

GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: D NEURAL & ARTIFICIAL INTELLIGENCE Volume 19 Issue 3 Version 1.0 Year 2019 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Machine Learning Approach to Forecast Average Weather Temperature of Bangladesh

By Ashfaq Ali Shafin

Stamford University Bangladesh

Abstract- Weather prediction is gaining popularity very rapidly in the current era of Artificial Intelligence and Technologies. It is essential to predict the temperature of the weather for some time. In this research paper, we tried to find out the pattern of the average temperature of Bangladesh per year as well as the average temperature per season. We used different machine learning algorithms to predict the future temperature of the Bangladesh region. In the experiment, we used machine learning algorithms, such as Linear Regression, Polynomial Regression, Isotonic Regression, and Support Vector Regressor. Isotonic Regression algorithm predicts the training dataset most accurately, but Polynomial Regressor and Support Vector Regressor predicts the future average temperature most accurately.

Keywords: machine learning, linear regression, isotonic regression, support vector regressor, polynomial regression, temperature prediction.

GJCST-D Classification: I.2.m

Strictly as per the compliance and regulations of:

© 2019. Ashfaq Ali Shafin. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Machine Learning Approach to Forecast Average Weather Temperature of Bangladesh

Ashfaq Ali Shafin

Abstract- Weather prediction is gaining popularity very rapidly in the current era of Artificial Intelligence and Technologies. It is essential to predict the temperature of the weather for some time. In this research paper, we tried to find out the pattern of the average temperature of Bangladesh per year as well as the average temperature per season. We used different machine learning algorithms to predict the future temperature of the Bangladesh region. In the experiment, we used machine learning algorithms, such as Linear Regression, Polynomial Regression, Isotonic Regression algorithm predicts the training dataset most accurately, but Polynomial Regressor and Support Vector Regressor predicts the future average temperature most accurately.

Keywords: machine learning, linear regression, isotonic regression, support vector regressor, polynomial regression, temperature prediction.

I. INTRODUCTION

Prediction for the future using the correct algorithm is viral nowadays. This prediction is applicable for the weather prediction as well. We can use machine learning to know whether it will rain tomorrow or what will be the temperature tomorrow. Machine learning algorithms can correctly forecast weather features like humidity, temperature, outlook, and airflow speed and direction. This sector is immensely dependent on previous data and artificial intelligence. Predicting future weather also helps us to make decisions in agriculture, sports and many aspects of our lives.

We aimed to predict the average temperature of Bangladesh in this research paper. As a subtropical country, Bangladesh has very different weather from other countries due to periodic disparities of rainfall, sophisticated temperatures, and humidity. Mainly three distinct seasons are present in Bangladesh, and those are Summer, Rainy, and Winter [1]. The summer season consists from March to June, while Rainy season lasts June to October and the Winter is from October to March. Even though Bangladesh is known as the sixseasoned country, mainly three seasons can be observed in this current time.

The dataset used in this paper contains the average temperature from the year 1901 to 2018 on a once-a-month basis. We calculated the sum of the

values of temperature of the twelve months and then divided by 12 to get the average temperature of that particular year. Then we used different machine learning algorithms to extrapolate our findings and the generalize the output result.

After the modeling, also known as training or fitting in machine learning, we have forecasted the average temperature for Bangladesh in upcoming days using the machine learning prediction. Future weather forecast can use the predicted result.

II. LITERATURE REVIEW

Mizanur et al. used a model, produced for predicting mean temperature that adjusted with groundbased watched information in Bangladesh during the time of 1979-2006. For the comprehension of the model execution, they have utilized the Climate Research Unit (CRU) information. Better implementation of MRI-AGCM got through approval procedure expanded trust in using it later temperature projection for Bangladesh[2].

An assessment of air temperature and precipitation conduct is significant for momentary arranging and the forecast of future atmospheric conditions. Patterns in precipitation and temperature at yearly, regular and month to month time scales for the times of 1981-2008 have been dissected utilizing BMD information and MPI-ESM-LR (CMIP5) model information. Likewise, the outcomes thus structure a decent premise of future examinations on temperature changeability. Thinking about all seasons (winter, prestorm, rainstorm and post-storm), most extreme temperature has expanded altogether in all seasons except winter which is immaterial over the entire investigation zone for BMD information however for MPI-ESM-LR (CMIP5) model information highest temperature is on increment in the area. Heat over the whole area expanded by 0.29° celcius and 5.3° celcisus every century individually for BMD information and MPI-ESM-LR (CMIP5) model information [3].

Holmstrom et al. recommended a method to determine the highest and lowest temperature of the subsequent seven days, given the data of the past couple days [7]. They employed a linear regression model and a variation of a functional linear regression model. Expert weather forecasting services for the prediction outperformed the two models. As a classification problem, Radhika et al. used support vector machines for climate forecast [8]. Krasnopolsky

Author: Lecturer, Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh. e-mail: shafinashfaqali21@gmail.com

and Rabinivitz offer a crossbreed model that employed neural networks to model weather forecasting [9]. A predictive model based on data mining was presented in [10] to establish fluctuating weather patterns

III. METHODOLOGY

a) Dataset

We collected the dataset from the website www.kaggle.com/yakinrubaiat/bangladesh-

weather-dataset. This dataset contains the monthly average value of Bangladesh temperature and rain from

December

i=January

1901 to 2015. Then we manually, added the data from the year 2016 to 2018 from the Bangladesh Meteorological Department which is the official weather forecasting department of Bangladesh government.

b) Pre-processing

For yearly average temperature, we have added all the monthly average temperature of a particular year and then divided it by 12 to get the annual average temperature. A mathematical equation presented for the average temperature of a year in equation (1).

average temperature of the month i in year x)/12 (1)

For seasonal average temperature, the following table (1) is used to calculate the average temperature. We have added the average temperature for those months respectively and then divided it by 4 for the seasonal average temperature.

Table 1: Months in the Season

Season	Months		
Summer	March, April, May, June,		
Rainy	July, August, September, October		
Winter	November, December, January,		
	February		

c) Data Visualization and Statistics

First, we plot the corresponding average temperature against the years from 1901 to 2018 from the dataset. We can observe from figure 1, the lowest average temperature was 24.2055 in the year of 1905, and the highest temperature was 26.5927 in the year of 2018.

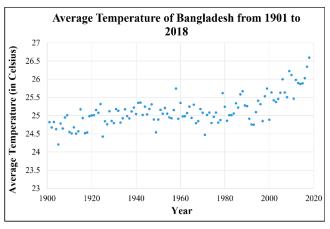
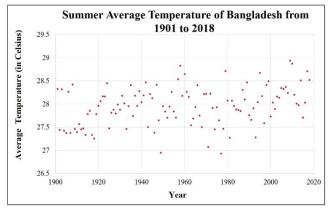
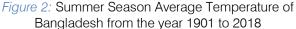


Figure 1: Average Yearly Temperature of Bangladesh from the year 1901 to 2018

Figure (2), (3), and (4) represent the seasonal average temperature of Bangladesh from 1901 to 2018 of summer, rainy, and winter seasons respectively. The lowest average temperature was 26.93° celsius for

summer, 26.10° celsius for the rainy season, and 19.05° Celsius for winter.





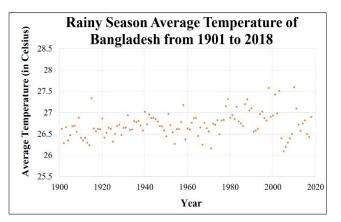


Figure 3: Rainy Season Average Temperature of Bangladesh from the year 1901 to 2018



Figure 4: Winter Season Average Temperature of Bangladesh from the year 1901 to 2018

Table (2) describes the overview of the yearly and seasonal average temperature data statistics is. Standard Deviation of the annual average temperature is 0.42 while the standard deviation for the summer, rainy, and winter is 0.41, 0.29, and 0.56 respectively.

d) Estimator Selection

In this paper, we have used several machine learning algorithms described in table (3) to train our data and to predict future average temperature.

Table 3: Estimators Used in the Experiment and Their Parameter

Estimator	Parameter
Linear Regression	Default
Isotonic Regression	Default
Polynomial Regression	Degree $= 2$ and 3
Non-linear Support Vector	Degree = 3
Regressor (SVR)	

Linear regression is a direct technique of demonstrating the connection between a scalar reaction, also known as the dependent variable and one or more explanatory variables or independent factors. The instance of one logical variable is called univariate linear regression. For more than one explanatory variable, the procedure is called multiple linear regression [4]. This term is unmistakable from multivariate direct relapse, where numerous associated ward factors are anticipated, as opposed to a single scalar variable. [5]

For one variable feature x, year in our case and target value y, the average output temperature the linear regression equation is:

$$y = w_0 + w_1 x + e$$
 (2)

Here, w_0 and w_1 are the weight vectors, and e is the error term.

Isotonic regression is the method of fitting a freestyle line to a succession of perceptions under the accompanying requirements: the provided freestyle line needs to be non-decreasing all over, and it needs to lie as near the opinion as would be prudent.

The isotonic regression optimization is expressed by:

minimize
$$\sum_{i} w_i (y_i - ypred_i)^2$$
 (3)

Here y_i is actual output, $ypred_i$ is a prediction, and w_i are strictly positive weights (default to 1.0).

Table 2: Dataset Statistical Overview

Attributes	Year	Yearly Average Temperature (in Celsius)	Summer Season Average Temperature (in Celsius)	Rainy Season Average Temperature (in Celsius)	Winter Season Average Temperature (in Celsius)
Count	118	118	118	118	118
Mean	1959.5	25.13	27.96	26.72	20.33
SD*	34.2077	0.42	0.41	0.29	0.56
Minimum	1901	24.21	26.93	26.10	19.05
25%	1930.25	24.86	27.69	26.55	19.96
50%	1959.5	25.06	27.96	26.69	20.24
75%	1988.75	25.31	28.24	26.87	20.67
100%	2018	26.59	28.94	27.60	21.59

SD* indicates Standard Deviation.

Polynomial regression is a structure of regression analysis in which the connection between the independent variable x and the dependent variable y displayed as n-th degree polynomial in x. Polynomial relapse fits a nonlinear relationship between the worth of x and the corresponding conditional mean of y. In this paper, we have used polynomial regression of 2nd-degree, and 3rd-degree equations represented as follows:

$$y = w_0 + w_1 x + w_2 x^2 + e \tag{4}$$

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + e$$
 (5)

Here, w_0, w_1, w_2, w_3 are weight vectors, x is the independent input variable of year, y is the output variable average temperature, and e is the error term.

For Support Vector Regressor (SVR), the model delivered by help vector arrangement depends just on a subset of the preparation information because the cost capacity for structure the model does not think about preparing focuses that lie past the edge. Comparably, the model created by SVR depends just on a subset of the preparation information, because the cost capacity for structure the model overlooks any preparation information near the model forecast. The equation for non-linear SVR represented as:

$$y = \sum_{i=0}^{n} w_i x_i + b \tag{6}$$

Here, w is the weight vector, x is the input vector of years, y is being outputted vector of average temperature and b is the bias term, and n is the degree of the equation. In our case, we have used n=3 for the experiment.

IV. RESULT ANALYSIS

Figure (5), (6), and (7) represents the yearly average temperature for the regressors mentioned above. Linear Regression and Isotonic Regression are fitted in figure (5), while graph (6) and (7) adapted for Polynomial Regression and Support Vector Regressor.

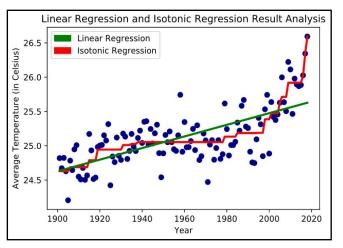
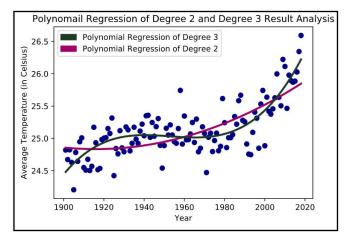
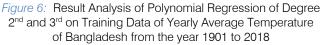


Figure 5: Result Analysis of Linear Regression and Isotonic Regression on Training Data of Yearly Average Temperature of Bangladesh from the year 1901 to 2018





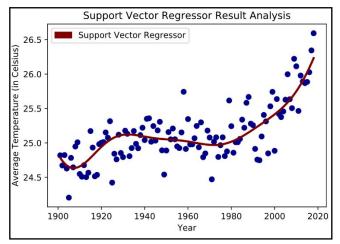


Figure 7: Result Analysis of Support Vector Regressor of Degree 3rd on Training Data of Yearly Average Temperature of Bangladesh from the year 1901 to 2018

- From figure (5), (6), and (7) we can observe that, a. Isotonic Regression works best for the yearly average temperature training dataset.
- Both Polynomial Regression of 3rd degree and SVR of 3rd degree tries to fit the training data as accurately as possible.
- c. Linear Regression works most poorly among all the estimators.

Figure (8), (9), and (10) represent the yearly summer season average temperature for the estimators. We used graph 8 for Linear and Isotonic Regression. Figure (9) and figure (10) embody the Polynomial Regression and SVR for the yearly summer season average temperature.

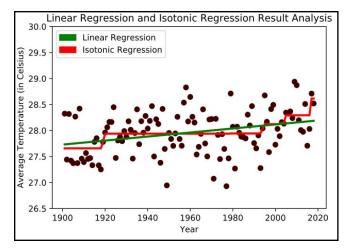


Figure 8: Result Analysis of Linear Regression and Isotonic Regression on Training Data of Summer Season Average Temperature of Bangladesh from the year 1901 to 2018

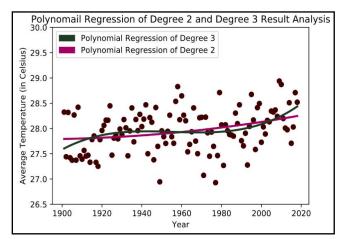


Figure 9: Result Analysis of Polynomial Regression of Degree 2nd and 3rd on Training Data of Summer Season Average Temperature of Bangladesh from the year 1901 to 2018

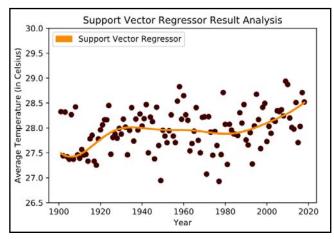


Figure 10: Result Analysis of Support Vector Regressor of Degree 3rd on Training Data of Summer Season Average Temperature of Bangladesh from the year 1901 to 2018

From figure (8), (9), and (10) we can observe that,

- a. Isotonic Regression works best for summer season yearly average temperature training dataset.
- b. Both Polynomial Regression of 3rd degree and Polynomial Regression of 2nd degree tries to fit the training data as accurately as possible.
- c. Linear Regression works most poorly among all the estimators.

Figure 11, 12 and 13 represent the yearly rainy season average temperature for the estimators. We used graph 11 for Linear and Isotonic Regression. Diagram 12 and 13 personify the Polynomial Regression and SVR for the yearly summer season average temperature, respectively.

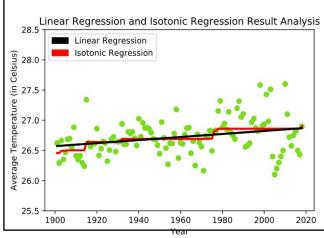


Figure 11: Result Analysis of Linear Regression and Isotonic Regression on Training Data of Rainy Season Average Temperature of Bangladesh from the year 1901 to 2018

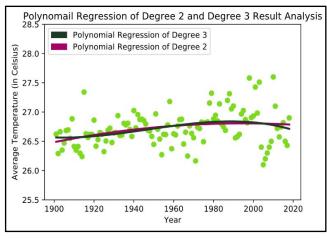


Figure 12: Result Analysis of Polynomial Regression of Degree 2nd and 3rd on Training Data of Rainy Season Average Temperature of Bangladesh from the year 1901 to 2018

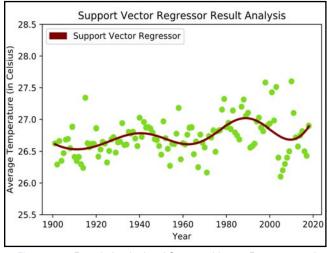


Figure 13: Result Analysis of Support Vector Regressor of Degree 3rd on Training Data of Rainy Season Average Temperature of Bangladesh from the year 1901 to 2018

From figure (11), (12), (13) we can observe that,

- a. For the rainy season dataset, Isotonic Regression fits the dataset accurately than other estimators.
- b. Both Polynomial Regression of 3rd degree and Polynomial Regression of 2nd degree fits quite similarly with a minimal margin line
- c. SVR of 3rd degree performs better than Polynomial and Linear Regressor.

We used the figures (14), (15), and (16) to plot different estimators result for the winter season average temperature dataset. In diagram 14, we applied Linear and Isotonic Regression for the winter season. Figure (15) and figure (16) characterize the Polynomial Regression and SVR for the yearly summer season average temperature, respectively.

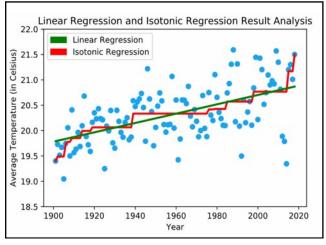


Figure 14: Result Analysis of Linear Regression and Isotonic Regression on Training Data of Winter Season Average Temperature of Bangladesh from the year 1901 to 2018

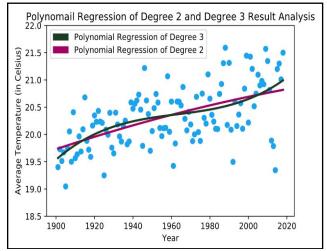


Figure 15: Result Analysis of Polynomial Regression of Degree 2nd and 3rd on Training Data of Winter Season Average Temperature of Bangladesh from the year 1901 to 2018

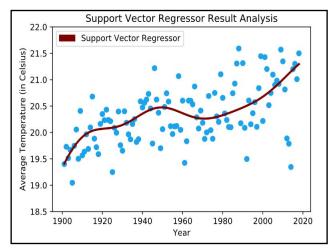


Figure 16: Result Analysis of Support Vector Regressor of Degree 3rd on Training Data of Winter Season Average Temperature of Bangladesh from the year 1901 to 2018

After observing figure (14), (15), and (16), we conclude that,

- a. Aimed at the winter season dataset, Isotonic Regression fits the dataset accurately than other estimators.
- Both Polynomial Regression of 3rd degree and Polynomial Regression of 2nd degree fits quite similarly with a minimal margin line
- c. SVR of 3rd degree performs better than Polynomial and Linear Regressor.

For result analysis, we have used four estimators to predict the estimator's outcome. These are Mean Squared Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (MedAE) and R2_Score.

Mean squared error (MSE) of an estimator measures the normal of the squares of the blunders-that is, the standard squared distinction between the assessed qualities and the genuine worth. MSE is a hazard work, relating to the conventional estimation of the squared mistake misfortune. The way that MSE is quite often carefully positive (and not zero) is a direct result of haphazardness or because the estimator does not represent data that could create a progressively precise estimate [6]. If a vector of n likelihoods created from a sample of n data points on all variables, and Y is the vector of experimental values of the variable being forecast, then the within-sample MSE of the predictor is computed as:

$$MSE = \frac{1}{n} \sum_{k=1}^{n} (Y_k - \bar{Y_k})^2$$
(7)

Mean Absolute Error (MAE) is a proportion of the contrast between two consistent factors. Accept X and Y are factors of combined perceptions that express a similar of n focuses, where the i number point have organized (x_i, y_i) . Mean Absolute Error (MAE) is the normal vertical separation between each position and the character line. MAE is likewise the normal flat separation between each point and the personality line. If a vector of n likelihoods created from a sample of n data points on all variables, and Y is the vector of experimental values of the variable forecast, then the within-sample MSE of the marvel. Instances of Y versus X incorporate correlations of anticipated versus watched, ensuing time versus starting time, and one method of estimation versus an elective strategy of evaluation. Consider a dissipate plot predictor computed as:

$$MAE = \frac{1}{n} \sum_{k=1}^{n} |Y_k - \overline{Y_k}|^2$$
 (8)

The Median Absolute Error (MedAE) is especially fascinating because it is secure to exceptions. The misfortune determined by taking the middle of every apparent distinction between the objective and the forecast. If \overline{Y}_k is the predicted value of the k-th sample and Y_k is the corresponding actual value, then the Median Absolute Error estimated over n samples defined as:

$$MadAE = median (|Y_1 - \overline{Y_1}|, \dots, |Y_n - \overline{Y_n}|)$$
(9)

R2_Score represents the extent of fluctuation that has been clarified by the autonomous factors in the model. It gives a sign of decency of fit and subsequently a proportion of how well inconspicuous examples are probably going to be anticipated by the model, though the extent of clarified change. R2_Score will be in the range of 0.0 to 1.0. A higher value of R2_Score means better performance of the estimator. If a vector of n likelihoods created from a sample of n data points on all variables, and Y is the vector of experimental values of the variable being forecast, then the R2_Score of the predictor is computed as:

$$R2_{Score} = 1 - \frac{\sum_{k=1}^{n} (Y_k - \bar{Y}_k)^2}{\sum_{k=1}^{n} (Y_k - \hat{Y})^2}$$
(10)
where $\hat{Y} = \frac{1}{n} \sum_{k=1}^{n} Y_k$

	Mean Squared Error	Mean Absolute Error	Median Absolute Error	R2_score
Linear	0.093863	0.242148	0.205785	0.539885
Isotonic	0.050341	0.172628	0.139777	0.835687
Polynomial 2	0.083724	0.230284	0.19991	0.617148
Polynomial 3	0.061494	0.197245	0.159327	0.722697
SVR	0.061455	0.189903	0.140335	0.712918

Table 4: Yearly Performance Metric on Training Dataset

Table F. Cumana ar Casaan	Veerly Derfermene	Metric on Training Dataset
Table 5' Summer Season	Yeany Penormance	Meine on training Dataset
	rouny rononnanoo	Motho on maining Bataoot

	Mean Squared Error	Mean Absolute Error	Median Absolute Error	R2_score
Linear	0.155614	0.318922	0.297744	0.3500776
Isotonic	0.107546	0.228602	0.236929	0.695183
Polynomial 2	0.154835	0.29976	0.272486	0.555278
Polynomial 3	0.14919	0.27711	0.257635	0.657899
SVR	0.151835	0.27976	0.262486	0.645278

Table 6: Rainy Season Yearly Performance Metric on Training Dataset

	Mean Squared Error	Mean Absolute Error	Median Absolute Error	R2_score
Linear	0.077955	0.206872	0.146128	0.3800776
Isotonic	0.030075	0.134821	0.11163	0.715183
Polynomial 2	0.066564	0.174726	0.139304	0.535278
Polynomial 3	0.0557	0.153632	0.124492	0.687899
SVR	0.056564	0.151726	0.121304	0.695278

	Mean Squared Error	Mean Absolute Error	Median Absolute Error	R2_score
Linear	0.206298	0.370612	0.305485	0.472405
Isotonic	0.114431	0.265708	0.266803	0.697074
Polynomial 2	0.155757	0.307127	0.31012	0.594085
Polynomial 3	0.140985	0.305768	0.277769	0.609855
SVR	0.145712	0.307321	0.31021	0.614085

Table 7: Winter Season	Yearly Performance	Metric on Training Dataset

Table (4), (5), (6), and (7) represent the estimation of the estimators. We can observe that for training data, Isotonic Regression outperforms all the other estimators. As MSE, MAE, and MedAE are the lower and R2_Score of higher value means better performance for the estimator. We can notice that the boldfaced benefits of Isotonic Regressor perform better than other estimators. R2_Score for the yearly average temperature dataset is 0.835687, which is the highest value among all the datasets and estimators.

Polynomial Regressor of degree 3 and Support Vector Regressor of 3rd degree performs quite similar. All the estimator's values are the same as the other. Both Regressors perform better than Linear Regression and second-degree Polynomial Regression.

After training the dataset, we experimented with predicting the future yearly average temperature and seasonal average temperature. Table (8), (9), (10), and (11) denote the future average temperature for Bangladesh from 2019 to 2040. Extrapolated from the tables that, Isotonic Regression prediction is a constant value. As Isotonic Regressor cannot predict future projection for the average temperature, we should not rely on this estimator. The forecast for SVR or Polynomial of degree 3, can be considered as the future average temperature values.

Veer	Linear	Isotonic	Polynomial 2	Polynomial 3	SVR
Year	(in Celsius)				
2019	25.63586051	26.59269167	25.86681503	26.28186616	26.30747778
2020	25.64432853	26.59269167	25.88692782	26.34383308	26.38603639
2021	25.65279655	26.59269167	25.90723469	26.40773801	26.46720899
2022	25.66126457	26.59269167	25.92773563	26.47360977	26.5506604
2023	25.66973259	26.59269167	25.94843066	26.54147719	26.63601319
2024	25.67820061	26.59269167	25.96931976	26.61136908	26.72285181
2025	25.68666863	26.59269167	25.99040295	26.68331428	26.81072735
2026	25.69513666	26.59269167	26.01168021	26.75734161	26.89916294
2027	25.70360468	26.59269167	26.03315155	26.83347989	26.98765943
2028	25.7120727	26.59269167	26.05481697	26.91175796	27.07570159
2029	25.72054072	26.59269167	26.07667647	26.99220463	27.1627644
2030	25.72900874	26.59269167	26.09873006	27.07484874	27.24831957
2031	25.73747676	26.59269167	26.12097772	27.1597191	27.33184196
2032	25.74594478	26.59269167	26.14341946	27.24684454	27.41281603
2033	25.7544128	26.59269167	26.16605527	27.33625389	27.49074201
2034	25.76288082	26.59269167	26.18888517	27.42797597	27.56514179
2035	25.77134884	26.59269167	26.21190915	27.52203961	27.63556448
2036	25.77981686	26.59269167	26.23512721	27.61847363	27.70159143
2037	25.78828488	26.59269167	26.25853935	27.71730686	27.76284079
2038	25.7967529	26.59269167	26.28214556	27.81856812	27.81897148
2039	25.80522092	26.59269167	26.30594586	27.92228624	27.86968648
2040	25.81368895	26.59269167	26.32994023	28.02849005	27.91473551

Table 8: Prediction of Yearly Average Temperature of Bangladesh

Year	Linear (in Celsius)	lsotonic (in Celsius)	Polynomial 2 (in Celsius)	Polynomial 3 (in Celsius)	SVR (in Celsius)
2019	28.19047834	28.615	28.25449732	28.46365767	28.54480252
2020	28.19435532	28.615	28.26160216	28.49185427	28.58082584
2021	28.19823231	28.615	28.26876079	28.5209835	28.61857476
2022	28.20210929	28.615	28.27597322	28.55105987	28.65801114
2023	28.20598628	28.615	28.28323944	28.58209792	28.69906761
2024	28.20986327	28.615	28.29055947	28.61411216	28.74164722
2025	28.21374025	28.615	28.29793329	28.64711713	28.78562362
2026	28.21761724	28.615	28.30536091	28.68112735	28.83084182
2027	28.22149422	28.615	28.31284232	28.71615735	28.87711958
2028	28.22537121	28.615	28.32037754	28.75222166	28.92424923
2029	28.2292482	28.615	28.32796655	28.78933479	28.97200001
2030	28.23312518	28.615	28.33560936	28.82751127	29.02012093
2031	28.23700217	28.615	28.34330596	28.86676564	29.06834385
2032	28.24087915	28.615	28.35105637	28.90711242	29.11638708
2033	28.24475614	28.615	28.35886057	28.94856613	29.16395902
2034	28.24863313	28.615	28.36671857	28.9911413	29.21076218
2035	28.25251011	28.615	28.37463036	29.03485245	29.2564971
2036	28.2563871	28.615	28.38259596	29.07971412	29.30086648
2037	28.26026408	28.615	28.39061535	29.12574082	29.34357913
2038	28.26414107	28.615	28.39868854	29.17294709	29.38435384
2039	28.26801806	28.615	28.40681552	29.22134744	29.42292307
2040	28.27189504	28.615	28.41499631	29.27095641	29.45903642

Table 9: Prediction of Summer Season Y	early Average Temperature of Bangladesh

Table 10: Prediction of Rainy Season Yearly Average Temperature of Bangladesh

Year	Linear (in Celsius)	Isotonic (in Celsius)	Polynomial 2 (in Celsius)	Polynomial 3 (in Celsius)	SVR (in Celsius)
2019	26.87127359	26.7	26.78574892	26.70392021	26.94289087
2020	26.87379679	26.7	26.78395995	26.69387951	27.00131911
2021	26.87631998	26.7	26.7820991	26.68342312	27.06501447
2022	26.87884318	26.7	26.78016639	26.67254536	27.13357378
2023	26.88136637	26.7	26.77816181	26.66124053	27.2065319
2024	26.88388956	26.7	26.77608535	26.64950297	27.28336802
2025	26.88641276	26.7	26.77393703	26.63732698	27.3635128
2026	26.88893595	26.7	26.77171684	26.62470689	27.44635609
2027	26.89145914	26.7	26.76942478	26.611637	27.53125518
2028	26.89398234	26.7	26.76706085	26.59811164	27.61754344
2029	26.89650553	26.7	26.76462505	26.58412513	27.70453908
2030	26.89902873	26.7	26.76211738	26.56967177	27.79155413
2031	26.90155192	26.7	26.75953784	26.55474589	27.87790315
2032	26.90407511	26.7	26.75688643	26.53934181	27.96291184
2033	26.90659831	26.7	26.75416316	26.52345384	28.04592527
2034	26.9091215	26.7	26.75136801	26.5070763	28.12631559
2035	26.9116447	26.7	26.74850099	26.4902035	28.20348922
2036	26.91416789	26.7	26.74556211	26.47282977	28.27689327
2037	26.91669108	26.7	26.74255135	26.45494942	28.34602125
2038	26.91921428	26.7	26.73946873	26.43655676	28.41041796
2039	26.92173747	26.7	26.73631423	26.41764611	28.46968347
2040	26.92426067	26.7	26.73308787	26.3982118	28.52347623

Year	Linear (in Celsius)	Isotonic (in Celsius)	Polynomial 2 (in Celsius)	Polynomial 3 (in Celsius)	SVR (in Celsius)
2019	20.87662024	21.5	20.82475133	21.01764141	21.32800987
2020	20.88581813	21.5	20.83133397	21.04367519	21.3590079
2021	20.89501601	21.5	20.83787303	21.07047585	21.38827545
2022	20.9042139	21.5	20.84436851	21.09805678	21.41564907
2023	20.91341179	21.5	20.85082039	21.12643138	21.44098258
2024	20.92260968	21.5	20.85722869	21.15561304	21.46414814
2025	20.93180756	21.5	20.8635934	21.18561516	21.48503681
2026	20.94100545	21.5	20.86991452	21.21645115	21.50355891
2027	20.95020334	21.5	20.87619206	21.24813438	21.51964396
2028	20.95940122	21.5	20.88242601	21.28067827	21.53324034
2029	20.96859911	21.5	20.88861637	21.3140962	21.54431471
2030	20.977797	21.5	20.89476314	21.34840157	21.5528512
2031	20.98699488	21.5	20.90086633	21.38360779	21.55885037
2032	20.99619277	21.5	20.90692593	21.41972823	21.56232812
2033	21.00539066	21.5	20.91294194	21.45677631	21.56331439
2034	21.01458854	21.5	20.91891437	21.49476541	21.56185188
2035	21.02378643	21.5	20.9248432	21.53370893	21.55799468
2036	21.03298432	21.5	20.93072846	21.57362028	21.55180695
2037	21.0421822	21.5	20.93657012	21.61451283	21.54336161
2038	21.05138009	21.5	20.94236819	21.6564	21.53273911
2039	21.06057798	21.5	20.94812268	21.69929518	21.52002623
2040	21.06977586	21.5	20.95383358	21.74321176	21.50531499

Toble 11, Dradiation	v of Winter Coocen Vec	rly Average Tem	perature of Bangladesh
		пу ауегаде теп	Defaiture of Banoladesh
		any / worage rom	peratare of Bangladeen

V. CONCLUSION AND FUTURE WORK

We can conclude our paper by extrapolating that, even though Isotonic Regression has performed better on the training dataset, for testing data, it performs very poorly. So, we cannot recommend this estimator for the prediction of upcoming annual or seasonal temperature for Bangladesh. We recommend using Polynomial Regression or SVR of higher degrees to predict the temperature for upcoming years.

Average temperature let alone will not be very useful for the weather forecast. That is why in the future, we want to forecast weather attributes like outlook prediction, rain prediction, and rainfall amount for the imminent future. Maximum temperature and minimum temperature prediction will also be sufficient for weather estimation.

References Références Referencias

- 1. Weather Online. (2019). Bangladesh. Retrieved from https://www.weatheronline.co.uk/reports/climate/Ban gladesh.html
- Mizanur Rahman, M., Ferdousi, N., Sato, Y., Kusunoki, S., & Kitoh, A. (2012). Rainfall and temperature scenario for Bangladesh using 20 km mesh AGCM. *International Journal of Climate Change Strategies and Management*, 4(1), 66-80. DOI: 10.1108/17568691211200227
- Bhuyan, M., Islam, M., & Bhuiyan, M. (2018). A Trend Analysis of Temperature and Rainfall to Predict Climate Change for Northwestern Region of

Bangladesh. *American Journal of Climate Change*, 07(02), 115-134. DOI: 10.4236/ajcc.2018.72009

- 4. David A. Freedman (2009). *Statistical Models: Theory and Practice. Cambridge University Press.* p. 26.
- Rencher, Alvin C.; Christensen, William F. (2012), Chapter 10, Multivariate regression – Section 10.1, Introduction, *Methods of Multivariate Analysis, Wiley Series in Probability and Statistics*, 709 (3rd ed.), John Wiley & Sons, p. 19, ISBN 9781118391679.
- Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875
- 7. Holmstrom, M., Liu, D., & Vo, C. (2016). *Machine Learning Applied to Weather Forecasting*.
- Radhika, Y., & Shashi, M. (2009). Atmospheric Temperature Prediction using Support Vector Machines. *International Journal of Computer Theory and Engineering*, 55-58. DOI: 10.7763/ijcte. 2009.v1.9
- Krasnopolsky, V., & Fox-Rabinovitz, M. (2006). Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. *Neural Networks*, 19(2), 122-134. DOI: 10.1016/j.neunet. 2006.01.002
- 10. Kumar, R., & Khatri, R. (2016). A Weather Forecasting Model using the Data Mining Technique. *International Journal of Computer Applications*, 139(14).