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Abstract- The temporal lobe or auditory cortex in the brain is involved in processing auditory stimuli. The 
auditory data processing capability in the brain changes as a person ages. In this paper, we use the hrtf 
method to produce sound in different directions as auditory stimulus. Experiments are conducted with 
auditory stimulation of human subjects. Electroencephalogram (EEG) recording from the subjects are 
made during the exposure to the sound. A set of time frequency analysis operators consisting of the 
cyclic short time Fourier transform and the continuous wavelet transform is applied to the pre-processed 
EEG signal and a classifier is trained with time-frequency power from training data. The support vector 
machine classifier is then used for source localization of the sound. The paper also presents results with 
respect to neuronal regions involved in processing multi source sound information.      
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Abstract- The temporal lobe or auditory cortex in the brain is 
involved in processing auditory stimuli.  The auditory data 
processing capability in the brain changes as a person ages.  
In this paper, we use the hrtf method to produce sound in 
different directions as auditory stimulus.  Experiments are 
conducted with auditory stimulation of human subjects.  
Electroencephalogram (EEG) recording from the subjects are 
made during the exposure to the sound.  A set of time 
frequency analysis operators consisting of the cyclic short time 
Fourier transform and the continuous wavelet transform is 
applied to the pre-processed EEG signal and a classifier is 
trained with time-frequency power from training data.  The 
support vector machine classifier is then used for source 
localization of the sound.  The paper also presents results with 
respect to neuronal regions involved in processing multi 
source sound information. 
Index Terms: auditory stimulus, electroencephalogram, 
time frequency analysis, Fourier transform, wavelet 
transform, support vector machine, classifier, source 
localization. 

I. Introduction 

uditory information such as sound, speech, and 
music are processed in the brain through auditory 
pathways from the ear to the temporal lobe.  

Auditory signals are decoded in the brain, and 
interpreted.  There are 3 mains stages of sound 
processing.  When a person pays attention to a particular 
sound, this involves processing through a primary 
auditory pathway that starts as a reflex and passes from 
the cochlea to a sensory area of the temporal lobe called 
the auditory cortex.  

Each sound signal is decoded in the brain stem 
to its components such as time of duration, frequency 
and intensity.  After two additional processing steps the 
brain localizes the sound source, or it knows from which 
direction the sound is coming.  Once the sound is 
localized by the brain, the thalamus region of the brain is 
involved in producing a response through any other 
sensory area such as a motor response, or a vocal 
response.  Source  localization  of  sound  from  different 
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directions has been addressed by researchers in     
several ways.   

Sound localization has been analyzed by 
different researchers.  Virtual auditory stimuli was 
presented in 6 directions using headphones to human 
subjects, simultaneously recorded EEG data was 
classified using Support Vector Machines (SVMs) in I. 
Nambu et al. [1].  In S. Makeig et al. [2], Independent 
Component Analysis (ICA) was used to analyze Event 
Related Potentials for sound stimulus.  Monaural and 
binaural auditory stimulus was classified using ERPs in A. 
Bednar et al. [3].  Interaural Time Difference (ITD) was 
used in Letawski [4] for auditory localization.  

However, the methods presented do not present 
a deeper comprehensive analysis of EEG responses to 
auditory stimulus, in as much as EEG is a stochastic 
signal, that varies in both time and frequency varying.  In 
this paper, we present time frequency analysis as an 
alternate and viable method for identifying the source of 
sound by processing EEG responses to auditory 
stimulus.  This paper is organized as follows.  Section II 
presents a background on Electroencephalogram.  
Section III presents the time frequency analysis methods, 
Section IV presents the methodology for feature extraction 
and sound localization using the SVM classifier.  Section 
V presents the results, and VI the conclusions. 

II. EEG Data Collection with Auditory 
Stimulation 

Electroencephalogram (EEG) signals are 
electrical activity of the brain recorded using electrodes 
placed on the scalp using an EEG cap.  The number of 
electrodes can vary from as few as 8 to 256.  Each 
electrode provides a time series of voltage 
measurements at a particular sampling rate.   The 
experiments for this paper were done in the Brain 
Computer Interface Lab (BCI Lab) at the University of 
Puerto Rico at Mayaguez (UPRM).  The human subjects 
were college students with normal health.  Informed 
consent was obtained from the participants according to 
an approved protocol by the institutional review board 
(IRB) of UPRM. The EEG equipment used to collect the 
data is the BrainAmp from BrainVission, LLC which has 
32 channels in the Acticap arranged according to the 10-
20 system of electrode placement. The acticap with the 
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32 electrodes is worn by the subject.  Conducting gel is 
used to lower the impedance of electrodes making 
contact to the scalp.  The impedance of the electrodes 
were adjusted to be below 10 kilo Ohms.  The 
experiments were conducted in a quiet room, with only 
the subject and the investigator.  A series of 16 sound 
stimuli were presented to the subject in right and left ear 
through wearing headphones. Two classes of 2 secs 
stimuli were applied randomly. The first is a pure tone of 3 
kHz with 500 ms increasing tone, steady during 1 
second, and then decreasing tone during 500 ms.  The 
second stimulus was a burst of 3 kHz pure tone with 
durations of 100 ms ON, and 100 ms OFF for 10 trials. 
This give a total of 224 auditory stimuli (112 right/112 left). 
Each series of 16 stimuli takes around 2 minutes and the 
participant is allowed one minute to rest between trials. 
The sound stimuli were presented through a program 
written in Matlab.  The National Instruments device was 
used to put markers in the EEG data as they were 
recorded simultaneously when auditory stimuli were 
presented.  The results presented in this paper are from 
the analysis of EEG data collected from 3 different 
subjects. 

Figure 1: Pure tone and burst sound stimulus 

Apart from 2 directions of Left and Right for 
sound stimulus presentation, four direction stimuli were 
also presented to the subjects. For the four direction 
sound data presentation, we used sound localization 
using the head related transfer function. The HRTF is a 
novel technique to simulate direction of arrival of sounds. 
HRTF is also called as transfer function from the free field 
to a specific point of the ear canal. In mathematical terms 
the transfer functions for Left and Right are shown below: 

0

0

( , , , , ) ( , , , , ) / ( , )
( , , , , ) ( , , , , ) / ( , )

L L L

R R R

H H r w P r w P r w
H H r w P r w P r w

θ ψ α θ ψ α
θ ψ α θ ψ α

= =
= =

 

In the equations above, L and R are the left ear 
and right ear respectively. LP and RP  represent the 

amplitude of sound pressure at entrances to the left and 
right ear canal. 0P  is the sound pressure at the center of 

the head. The HRTFs for Left and Right are LH  and 

RH , respectively. The HRTF are functions of distance 

between source and center of the head r , and the 
parameters of the function are: the source angular 
position θ, the elevation angle ψ , the angular velocity 
w , and the equivalent dimension of the head α.   
Figures 2 and 3 show the directional sound stimulation 
implementations using HRTF. 

 

Figure 2: Two direction sound stimulus presentation 

 

Figure 3:
 
Four direction sound stimulus presentation

 

using HRTF
 

III.
 

Time-Frequency Analysis
 

The 32 channel EEG data collected are pre-
processed using band-pass filtering to remove low 
frequency noise, artifacts due to eye blinks and hardware 
induced artifacts.  In order to extract meaningful features 
from signals for source identification, it is necessary to 
map data in overlapping feature spaces to a separable 
space by high dimensional feature mapping.  This 
increases the dimensionality of the feature space, but the 
classes are easily separable in this space, and linear 
classifiers can be used to

 
classify the data in this high 

dimensional space.  In this project, we have mapped 1-D 
signal spaces to 2-D signal spaces through time-
frequency methods (TFM). The group of signals taken 
from the electrodes on the scalp are in the space of 
continuous physical signals ( )L 

 
(see Fig. 4). These 
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sequences are the mapping from ( )L  to ( ) Z  through 
an analog to digital process. The sampled/quantized 
version is computing using a window operator that 

transform ( ) Z  to 2 ( )N Z  when an EEG experiment is 

conducted. These signals now are in 2 ( )N Z  and is the 

space of discrete finite signals with finite energy. EEG 
signals can be processed by a computer using time-

frequency tools to map the signals from space 2 ( )N Z  

to the space 2 ( )N N× Z Z . The increased 

dimensionality of the signal space reveals more 
information about the original signal. The mapping from 

2 2( ) ( )N N N→ × Z Z Z  also additional computations 

while processing the EEG signal analysis in the 
transformed space. 

 

Figure 4: A general approach for time-frequency      
signal analysis 

In multiway signal-processing the selection of 
efficient and optimal methods for the processing of 
electroencephalographic signals is a problem 
addressed by many authors [5], [6], [7]. Fig. 5 shows 
the stages or levels of neural signal analysis presented 
in this paper. 

Time-frequency methods allow the observation 
of details in signals that would not be noticeable using a 
traditional Fourier transform. One of the problems of 
conversion to time-frequency spaces is that, according 
to the length of the input signal, the conversion can be 
time, and memory consuming.  The two methods for 
time frequency analysis considered here are the Short 
Time Fourier Transform (STFT), and the Wavelet 
Transform (WT). 
 

 

Figure 5: Stages of EEG signal analysis using time 
frequency methods 

a) Short Time Fourier Transform Analsys 
The STFT has been a widely-used time-

frequency signal processing operator. The CSTFT has 
certain advantages over STFT that are mentioned below. 

I. Short Time Fourier Transform Definition 
Given a signal [ ] ( )Nx n ∈ Z  and let 

[ ] ( )Nw n ∈ Z  a rectangular window function, the STFT 

is defined as follows: 

 
2

[ , ] [ ] [ ]
j kn

N

n
X m k x n w m n e

π∞ −

=−∞

= −∑  (1) 

A special variation of STFT is the cyclic short 
time Fourier transform. The CSTFT is a STFT with a 
window function [ ]w n  that performs a cyclic shift with 

the ¨
N

m n− that is the modulo operation which finds 

the remainder after the division of m n−  by N . 

II. Cyclic Short Time Fourier Transform Definition 
Given a signal [ ] ( )Nx n ∈ Z and let 

[ ] ( )Nw n ∈ Z  a rectangular window function, the 

CSTFT is defined as follows: 

 , [ , ] [ ]
N

kn
x v NN

n
S m k x n w m n W

∈

 = − ∑
Z

 (2) 

where, 
2 ( )j knkn N

NW e
π

−
= , Nm∈Z  (time shift) and 

Nk∈Z  (frequency axis). The CSTFT makes a mapping 

from the space ( )N Z  to the space ( )N N× Z Z . The 

advantage of CSTFT is that signals are mapped from 
the signal space ( )N Z  to the signal space 

( )N N× Z Z . This ensures that the mapping is 

constant, independent of the length of the input signal 
because through, a different segmentation, it can be 
ensured that the conversion falls into the same signal 
space. The new signal space gives richer information. A 
special group of the STFT is the Gabor transform, a 
generalized version is given in Equation 3. This time-
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frequency transform uses a window defined as a 
Gaussian function. 

 
2( ) 2( , ) ( )t j f

xG t f e e x dπ τ π τ τ τ
∞

− − −

−∞

= ∫  (3) 

b) Continuous Wavelet Transform and Discrete Wavelet 
Transform 

Wavelet Transform is based on a group or class 
of translated and dilated functions called wavelets. The 
continuous wavelet functions are defined in Blu et al. [8] 
as: 

 ',
1 '( ) ,t a

t tt
aa

ψ ψ − =  
 

 (4) 

And the  CWT is defined based  on these wavelets. 

 *
',

1 '( ', ) ( ) , .t a
t tCWT t a x t dt x

aa
ψ ψ

∞

−∞

− = = 
 ∫

 (5) 

The CWT gives a time frequency representation 
in terms of delay and dilation. The CWT representation 
has advantages over the CSTFT at low frequencies. In 
EEG, the presence of information at low frequency is 
very common. Therefore, CWT is better than the CSTFT 
for EEG time-frequency analysis. 

IV. Feature Extraction and 
Classification 

Figure 6 shows the EEG ERP responses to 2 
direction auditory stimulation. 

 

Figure 6:
 
Time Domain Event-Related Potentials for 

Auditory Stimuli N=112 Right and Left
 

The algorithm for feature extraction and 
classification using a support vector machine (SVM) 
classifier is shown in Figure 7.   Time Frequency Method 
(TFM) is either the CSTFT or the CWT.  The 32 channel 
EEG data were organized as tensors [9-12] and the time 
frequency methods were implemented in Python and 
visualized using MNE [13-15].  The EEG data of 112 
trials is divided in to 56 for trials for training and 56 trials 
for testing.  40 random trial averaging was done for 

training and testing of the SVM classifier. The results for 
two subjects is shown in Table 1. 

 

Figure 7: Flow chart of the classification algorithm 

Figure 8 shows the ERPs for 3 EEG channels 
that are from the frontal and temporal regions of the 
brain involved in processing of auditory stimulus.  The 
time delay in these evoked potentials can be clearly 
seen.  Similarly, Figures 9 and 10 shows the time delays 
in the evoked potentials for a 4 and 8 direction auditory 
stimulation, respectively.  In this case, the occipital and 
parietal lobes are involved.  This shows that as more 
complex sounds are presented, different neuronal 
pathways are activated in processing these auditory 
stimuli.  Figure 11 shows the time frequency 
representation for the 3 features for the 2 direction 
auditory ERPs.  Figure 12 shows the topoplots for the 
EEG signals recorded during left and right direction 
auditory stimulation.  Figures 13 to 15 shows the time 
frequency representation for the 3 features for the EEG 
signals evoked by auditory stimulation in 4 directions. 

 

Figure 8:

 

Time Delay Two Class, Three Features    
Evoked Potentials
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Figure 9: Time Delay Four Class, Three Features    

Evoked Potentials 

 

Figure 10:
 
Time Delay Eight Class, Three Features 

Evoked  Potentials
 

 

V. Results 

Table 1 shows very good accuracies for source 
localization when two directions auditory stimulus are 
presented.  For the 4 direction case, in Table 2 it can be 
seen that the classifier has difficulty in identifying the 
South direction. 

Table 1: Confusion Matrix 2 Class Using SVM Classifier 
for 3 Subjects 

 

 
L (W) R (E) 

L (W) 100% 0.10% 

R (E) 8% 92% 
 

 
L(W) R(E) 

L(W) 88% 12% 

R(E) 15% 85% 
 

 
L (W) R (E) 

L (W) 100% 0.0% 

R (E) 0.0% 100% 
 
 

 

Figure 11:
 
Time Frequency Representations for the 

Three Features for Binary Classification
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Figure 12: Event Related Potentials Topomaps for Left 

and Right Events 

Table 2: Confusion Matrix for4 Class Using SVM 
Classifier 

 

N E S W 
N 100% 0% 0% 0% 
E 0% 82% 0% 18% 
S 35% 1% 27% 38% 
W 0% 4% 0% 79% 

 
Figure 13: Time Frequency Representations for Feature 

One in the Four Directions 

 

Figure 14:
 
Time Frequency Representations for Feature 

Two
 
in the Four Directions

 

 

Figure 15: Time Frequency Representations for Feature 
Three in the Four Directions 

The salient features from the CWT in each of the 
neuronal regions for multiple direction auditory 
stimulation can be seen from the time frequency 
representations.  The CWT features performed well for 4 
directions auditory stimulus localization.   As can be 
seen, results for 2 directions is close to 100%.  The time 
delay plots in Figures 9 and 10 show that for more 
source directions, neuronal signals from the occipital 
and parietal regions have higher discriminatory power 
than frontal or temporal regions. 

VI. Conclusion 

Auditory processing in the brain was analyzed 
using time frequency analysis of EEG signals acquired 
from the brain using sound stimulus presentation.  The 
results show that as number of source directions is 
increased, different regions of the brain are involved in 
processing the signals.  This implies that as sound 
becomes more complex such as in speech, music, and 
language perception, higher intricate auditory pathways 
in the brain are involved in processing and decoded 
these sound patterns. 

The comparison of the time domain vs time-
frequency domain factorization of EEG shows that 
increasing the dimensionality of the EEG signals, 
provides a better way to discriminate the ERP of auditory 
stimuli and localize sources. Apart from sound direction 
localization from EEG, it is evident that EEG can also be 
used as a neuroimaging modality for understanding and 
decoding sensory and motor functional pathways in the 
brain.  This work can be extended to analyzing complex 
music, speech and language perception in the brain. 
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