, Ajit. "New York Stock Exchange Oracle
Exadata – Our Journey." Oracle, Inc. November 17,
2017. Available from: http://www.oracle.com/
technetwork/database/availability/con8821-nyse-
2773005.pdf Retrieved June 28, 2018.

73. Sliwko, Leszek. "A Scalable Service Allocation
Negotiation For Cloud Computing." Journal of
Theoretical and Applied Information Technology,
Vol.96. No 20, pp. 6751-6782, 2018.

74. Smanchat, Sucha, and Kanchana Viriyapant.
"Taxonomies of workflow scheduling problem and
techniques in the cloud." Future Generation
Computer Systems 52 (2015): 1-12.

75. Smarr, Larry, and Charles E. Catlett.
"Metacomputing." Grid Computing: Making the
Global Infrastructure a Reality (2003): 825-835.

76. Thain, Douglas, Todd Tannenbaum, and
MironLivny. "Distributed computing in practice: the
Condor experience." Concurrency and computation:
practice and experience 17, no. 2‐4 (2005):
323-356.

77. Torvalds, Linus "Re: Just a second …" The Linux
Kernel Mailing List. December 15, 2001. Available
from http://tech-insider.org/linux/research/2001/
1215.html Retrieved September 27, 2017.

78. Toshniwal, Ankit, Siddarth Taneja, Amit Shukla,
Karthik Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson et al. "Storm @Twitter." In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 147-156.
ACM, 2014.

79. Tyagi, Rinki, and Santosh Kumar Gupta. "A Survey
on Scheduling Algorithms for Parallel and
Distributed Systems." In Silicon Photonics & High
Performance Computing, pp. 51-64. Springer,
Singapore, 2018.

80. Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris
Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves et al. "Apache hadoop yarn:
Yet another resource negotiator." In Proceedings of
the 4th annual Symposium on Cloud Computing, p.
5. ACM, 2013.

81. Verma, Abhishek, Luis Pedrosa, Madhukar
Korupolu, David Oppenheimer, Eric Tune, and John
Wilkes. "Large-scale cluster management at Google
with Borg." In Proceedings of the Tenth European
Conference on Computer Systems, p. 18. ACM,
2015.

82. White, Tom. "Hadoop: The definitive guide." O'Reilly
Media, Inc. 2012.

83. Wong, C. S., I. K. T. Tan, R. D. Kumari, J. W. Lam,
and W. Fun. "Fairness and interactive performance
of O(1) and cfslinux kernel schedulers." In
Information Technology, 2008. International
Symposium on, vol. 4, pp. 1-8. IEEE, 2008.

84. Vohra, Deepak. "Scheduling pods on nodes. " In
Kubernetes Management Design Patterns, pp. 199-
236. Apress, Berkeley, CA. 2017.

85. Vagata, Pamela, and Kevin Wilfong. "Scaling the
Facebook data warehouse to 300 PB." Facebook,
Inc. April 10, 2014. Available from: https://code.fb.
com/core-data/scaling-the-facebook-data-
warehouse-to-300-pb/ Retrieved June 28, 2018.

86. Yoo, Andy B., Morris A. Jette, and Mark Grondona.
"Slurm: Simple linux utility for resource
management." In Workshop on Job Scheduling
Strategies for Parallel Processing, pp. 44-60.
Springer, Berlin, Heidelberg, 2003.

87. Yu, Jia, and Rajkumar Buyya. "A taxonomy of
scientific workflow systems for grid computing."
ACM Sigmod Record 34, no. 3 (2005): 44-49.

88. Zaharia, Matei, Dhruba Borthakur, J. Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica.
Job scheduling for multi-user mapreduce clusters.
Vol. 47. Technical Report UCB/EECS-2009-55,
EECS Department, University of California, Berkeley,
2009.

89. Zaharia, Matei, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. "Spark:
Cluster computing with working sets." HotCloud 10,
no. 10-10 (2010): 95.

90. Zaharia, Matei, Mosharaf Chowdhury, Tathagata
Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica.
"Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing." In
Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation,
pp. 2-2. USENIX Association, 2012.

91. Zakarya, Muhammad, and Lee Gillam. "Energy
efficient computing, clusters, grids and clouds:
A taxonomy and survey." Sustainable Computing:
Informatics and Systems 14 (2017): 13-33.

92. Zecevic, Petar, and Marko Bonaci. "Spark in Action."
(2016).

93. Zhang, Zhuo, Chao Li, Yangyu Tao, Renyu Yang,
Hong Tang, and Jie Xu. "Fuxi: a fault-tolerant
resource management and job scheduling system
at internet scale." Proceedings of the VLDB
Endowment 7, no. 13 (2014): 1393-1404.

40

Y
e
a
r

20
19

(
)

B
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
 V

er
sio

n
I

© 2019 Global Journals

A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks

	A Taxonomy of Schedulers – Operating Systems, Clusters andBig Data Frameworks
	Author

	Keywords
	I. Taxonomy of Schedulers
	II. Metacomputing
	III. OS Schedulers
	a) Cooperative Multitasking
	b) Single Queue
	c) Multilevel Queue
	d) Tree-Based Queue

	IV. Cluster Schedulers
	a) Monolithic Scheduler
	b) Concurrent Scheduling
	i. Statically Partitioned
	ii. Two-Level Hierarchy
	iii. Shared State
	iv. Decentralised Load Balancer

	c) Big Data Schedulers
	i. Mapreduce
	ii. Iterative Computations
	iii. Distributed Stream Processing

	V. Google’s Borg
	a) Design Concepts
	b) Jobs Schedulers
	c) Optimisations

	VI. Summary and Conclusions
	References Références Referencias

