
© 2019. A.H.M. Saiful Islam, Mashrure Tanzim, Sadia Afreen & Gerald Rozario. This is a research/review paper, distributed under
the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-
nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
 Volume 19 Issue 3 Version 1.0 Year 2019
 Type: Double Blind Peer Reviewed International Research Journal
 Publisher: Global Journals

 Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Evaluation of Ant Colony Optimization Algorithm Compared to
Genetic Algorithm, Dynamic Programming and Branch and Bound
Algorithm Regarding Traveling Salesman Problem

 By A.H.M. Saiful Islam, Mashrure Tanzim, Sadia Afreen & Gerald Rozario
Notre Dame University

Abstract- We use ant colony optimization (ACO) algorithm for solving combinatorial optimization
problems such as the traveling salesman problem. Some applications of ACO are: vehicle
routing, sequential ordering, graph coloring, routing in communications networks, etc. In this
paper, we compare the performance of ACO to that of a few other state-of-the-art algorithms
currently in use and thus measure the effectiveness of ACO as one of the major optimization
algorithms in regard with a few more algorithms. The performance of the algorithms is measured
by observing their capacity to solve a traveling salesman problem (TSP). This paper will help to
find the proper algorithm to be used for routing problems in different real-life situations.

Keywords: swarm intelligence, vehicle routing, ant colony optimization.

GJCST-D Classification: F.2.2

EvaluationofAntColonyOptimizationAlgorithmComparedtoGeneticAlgorithmDynamicProgrammingandBranchandBoundAlgorithmRegardingTravelingSalesmanProblem

 Strictly as per the compliance and regulations of:

Evaluation of Ant Colony Optimization Algorithm
Compared to Genetic Algorithm, Dynamic

Programming and Branch and Bound Algorithm
Regarding Traveling Salesman Problem

A.H.M. Saiful Islamα, Mashrure Tanzimσ, Sadia Afreenρ & Gerald RozarioѠ

Abstract- We use ant colony optimization (ACO) algorithm for
solving combinatorial optimization problems such as the
traveling salesman problem. Some applications of ACO are:
vehicle routing, sequential ordering, graph coloring, routing in
communications networks, etc. In this paper, we compare the
performance of ACO to that of a few other state-of-the-art
algorithms currently in use and thus measure the effectiveness
of ACO as one of the major optimization algorithms in regard
with a few more algorithms. The performance of the algorithms
is measured by observing their capacity to solve a traveling
salesman problem (TSP). This paper will help to find the
proper algorithm to be used for routing problems in different
real-life situations.
Keywords: swarm intelligence, vehicle routing, ant colony
optimization.

I. Introduction

nt colony optimization algorithm belongs to a
special class of artificial intelligence called swarm
intelligence. “Swarm intelligence is a relatively

new approach to problem-solving that takes inspiration
from the social behaviors of insects and of other
animals. In particular, ants have inspired a number of
methods and techniques among which the most studied
and the most successful is the general-purpose
optimization technique known as ant colony optimization
(ACO)” (Dorigo, Birattari and Stutzle, 2006, p. 28). ACO
has a powerful capacity to find out solutions to
combinatorial optimization problems. But it has some
issues like stagnation and premature convergence. The
convergence speed of ACO is always slow.

 (Raghavendra BV, 2015). These limitations
become more noticeable when the problem size
increases, and the number of nodes become more and
more numerous. The aim of this paper is to compare the
performance of Ant Colony Optimization with a few other
algorithms when it comes to solving a particular
problem: the traveling salesman problem. Davendra
(Davendra D, 2010, Travelling Salesman Problem,

Author

:

Associate Professor, Department of Computer Science

and Engineering, Notre Dame University Bangladesh, Dhaka,
Bangladesh. e-mails: saiful@ndub.edu.bd, tanzimndub@gmail.com,

sadiaafrinkhushbu111@gmail.com, nizelrozer@gmail.com

Theory and Applications) defined TSP as, “Given a set
of cities of different distances away from each other, and
the objective of TSP is to find the shortest path for a
salesperson to visit every city exactly once and return
back [sic] to the origin city”. “TSP is an important
applied problem with many fascinating variants; like
theoretical mathematics, computer science, NP-hard
problem, combinatorial optimization, and operation
research” (Abid and Muhammad, 2015, p. 1). There
have been some works related to this field, attempting
to address such a problem (Sudholt and Thyssen, 2012)
(Wang Hui, 2012). But they are usually limited to a
comparison between 2 algorithms and only a fixed
situation, not for dynamically changing situations that
might arise in a real-life problem. We analyze different
aspects of their performance, like time complexity,
space complexity, scalability, etc. and thus determine
which algorithm is suitable for which situation. The
algorithms we intend to compare with ACO are Genetic
algorithm, Dynamic programming, Branch and bound
algorithm. Some research papers comparing these
algorithms with each other already exist (Wang Hui,
2012). But no work has been done to compare all of
their performances at once and for different situations
that might arise in a real -ife routing problem. In reality, a
route might be blocked due to accidents, or the number
of nodes might change due to unforeseen
circumstances. In that situation, the performance of
different algorithms will be different. We aim to find out
which algorithm serves the best in what sort of situation
faced in real life.

The second section of this paper shows the
process of comparing the algorithms. The third section
discusses the results we obtain and its implications, and
finally, the conclusion is discussed in the fourth section.

II. Comparing the Algorithms

To compare four different algorithms, we bring
them in the same platform and use them to solve the
same dataset. We use multiple datasets to ascertain
their performance, to make sure that the algorithms are
fairly adaptable to changing situations. We implemented
the algorithms using Windows 10 as the operating

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

7

Y
e
a
r

2
01

9

 (
)

D

© 2019 Global Journals

ρ σα Ѡ

system and Java as the programming language. We
retrieve the program for ACO from the official ACO
metaheuristic site. The software package ACOTSP-1.03
provides an implementation of various Ant Colony
Optimization (ACO) algorithms applied to the symmetric
Traveling Salesman Problem (TSP) (http://www.aco-
metaheuristic.org/aco-code/public-software.html,
January 15, 10.40 p.m).

To find the best results, the programs maintain
the best universally accepted space and time
complexity for their respective algorithms.

The main aspects of the performance comparison are:
 Time: The amount of time it takes to run the

algorithm.
 Space: The amount of memory space required to

solve an instance of the computational problem.
 Scalability: The ability of the algorithm to adapt to

the increasing size of the problem.

In order to determine the various parameters for
our comparison, we run the programs in a fixed platform
and use a fixed dataset. We run these programs on a
dataset bays29, which is a dataset of 29 cities in Bavaria
with their street distances (https://github.com/
pdrozdowski/TSPLib.Net/blob/master/TSPLIB95/tsp/bay
s29.tsp, March 3, 9.15 p.m)

To ensure that their performance is consistent,
we also use a smaller dataset of 4 cities to test the
algorithms. The data set has the following adjacency
matrix:

0 4 1 3
4 0 2 1
1 2 0 5
3 1 5 0

Thus, the programs will give a standardized
output. We then use the obtained data to formulate
graphs and a table to analyze the strengths and
weaknesses of each algorithm regarding solving TSP.

We test the ACO algorithm first. The obtained
result will set the standard for our research. The
algorithm performs reasonably well in terms of time for
both large (bays29.tsp) and small (mydataset.tsp)
datasets. But it also consumes a considerable amount
of memory.

Genetic algorithm is based on the property of
reproductive cells. It assumes two separate data bits as
chromosomes of two cells and creates a new
chromosome from the parent chromosomes. The
processes of creating new chromosomes vary. The
algorithm does poorly in terms of time for both large and
small datasets but performs better in terms of memory
usage.

A branch-and-bound algorithm consists of a
systematic enumeration of candidate solutions using
state space search. The set of candidate solutions is
thought of as forming a rooted tree with the full set at the
root. The algorithm explores branches of this tree, which
represent subsets of the solution set. The algorithm
performs admirably in terms of both time consumption
and memory use for small datasets. But for large
datasets, it enters into an infinite loop. Even after 30
minutes of running, it fails to produce any results. This
limitation renders it unusable for large datasets.

Dynamic programming is both a mathematical
optimization method and a computer programming
method. After the initial emphasis on static problems,
some of the focus is now shifting towards dynamic
variants of combinatorial optimization problems.
Recently some research is being done on TSP for
dynamic problems. The program performs very well in
terms of both time and memory use for small datasets.
But for large datasets like bays29.tsp, it consumes a
huge amount of memory. It exceeds the heap size even
after setting the heap size at 3 GB. Thus, we can’t use it
for large datasets.

Table 1:

Time and Memory use for large datasets (bays29.tsp)

Algorithms

Time (seconds)

Memory usage (mbs)

ACO

3.103 seconds

55.158203125 mbs

Genetic algorithm

5.50 seconds

33.696289 mbs

Branch and bound

undefined

undefined

Dynamic Programming

undefined

undefined

Table 2:

Time and Memory use for small datasets (mydataset.tsp)

Algorithms

Time (seconds)

Memory usage (mbs)

ACO

1.6 seconds

5.250947 mbs

Genetic algorithm

2.30 seconds

4.86230468 mbs

Branch and bound

0.004 seconds

1.30078125 mbs

Dynamic Programming

0.002 seconds

1.9501953125 mbs

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

8

Y
e
a
r

2
01

9
(

)
D

© 2019 Global Journals

Evaluation of Ant Colony Optimization Algorithm Compared to Genetic Algorithm, Dynamic
Programming and Branch and Bound Algorithm Regarding Traveling Salesman Problem

III. Discussion and Analysis of Result

The results obtained from the codes show us
the different aspects of the algorithms in different
situations. As mentioned before, we shall compare the
algorithms based on the amount of time it takes to run
the algorithm, the amount of memory space required to
solve an instance of the computational problem and the
ability of the algorithm to adapt to the increasing size of
the problem. From the obtained results, we find that:

For large datasets, the fastest way to solve the
problem is the Ant colony optimization algorithm. It
takes the least amount of time among the 4. But it will
also consume the most memory of them all.

For large datasets, the cheapest in terms of
memory, to solve the problem is the Genetic Algorithm.
It takes somewhat longer than ant colony optimization to
solve the problem. But performs better than dynamic

programming or branch and bound algorithm, none of
which can solve bigger datasets efficiently due to heavy
memory usage or taking too much time. Thus, both
have bad scalability. They can’t adapt to problems with
more nodes or higher complexity.

For small datasets, the fastest way to solve the
problem is Dynamic Programming. It is the quickest
method to solve small datasets. Branch and bound
algorithm come to a close second. But it is the cheapest
method. Both genetic algorithm and ant colony
optimization are far behind them in terms of time and
memory usage.

The results and their analysis helps us to draw
the following conclusion. We arrange the algorithms in
the descending order based on the time they take, the
amount of memory they use, and how well they scale
when faced with more complex problems.

For large datasets, the usefulness of the algorithms in descending order:

Table 3: Usefulness for large datasets (bays29.tsp)

Serial No. Time Memory usage Scalability
1 ACO Genetic algorithm Genetic algorithm
2 Genetic algorithm ACO ACO
3 Dynamic Programming Branch and bound Branch and bound
4 Branch and bound Dynamic Programming Dynamic Programming

For small datasets, the usefulness of the algorithms in descending order:

Table 4: Usefulness for small datasets (mydataset.tsp)

Serial No. Time Memory usage Scalability
1 Dynamic Programming Branch and bound Genetic algorithm
2 Branch and bound Dynamic Programming ACO
3 ACO Genetic algorithm Branch and bound
4 Genetic algorithm ACO Dynamic Programming

Thus, for solving sizeable problems with many
nodes, it’s best to use ACO for the fastest and Genetic
algorithm for the cheapest results. But for smaller
problems with fewer nodes, Dynamic programming is
the best algorithm to solve it quickly. Branch and bound
algorithm is the primary choice for a cheap solution. This
comparison helps us to determine which algorithm
performs best under which circumstance. If the routing
problem involves many cities or many villages
connected with roads, then we use the ant colony
optimization to get the fastest result. However, if we are
willing to sacrifice time for achieving a lower memory
use, we should choose the Genetic algorithm. This
method is more suitable when a large amount of data
needs to be processed, and the technology available is
limited. For a routing problem that works with few
nodes, such as the route between divisions, or the
interstate highways connecting states, Dynamic
programming gives the best result. Since there are few
destinations and fewer paths, time and memory
consumption is low. But we should be aware that a

system made for such a purpose will have bad
scalability and will not work on more complex

routing problems.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

9

Y
e
a
r

2
01

9

 (
)

D

© 2019 Global Journals

Evaluation of Ant Colony Optimization Algorithm Compared to Genetic Algorithm, Dynamic
Programming and Branch and Bound Algorithm Regarding Traveling Salesman Problem

Fig. 1: Time comparison for large datasets (bays29.tsp)

Fig. 2:

Memory usage for large datasets (bays29.tsp)

ACO Genetic Algorithm

3.103

5.5

Ti
m

e
(s

ec
)

Algorithm

ACO Genetic Algorithm

55.15820313

33.696289

M
em

o r
y

U
sa

ge
 (m

bs
)

Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

10

Y
e
a
r

2
01

9
(

)
D

© 2019 Global Journals

Evaluation of Ant Colony Optimization Algorithm Compared to Genetic Algorithm, Dynamic
Programming and Branch and Bound Algorithm Regarding Traveling Salesman Problem

Fig. 3: Time comparison for small datasets (mydataset.tsp)

ACO Genetic Algorithm Branch and Bound
algorithm

Dynamic
Programming

1.6

2.3

0.004 0.002

Ti
m

e
(s

ec
)

Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

11

Y
e
a
r

2
01

9

 (
)

D

© 2019 Global Journals

Evaluation of Ant Colony Optimization Algorithm Compared to Genetic Algorithm, Dynamic
Programming and Branch and Bound Algorithm Regarding Traveling Salesman Problem

Fig. 4: Memory usage for small datasets (mydataset.tsp)

IV. Conclusion

Traveling salesman problem is one of the most
important problem faced by vehicle routing procedures.
Choosing the appropriate algorithm for a situation is
necessary. This paper presents four different algorithms
that can solve the traveling salesman problem and
compares their performance. This paper will help future
engineers to device the proper algorithm for dynamic
and changing situations in vehicle routing and logistics.
In real life, the condition on the road can change at any
moment due to unforeseen circumstances. In that case,
the proper algorithm must be implemented to find the

quickest route efficiently. This paper is a step forward in
the effort to find the most practical algorithms for
continually changing situations in real life.

References Références Referencias

1. Abid M. and Muhammad I. (2015) Heuristic
Approaches to Solve Traveling Salesman Problem.
Indonesian Journal of Electrical Engineers and
Computer Science, vol. 15, pp 390-396.

2. Davendra D. (2010) Traveling Salesman Problem,
Theory and Applications. INTECH open access
publishers.

ACO Genetic Algorithm Branch and Bound
algorithm

Dynamic
Programming

5.250947
4.86230468

1.30078125

1.950195313

M
em

o r
y

U
sa

ge
 (m

bs
)

Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IX

 I
ss
ue

 I
II

V
er
sio

n
I

12

Y
e
a
r

2
01

9
(

)
D

© 2019 Global Journals

Evaluation of Ant Colony Optimization Algorithm Compared to Genetic Algorithm, Dynamic
Programming and Branch and Bound Algorithm Regarding Traveling Salesman Problem

3. Dirk Sudholt and Christian Thyssen. (2012) Running
time analysis of Ant Colony Optimization for shortest
path problems. Journal of Discrete Algorithms, Vol.
10, pp. 165-180

4. Dorigo M., Birattari M., and Stutzle T. (2006) Ant
Colony Optimization, Artificial Ants as a
Computational Intelligence Technique, IEEE
Comput. Intell. Mag,vol. 1,pp. 28-39.

5. http://www.aco-metaheuristic.org/aco-code/public-
software.html (January15, 10.40 p.m)

6. https://github.com/pdrozdowski/TSPLib.Net/blob/m
aster/TSPLIB95/tsp/bays29.tsp (March 3, 9.15 p.m)

7. Raghavendra BV (2015) Solving Traveling Salesmen
Problem using Ant Colony Optimization Algorithm. J
Appl Computat Math 4:260. doi:10.4172/2168-
9679.1000260

8. Wang Hui. (2012) Comparison of several intelligent
algorithms for solving TSP problem in industrial
engineering, The 2nd International Conference on
Complexity Science & Information Engineering, pp
226-235.

	Evaluation of Ant Colony Optimization Algorithm Compared toGenetic Algorithm, Dynamic Programming and Branch and BoundAlgorithm Regarding Traveling Salesman Problem
	Author
	Keywords
	I. Introduction
	II. Comparing the Algorithms
	III. Discussion and Analysis of Result
	IV. Conclusion
	References Références Referencias

