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6

Abstract7

This study is focused on a proposed alternative algorithm for Google’s PageRank, named8

Hermitian centrality score, which employs complex numbers for scoring a node of the network9

to overcome the issues of PageRank?s link analysis. This study presents the Hermitian10

centrality score as a solution for the problems of PageRank, which are associated with the11

damping factor of Google?s algorithm. The algorithm for Hermitian centrality score is12

designed to be free from a damping factor, and it reproduces PageRank results well.13

Moreover, the proposed algorithm can mathematically and systematically change the point of14

a node of a network.15

16

Index terms— search engine, PageRank, damping factor, complex number, hermitian adjacency matrix.17

1 Introduction18

oogle’s Page Rank is a link analysis algorithm widely used by search engines to rank web page results. Page Rank19
assigns scores to sites based on popularity; that is, the more popular the page is, the higher is its assigned score.20
It utilizes hyper relationships modeled as a directed graph, and express them as an adjacency matrix using real21
numbers. Moreover, this algorithm incorporates a damping factor within the values of 0 to 1, for the generation22
of a strongly connected directed graph. However, there are problems associated with determining these specific23
coefficients. This study proposes an algorithm called Hermitian centrality score, which does not require a damping24
factor to produce results similar to those of Page Rank, and which can be developed systematically for a specific25
purpose. The method expresses link relationships between the nodes in a directed graph using the imaginary26
unit and only requires this graph to be weakly connected, although it applies to a nonweakly connected graph.27

2 II.28

3 Related Works29

Page Rank [1] [2] of Google’s search engine has been a widely investigated algorithm [3], whereas Hermitian30
centrality score utilizes the Hermitian adjacency matrix that is a newly introduced idea in graph theory by Guo31
[4]. Sugihara [5] was the first to use the Hermitian adjacency matrix to score a node of a directed graph.32

4 III.33

Pagerank a) Definitions Definition 1: A semi path is a collection of distinct nodes, ?? 1 , ?? 2 , ?, ?? ?? together34
with ?? ? 1 links, one from each ?? 1 ?? 2 or ?? 2 ?? 1 , ?? 2 ?? 3 or ?? 3 ?? 2 , ?, ?? ???1 ?? ?? or ?? ?? ??35
???1 .36

Definition 2: A path is a collection of distinct nodes, ?? 1 , ?? 2 , ? , ?? ?? , together with the links, ?? 1 ??37
2 , ?? 2 ?? 3 ,?, ?? ???1 ?? ?? . Definition 3: A directed graph ?? = (??, ??) is called weakly connected if, for38
all nodes ?? 1 , ?? 2 ? ?? there exists a semi path between ?? 1 and ?? 2 . Definition 4: A directed graph ?? =39
(??, ??) is called strongly connected if for all nodes ?? 1 , ?? 2 ? ?? there exists a path from ?? 1 to ?? 2 .40
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13 B) ADVANTAGE OF THE HERMITIAN ADJACENCY MATRIX

5 b) Page Rank algorithm41

Page Rank has three characteristics [2], [6] that can be digested as follows. First, a page receives a high score42
when it has an inline from a node with a high score. Second, a page catches a high score when it has many in43
lines. Third, a page receives a high score when it has an inline from a node with few outlines. Thus, the selected44
outline to the page is important to obtain a high score. Page Rank considers the score of a node in a directed45
graph based on the nodes that have an outline to the node without taking into account a node that has an inline46
from the node.47

The Page Rank scores of the nodes of a directed graph are defined as follows [7]. Let |?? ?? |be the number of48
outlines from a node ??. We define the ?? × ?? matrix ?? ???? as follows: ?? ???? = 1/|?? ?? | if there is a link49
from node ?? to node ?? and equals 0 otherwise. We define the matrix ?? as follows using ?? ?? to designate a50
row vector of all 1s. ?? = ?? + ??((1/??)?? ?? ), where ?? ?? = 1 if node ?? has no outline and 0 otherwise.51
We define the matrix ?? as follows: ?? = ???? + (1 ? ??)(1/??)???? ?? . The PageRank scores are the elements52
of the normalized dominant lefthand eigenvector of ?? that corresponds to the real dominant eigenvalue, 1. The53
dominant eigenvalue is defined as the absolute maximum eigenvalue of a square matrix. The coefficient ?? in the54
equation is called ?? = ??(??) > 0, ?? ? ??(??), and the multiplicity of the eigenvalue is 1. Here, ??(??) is the55
spectral radius of ??, and ??(??) is the spectrum of ?? [8]. Therefore, a real positive dominant eigenvalue exists.56
Also, this value is unique because the multiplicity is 1. Otherwise, a dominant eigenvalue cannot be determined.57
In this model, the damping factor, ??, can be understood as a parameter that controls the proportion of time58
that a user follows the hyperlinks, as opposed to randomly jumping to new webpages. If, for example, ?? = 0.85,59
then 85% of the time, the user uses the hyperlink structure of the Internet, and the other 15% of the time, s/he60
goes to a random new page [7].61

6 c) Problems62

PageRank currently faces the following problems.63

7 i. Empirical Labor64

The selection of a damping factor value is eminently empirical, and in most cases, the value of 0.85 proposed by65
Brian and Page is used [9]. With the damping factor value 0.85, the directed graph in Figure 1 has the ranking66
3, 5 = 7, 4 = 6 = 9, 2, 1 = 8.67

8 ii. Inconsistent Rankings68

A network has inconsistent rankings when using different damping factor values [10]. An example of this case is69
shown in Figure 2. As stated in the abovementioned empirical labor problem, we do not know how the ranking70
of the nodes will be changed before we increase the damping factor from 0 to 1.71

9 iii. Possible Use for Spam72

A specific damping factor value could be used to create spam against a search engine [11].73

10 iv. Fixed Top-Ranking Node74

This problem means that the top-ranking node of a directed graph is fixed for all damping factor values from 075
to 1 even though we would like another node to be recognized as the top ranking. For example, in the directed76
graph in Figure 1, node 3 is the top-ranking node for all damping factor values from 0 to 1, as shown in Figure77
2. However, we may choose that nodes 5 and 7 should be the top nodes because there is a path from node 3 to78
those nodes, and there is no path from nodes 5 and 7 to node 3.79

11 IV.80

12 Hermitian Centrality Score81

Hermitian centrality score is based on eigenvector centrality [12] in social network analysis [13].82
Definition 6: For a directed graph ?? = (??, ??), the Hermitian adjacency matrix ?? is defined in the following83

13 b) Advantage of the Hermitian adjacency matrix84

An advantage of using the Hermitian adjacency matrix is that eigenvalues of it are always real numbers, because85
it is a Hermitian matrix. Moreover, the results of trials suggest that, if a directed graph is weakly connected, the86
absolute dominant eigenvalue, |??| 1 , of the graph’s Hermitian adjacency matrix, ??, is a positive number with87
a multiplicity of 1, a negative number with a multiplicity of 1, or a positive number with a multiplicity of 1 and88
a negative number with a multiplicity of 1. According to the results of the trials, these conditions are satisfied89
when we derive the Hermitian matrix ?? ? from ?? using the method described below and when we create the90
Hermitian matrix ?? ?? from ?? ? with the procedure introduced subsequently in this paper. We select the91
positive eigenvalue, if the dominant eigenvalues include a positive and a negative real value.92
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14 c) Algorithm for the type I Hermitian centrality score93

The algorithm for the type I Hermitian centrality score of a node of a directed graph is as follows. We use ?? to94
designate the number of all the nodes of the entire graph.95

The algorithm is designed to be used for each weakly connected directed graph in the entire graph. Once we96
derive a score of the node of a weakly connected graph from the algorithm, we can compare it to the score of97
another node, which belongs to a different weakly connected graph, which is also derived by the algorithm.98

Stage 1: Label the node with zero inlines at the origin of the longest path as node ??.99
Stage 2: If there are more than one nodes that satisfy the condition described above, add a dummy node100

and links from the dummy node to the nodes that satisfy the condition; the dummy node is designated as ??.101
Second, based on the Type I algorithm, we create the algorithm of Type II Hermitian Centrality Score. Type II102
algorithm is intended as an alternative to Page Rank.103

15 a) Definitions104

Definition 5: A node ?? ?? is reachable to a node ?? ?? if there is a path from the former A square matrix105
?? is irreducible if and only if its directed graph is strongly connected [8]. According to the Perron-Frobenius106
theorem, if ?? ? 0 is irreducible, equation (1), using ?? as the imaginary unit [4]. This matrix is a Hermitian107
matrix because for all ?? and ??, ?? ???? and ?? ???? are complex conjugates each other. Of note Stage 7 of108
the algorithm for defining the score of node ?? of a graph is the product of 2?? ? ??????(?? ?? ), which is the109
angle in the clockwise direction from the real axis of the complex plane, and, |?? ?? |, which is the length of the110
2-dimensional vector corresponding to the node on the complex plane; both terms derived from the eigenequation111
of ?? ?? . In Stage 6, when node ?? has an inline from node ?? and an outline to node ??, the 2-dimensional112
vector of node ?? is created as the composition of the 2-dimensional vector of node ?? rotated by 1 ?? in the113
counterclockwise direction. We need to convert ?? and ??? using ?? and ?? in Stage 4 to confine all converted114
2dimensional vectors of all nodes of any weakly connected graphs, which may be the entire graph itself, in the115
fourth quadrant, so that ??????(?? ?? ) in Stage 7 does not exceed 2??. Using coefficient ??, we can maintain116
the length of the converted vector the same as that of the vector before the conversion. In Stage 5, we introduce117
divisions, which correspond to the number of appearances of ??(?? + ??) to estimate selected outlines. Namely,118
when node ?? has an inline from node ?? and node ?? has, for example, three outlines, the length of the119
2-dimensional vector of node ?? becomes smaller by three times in the composition of the 2-dimensional vector120
that corresponds node ?? so that in the composition of the 2-dimensional vector of node ??, the contribution of121
the 2-dimensional vector of node ?? is forced to be smaller. Using Stage 6, we set the 2dimensional vector of122
node ?? on the real axis of the complex plane so that the result of the product as the score of the node equals123
0. directed graph is a weakly connected graph. According to Stage 1, node 1 is ?? because it has zero inlines,124
and it is on the longest path, i. e., that is 1, 2, 3, 4, 5 (or 1, 2, 3, 6, 7). In the weakly connected graph, each125
2dimensional vector ?? ?? in Stage 7 is obtained by the In Figure 3, we plot each complex number corresponding126
to each 2-dimensional vector ?? ?? on the complex plane. Table 1 shows the type I Hermitian centrality score127
values of the nodes in Figure 1 and their ranking.128

16 e) Algorithm for the type II Hermitian centrality score129

We modify the algorithm of the type I Hermitian centrality score to create the type II Hermitian centrality score.130
The latter can mathematically and systematically change the point of a node of a directed graph, and, it can131
reproduce the result of Page Rank well. As in the type I, we use ?? to designate the number of all the nodes of132
the entire graph.133

As in the type I algorithm, the algorithm is designed to be used for each weakly connected directed graph in134
the entire graph. Once we derive the score of a node of a weakly connected graph, we can compare it to the score135
of another node, which belongs to a different weakly connected graph, which is also derived by the algorithm.136
In those abovementioned considerations, the type I Hermitian centrality score determines the score of a node by137
considering both of all the node that have an outline to the node and all the nodes that have an inline from the138
node.139

17 d) Experimental Evaluation of the Type I Hermitian Cen-140

trality Score141

We apply the abovementioned algorithm to the directed graph in Figure 1. In this figure, the entire142

18 ? ?143

with zero inlines in the weakly connected graph.144
Of note ?? 1 is the parameter for the distance from the node with zero inlines. This distance is defined in145

terms of the angle from the real axis on the complex plane. As we increase the value of ?? 1 from 0, the score of146
the node increases depending on how far away the node is from the node with zero inlines.147
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20 III. A LARGER NETWORK CASE

Of note ?? 2 is the parameter for the selected inlines to the node. As we increase the value of ?? 2 from 0,148
the score of the node increases depending on how small the number of outlines of the nodes on the path from the149
node with zero inlines to the node, excluding the node itself.150

Similar to Page Rank, the algorithm of the type II Hermitian centrality score determines the score of a node151
by considering all nodes that have an oulink to the node without considering the nodes that have an inline from152
the node. This point has been made possible by deploying1 ?? in Stage7153

? . The deployment of 1 ?? is equivalent to eliminate the contribution from the nodes that have an outline to154
the node in the creation of the 2dimensional vector of the node on the complex plane.155

19 f) Experimental Evaluation of Type II Hermitian156

Centrality Score i. Directed Graph in Figure 1: fixed ?? 1 and ?? 2157
We calculate the type II Hermitian centrality scores of the nodes in the directed graph in Figure 1, by setting158

?? 1 = 1 and ?? 2 = 0.159
In ? on the first subgraph in Figure 1 to obtain and160
In Figure 6, we plot each complex number, which corresponds to each 2-dimensional vector ?? ?? on the161

complex plane. Table ?? shows the tentative type II Hermitian centrality score values of the nodes in Figure 4.162
ii. Directed Graph in Figure 1: changing ?? 1 and ?? 2163
For the directed graph in Figure 1, we converted ?? 1 and ?? 2 from 0 to 0.5 with the interval of 0.05. The164

type II Hermitian centrality score values of nodes 3 and 5 (the score of node 7) are shown in Figure7. Figure7165
shows that when ?? 2 = 0, the point of node 5 is always higher than that of node 3; and if ?? 1 = 0, the score166
of node 3 is higher than that of node 5. The abovementioned results are obtained because ?? 1 is the parameter167
for the distance from the node with 0 zero inlines, and, ?? 2 is the parameter for selected inlines to the node.168
Here, the fixed top-ranking node problem of Page Rank with the directed graph in Figure 1 has been solved by169
the type II Hermitian centrality score.170

The rankings by the type II Hermitian centrality score of the nodes from Figure 1 become the same as those171
of Page Rank when ?? 1 = 0.9 and?? 1 = 0.4, as shown in Table ??.172

20 iii. A larger network case173

The directed graph in Figure ?? is composed of 60 nodes. The links between the nodes in the graph were created174
randomly and can be reproduced with the ”set.seed(000)” for ”rgraph(60, tprob=0.014)” command in the sna175
package for Linux R version 3.4.3. We apply the type II Hermitian centrality algorithm to the graph using the176
following parameters of ?? 1 and ?? 2 : 0 to 1 with the interval of 0.1. Then, we calculate spearman correlation177
coefficients between the scores by PageRank using the damping factor of 0.85 and the type II Hermitian centrality178
score values. The maximal value of the correlation coefficient is 0.9453585 at ?? 1 = 0 and ?? 2 = 0. Namely, the179
type II Hermitian centrality score can reproduce the result of PageRank well. The scatter plot of the parameters180
for the PageRank scores and type II scores is shown in Figure ??. multiplication of the number of outlines of each181
node, which precede the node, excluding the node itself. Second, for node ?? in the weakly connected graph, the182
final type II Hermitian centrality score is the sum of its scores from its every tentative score in every subgraph183
induced by all nodes that are reachable from each node ?? shows the final type II Hermitian centrality score184
values of the nodes of the weakly connected graph in Figure 1.185

the following equation (3). X = 1 | ? | 1 H ” X x 1 x 2 x 3186
x 4187
x 5188
x 6189
x 7190
x 8x 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 1 | ? | 1 0 s(t + i) 0 0 0 0 0 0 0 s(t191

? i) 0 s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 s(t + i) 3 0 s(t + i) 3 0 s(t ? i) 3 s(t + i) 3 0 0 s(t ? i) 3 0 s(t + i) 0 0 0 0192
0 0 0 s(t ? i) 0 0 0 0 0 0 0 s(t ? i) 3 0 0 0 s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 0 0 0 0 s(t + i) 3 0 0 0 0 0 0 0 0 s(t ? i)193
3 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? x 1 x 2 x 3194

x 4195
x 5196
x 6197
x 7198
x 8 x 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 1.0000000 + 0.? ? ? ? ? ? ? ? ?199

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?6! {2? ? arg(x i )} × | x i | ! 2? ? arg(x i ) ! | x i | X = 1 | ? | 1 H ” X x200
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 1 | ? | 1 0201
s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 s(t + i) 3 0 s(t + i) 3 0 0 s(t + i) 3 0 0 s(t ? i) 3 0202
s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 0 0 0 0 0 0 s(t ? i) 3 0 0 0 s(t + i) 0 0 0 0 0 0 0 s(t ? i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0203
s(t ? i) 3 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? x 1 x 2204
x 3 x 4 x 5 x 6 x 7 x 8 x 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?Global? ? ? ? ? ?205
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?! 1 × 1! 1! 3 × × ! 2? ? arg(x i ) 1! 1! 3! 1 × × × 1! 1! 3 × × 1!206
1! 3! 1 × × × Score ! :207
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! 1 and ! 2 are set to 1 and 0, respectively. [k 2 + {2? ? arg(x i )} ] × (k 1 + 1 M ) k k208
Table ??: Tentative Type II Scores of the nodes shown in Figure 5 Figure Table 4: Final Type II Scores of209

the nodes shown in Figure 1 Table ??: Final Type II Scores of the nodes shown in Figure 1 Node Type II Score210
of the nodes in Figure 1 k1 and k2 are set to 0.9 and 0.4, respectively.211

21 Conclusion212

This study showed that the four problems of Page Rank algorithm can be resolved with using the Hermitian213
centrality method, which does not require a damping factor. The novel algorithm effectively reproduces the214
ranking results of the Page Rank algorithm using 0.85 as the damping factor. Future research may use a215
sophisticated mathematical and systematic development of the proposed algorithm to achieve betterscores.216
1 2217
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Figure 2: Stage 6 :
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Figure 6: Figure 1 :

10



2

Figure 7: Figure 2 :
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