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6

Abstract7

The temporal lobe or auditory cortex in the brain is involved in processing auditory stimuli.8

The auditory data processing capability in the brain changes as a person ages. In this paper,9

we use the hrtf method to produce sound in different directions as auditory stimulus.10

Experiments are conducted with auditory stimulation of human subjects.11

Electroencephalogram (EEG) recording from the subjects are made during the exposure to the12

sound. A set of time frequency analysis operators consisting of the cyclic short time Fourier13

transform and the continuous wavelet transform is applied to the pre-processed EEG signal14

and a classifier is trained with time-frequency power from training data. The support vector15

machine classifier is then used for source localization of the sound. The paper also presents16

results with respect to neuronal regions involved in processing multi source sound information.17

18

Index terms— auditory stimulus, electroencephalogram, time frequency analysis, Fourier transform, wavelet19
transform, support vector machine20

1 Introduction21

uditory information such as sound, speech, and music are processed in the brain through auditory pathways from22
the ear to the temporal lobe. Auditory signals are decoded in the brain, and interpreted.23

There are 3 mains stages of sound processing. When a person pays attention to a particular sound, this24
involves processing through a primary auditory pathway that starts as a reflex and passes from the cochlea to a25
sensory area of the temporal lobe called the auditory cortex.26

Each sound signal is decoded in the brain stem to its components such as time of duration, frequency and27
intensity. After two additional processing steps the brain localizes the sound source, or it knows from which28
direction the sound is coming. Once the sound is localized by the brain, the thalamus region of the brain is29
involved in producing a response through any other sensory area such as a motor response, or a vocal response.30
Source localization of sound from different directions has been addressed by researchers in several ways.31

Sound localization has been analyzed by different researchers.32
Virtual auditory stimuli was presented in 6 directions using headphones to human subjects, simultaneously33

recorded EEG data was classified using Support Vector Machines (SVMs) in I. Nambu et al. [1]. In S. Makeig et34
al. [2], Independent Component Analysis (ICA) was used to analyze Event Related Potentials for sound stimulus.35
Monaural and binaural auditory stimulus was classified using ERPs in A. Bednar et al. [3]. Interaural Time36
Difference (ITD) was used in Letawski [4] for auditory localization.37

However, the methods presented do not present a deeper comprehensive analysis of EEG responses to auditory38
stimulus, in as much as EEG is a stochastic signal, that varies in both time and frequency varying. In this39
paper, we present time frequency analysis as an alternate and viable method for identifying the source of sound40
by processing EEG responses to auditory stimulus. This paper is organized as follows. Section II presents a41
background on Electroencephalogram. Section III presents the time frequency analysis methods, Section IV42
presents the methodology for feature extraction and sound localization using the SVM classifier. Section V43
presents the results, and VI the conclusions.44
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5 RESULTS

2 II. EEG Data Collection with Auditory Stimulation45

Electroencephalogram (EEG) signals are electrical activity of the brain recorded using electrodes placed on the46
scalp using an EEG cap. The number of electrodes can vary from as few as 8 to 256. Each electrode provides a47
time series of voltage measurements at a particular sampling rate.48

The experiments for this paper were done in the Brain Computer Interface Lab (BCI Lab) at the University49
of Puerto Rico at Mayaguez (UPRM). The human subjects were college students with normal health. Informed50
consent was obtained from the participants according to an approved protocol by the institutional review board51
(IRB) of UPRM. The EEG equipment used to collect the data is the BrainAmp from BrainVission, LLC which52
has 32 channels in the Acticap arranged according to the 10-20 system of electrode placement. The acticap with53
the 32 electrodes is worn by the subject. Conducting gel is used to lower the impedance of electrodes making54
contact to the scalp. The impedance of the electrodes were adjusted to be below 10 kilo Ohms.55

The experiments were conducted in a quiet room, with only the subject and the investigator. A series of 1656
sound stimuli were presented to the subject in right and left ear through wearing headphones. Two classes of 257
secs stimuli were applied randomly. The first is a pure tone of 3 kHz with 500 ms increasing tone, steady during58
1 second, and then decreasing tone during 500 ms. The second stimulus was a burst of 3 kHz pure tone with59
durations of 100 ms ON, and 100 ms OFF for 10 trials. This give a total of 224 auditory stimuli (112 right/11260
left). Each series of 16 stimuli takes around 2 minutes and the participant is allowed one minute to rest between61
trials. The sound stimuli were presented through a program written in Matlab. The National Instruments device62
was used to put markers in the EEG data as they were recorded simultaneously when auditory stimuli were63
presented. The results presented in this paper are from the analysis of EEG data collected from 3 different64
subjects.65

3 Time-Frequency Analysis66

The 32 channel EEG data collected are preprocessed using band-pass filtering to remove low frequency noise,67
artifacts due to eye blinks and hardware induced artifacts. In order to extract meaningful features from signals68
for source identification, it is necessary to map data in overlapping feature spaces to a separable space by high69
dimensional feature mapping. This increases the dimensionality of the feature space, but the classes are easily70
separable in this space, and linear classifiers can be used to classify the data in this high dimensional space. In71
this project, we have mapped 1-D signal spaces to 2-D signal spaces through timefrequency methods (TFM). The72
group of signals taken from the electrodes on the scalp are in the space of continuous physical signals ( ) L ? (see73
Fig. 4). These In multiway signal-processing the selection of efficient and optimal methods for the processing of74
electroencephalographic signals is a problem addressed by many authors [5], [6], [7]. Fig. 5 shows the stages or75
levels of neural signal analysis presented in this paper.76

Time-frequency methods allow the observation of details in signals that would not be noticeable using a77
traditional Fourier transform. One of the problems of conversion to time-frequency spaces is that, according to78
the length of the input signal, the conversion can be time, and memory consuming. The two methods for time79
frequency analysis considered here are the Short Time Fourier Transform (STFT), and the Wavelet Transform80
(WT). CSTFT is defined as follows:, [ , ] [ ] N kn x v N N n S m k x n w m n W ? ? ? = ? ? ? ? Z (2)81

where, × ? Z Z . This ensures that the mapping is constant, independent of the length of the input signal82
because through, a different segmentation, it can be ensured that the conversion falls into the same signal83
space. The new signal space gives richer information. A special group of the STFT is the Gabor transform, a84
generalized version is given in Equation ??. This time-Figure 6 shows the EEG ERP responses to 2 direction85
auditory stimulation. The algorithm for feature extraction and classification using a support vector machine86
(SVM) classifier is shown in Figure ??. Time Frequency Method (TFM) is either the CSTFT or the CWT. The87
32 channel EEG data were organized as tensors [9][10][11][12] and the time frequency methods were implemented88
in Python and visualized using MNE [13][14][15]. The EEG data of 112 trials is divided in to 56 for trials89
for training and 56 trials for testing. 40 random trial averaging was done for training and testing of the SVM90
classifier. The results for two subjects is shown in Table 1.91

4 Figure 7: Flow chart of the classification algorithm92

Figure 8 shows the ERPs for 3 EEG channels that are from the frontal and temporal regions of the brain involved in93
processing of auditory stimulus. The time delay in these evoked potentials can be clearly seen. Similarly, Figures94
9 and 10 shows the time delays in the evoked potentials for a 4 and 8 direction auditory stimulation, respectively.95
In this case, the occipital and parietal lobes are involved. This shows that as more complex sounds are presented,96
different neuronal pathways are activated in processing these auditory stimuli.97

Figure 11 shows the time frequency representation for the 3 features for the 2 direction auditory ERPs. Figure98
1299

5 Results100

Table 1 shows very good accuracies for source localization when two directions auditory stimulus are presented.101
For the 4 direction case, in Table 2 it can be seen that the classifier has difficulty in identifying the South direction.102
The salient features from the CWT in each of the neuronal regions for multiple direction auditory stimulation103

2



can be seen from the time frequency representations. The CWT features performed well for 4 directions auditory104
stimulus localization.(W) R (E) L (W) 100% 0.10% R (E) 8% 92% L(W) R(E) L(W) 88% 12% R(E) 15% 85%105
L (W) R (E) L (W) 100% 0.0% R (E) 0.0% 100%106

As can be seen, results for 2 directions is close to 100%. The time delay plots in Figures 9 and 10 show that107
for more source directions, neuronal signals from the occipital and parietal regions have higher discriminatory108
power than frontal or temporal regions.109

6 VI.110

7 Conclusion111

Auditory processing in the brain was analyzed using time frequency analysis of EEG signals acquired from the112
brain using sound stimulus presentation. The results show that as number of source directions is increased,113
different regions of the brain are involved in processing the signals. This implies that as sound becomes more114
complex such as in speech, music, and language perception, higher intricate auditory pathways in the brain are115
involved in processing and decoded these sound patterns.116

The comparison of the time domain vs timefrequency domain factorization of EEG shows that increasing117
the dimensionality of the EEG signals, provides a better way to discriminate the ERP of auditory stimuli and118
localize sources. Apart from sound direction localization from EEG, it is evident that EEG can also be used as119
a neuroimaging modality for understanding and decoding sensory and motor functional pathways in the brain.120
This work can be extended to analyzing complex music, speech and language perception in the brain. 1
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Figure 6: Figure 5 :
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Figure 8: Figure 6 :
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Figure 10: Figure 8 :
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Figure 12: Figure 11 :
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Figure 15: Figure 15 :
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Figure 16: Table 1 :
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N E S W
N 100% 0% 0% 0%
E 0% 82% 0% 18%
S 35% 1% 27% 38%
W 0% 4% 0% 79%

Figure 17: Table 2 :
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.1 b) Continuous Wavelet Transform and Discrete Wavelet Transform

frequency transform uses a window defined as a Gaussian function. ( , ) ( )122

.1 b) Continuous Wavelet Transform and Discrete Wavelet Transform123

Wavelet Transform is based on a group or class of translated and dilated functions called wavelets. The continuous124
wavelet functions are defined in Blu et al. [8] as:125

And the CWT is defined based on these wavelets.126
The CWT gives a time frequency representation in terms of delay and dilation. The CWT representation has127

advantages over the CSTFT at low frequencies. In EEG, the presence of information at low frequency is very128
common. Therefore, CWT is better than the CSTFT for EEG time-frequency analysis.129

IV.130

.2 Feature Extraction and Classification131
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