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Abstract6

This paper proposes a novel method for genome editing using cellular automata evolutions of7

adjoints of Adenine, Thymine, Guanine, and Cytosine. The adjoints of the given a genome8

sequence are the characteristic binary string sequences. For example, the adjoint of Adenine of9

a given genome sequence is a binary string consisting of 0?s and 1?s where 1?s corresponds to10

the presence of Adenine in the genome sequence. So, one can have four adjoint sequences of11

Adenine, Thymine, Guanine, and Cytosine corresponding to a given genome sequence.12

One-dimensional three neighborhood binary value cellular automata rules can be applied to an13

adjoint sequence and the desired number of evolutions could be obtained. This rule is defined14

by a linear Boolean function and one can have 256 such linear Boolean functions. Genome15

editing is carried out by superimposing the evolved adjoint sequence on the original genome16

sequence or on its successive evolutions. In this manner, one can have four ways of genome17

editing using four adjoint sequences and evolutions.18
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Abstract-This paper proposes a novel method for genome editing using cellular automata evolutions of adjoints23
of Adenine, Thymine, Guanine, and Cytosine. The adjoints of the given a genome sequence are the characteristic24
binary string sequences. For example, the adjoint of Adenine of a given genome sequence is a binary string25
consisting of 0’s and 1’s where 1’s corresponds to the presence of Adenine in the genome sequence. So, one26
can have four adjoint sequences of Adenine, Thymine, Guanine, and Cytosine corresponding to a given genome27
sequence. One-dimensional three neighborhood binary value cellular automata rules can be applied to an adjoint28
sequence and the desired number of evolutions could be obtained. This rule is defined by a linear Boolean function29
and one can have 256 such linear Boolean functions. Genome editing is carried out by superimposing the evolved30
adjoint sequence on the original genome sequence or on its successive evolutions. In this manner, one can have31
four ways of genome editing using four adjoint sequences and evolutions.32

enome editing is essentially the process of introducing required changes in a given DNA. A protein or enzyme33
cuts certain portions of a given DNA and substitutes the target sequences of nucleotides by specific chains of34
nucleotides. For ages, people have been working on the notion of Genome editing. However, only recently, the35
spurt of activities has been reported in the literature about genome editing. Before getting into the details of the36
genome editing, it would be apt to reason out why genome editing is viewed as a significant activity. Genome37
editing is carried out as a health initiative to healeven the so-called incurable diseases associated with genetic38
problems. Clinically there are many methods of editing genomes among which CRISPR technique is recognized as39
a reliable technique ratified by the U.S. Food and Drug Administration, pushing in a new era of cancer treatment.40
CRISPR based therapy is designed to treat blood and bone marrow cancer, which usually affects children and41
young adults. This therapy is known G as CAR-T therapy, and it has shown remarkable results in patients. By42
eliminating those genes which cause disease, physicians can treat various illnesses ranging from heart disease to43
Alzheimer’s.44
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3 SYMBOL TO BE SUBSTITUTED

In addition to curing diseases, gene therapy (gene editing) could be used to stop inherited disease in its tracks45
to save endangered species, and more so, to resurrect extinct species. All such gene therapy techniques are clinical46
laboratory-based. Alternatively, one can try out the possibilities of developing some of them for genome editing47
using computational tools and concepts. Genome is a string of nucleotides, and its characteristic sequence is a48
sequence of A, T, G, and C. Gene editing, in the computer science point of view, is a pattern searching and49
substituting process, meaning, genome editing is essentially a string processing operation. A genome is a subset50
of a free monoid A* of an alphabet A which consists of the primitive symbols A, T, G and C. So, gene editing51
is viewed as a map ? that connects A* to A*.It is in this context, this paper introduces a novel concept of52
genome editing cellular automata evolutions of adjoint strings of a genome. Section 2 of this paper describes53
the fundamental notions of adjoints of a genome and their evolution using one-dimensional cellular automata54
rules defined by linear Boolean functions. Section 3 presents the technique of editing genome sequences using55
the cellular automata generations of adjoint sequences. Section 4 illustrates the concept with the help of a case56
study.57

II. Adjoints of A Genome Sequence and their Evolutions using one-Dimensional three Neighborhood Cellular58
Automata59

Adjoint of a particular nucleotide in a genome sequence is the binary sequence obtained by substituting the60
particular nucleotides in the genome sequence by 1’s and the others by 0’s. For example, let us consider a sample61
sequence of BrucellaSuis 1330 for a case study. The actual length of the genome sequence of BrucellaSuis 133062
is 5806. A cellular automaton is an idealized parallel processing system consisting of an array of numbers (1-D,63
2-D and more) realized using updating rules based on certain Consider an ith cell in the array. This cell has64
a neighbor i-1 on its left and another i+1 on its right. All three put together is called a three neighborhood.65
One can assign a site (cell) variable ?i-1, ?i, and ?i+1 to the three neighborhood cells. At a particular instant of66
time, these variables take on numerical values, say either a 0 or a 1. In such a case, the variables are denoted67
as ?ti-1, ?ti, and ?ti+1. The value of the ith cell at the next instant of time is evaluated using an updating68
rule that involves the present values of the ith, (i-1)th and (i+1)th cells. This updating rule is basically a69
linear Boolean function of three variables. One can construct 256 linear Boolean functions, as updating rules of70
one-dimensional threeneighborhood binary-valued cellular automata. Each rule defines an automaton by itself.71
So, one dimensional binary-valued three-neighborhood cellular automata (123CA) rules could be used to model72
adjoints of a genome sequence. The first twenty linear Boolean functions of cellular automata 123CA are listed73
below with their decimal equivalents.74

2 Linear Boolean Function75

Decimal Equivalent 0 0 (?? ? ???1 ?? ? ?? ?? ? ??+1 ) 1 (?? ? ???1 ?? ? ?? ?? ??+1 ) 2 (?? ? ???1 ?? ? ?? )76
3 (?? ? ???1 ?? ?? ?? ? ??+1 ) 4 (?? ? ???1 ?? ? ??+1 ) 5 (?? ? ???1 ?? ?? ?? ? ??+1 )+(?? ? ???1 ?? ? ??77
?? ??+1 ) 6 (?? ? ???1 ?? ? ??+1 ) + (?? ? ???1 ?? ? ?? ) 7 (?? ? ???1 ?? ?? ?? ??+1 ) 8 (?? ? ???1 ?? ? ??78
?? ? ??+1 ) + (?? ? ???1 ?? ?? ?? ??+1 ) 9 (?? ? ???1 ?? ??+1 ) 10 (?? ? ???1 ?? ? ?? ) + (?? ? ???1 ??79
??+1 ) 11 (?? ? ???1 ?? ?? ) 12 (?? ? ???1 ?? ? ??+1 ) + (?? ? ???1 ?? ?? ) 13 (?? ? ???1 ?? ?? ) + (?? ?80
???1 ?? ??+1 ) 14 (?? ? ???1 ) 15 (?? ???1 ?? ? ?? ?? ? ??+1 ) 16 (?? ? ?? ?? ? ??+1 ) 17 (?? ???1 ?? ? ??81
?? ? ??+1 ) + (?? ? ???1 ?? ? ?? ?? ??+1 ) 18 (?? ? ?? ?? ? ??+1 ) + (?? ? ???1 ?? ? ?? ) 19 (?? ???1 ?? ?82
?? ?? ? ??+1 ) + (?? ? ???1 ?? ?? ?? ? ??+1 )2083

For the case study rule number 90 is applied to the adjoints of BrucellaSuis 1330 genome sequence and 50084
evolutions generated. Rule 90 is shown below.(? ???1 ? ? ??+1 ) + (? ? ???1 ? ??+1 )9085

Since the image of the 500 evolutions of BrucellaSuis 1330 is quite large, a small portion of the images are86
presented in this paper. Fig. ?? shows evolutions of the adjoints of A(n) and T(n). As outlined earlier, a genome87
sequence is a subset of a free monoid A* of an alphabet A which consists of the primitive symbols A, T, G and88
C and gene editing is a map ? that connects A * to A *. The map ? is a rule that transforms a sequence into89
another desired sequence. One can use four types of symbol to symbol substitution formulas given below for90
genome editing.91

3 Symbol to be substituted92

Substitution symbol Formula Number A?T?G?C ? A 1 A?T?G?C ? T 2 A?T?G?C ? G 3 A?T?G?C ? C 493
Where the symbol ? denotes the relation of logical OR. Application of formula #1 to any genome sequence94

is called A-latch. Similarly one can think of Tlatch, G-latch and C-latch. A nucleotide latch would give rise to95
conversion of any genome sequence into a sequence consisting of that particular nucleotide in one step. This is96
called ’Nucleotide Saturation’. Thus one can have A-saturation, T-saturation,G-saturation,and Csaturation. To97
be precise, A-latching of any genome sequence transforms it into A-saturated sequence and it holds for other98
three types of latching also. The question that arises here is that whether it is possible to edit a genome sequence99
using nucleotide latching techniques at preferred locations in the sequence. One such possibility is latching of a100
genome sequence using cellular automata evolutions of adjoints. Once a genome sequence is latched, the resulting101
edited sequence is called its elementary transformation. Two types of latching are discussed here (i) latching of102
elementary transformations of a genome sequence with various cellular automata evolutions of adjoints and (ii)103
latching of original genome sequence with various cellular automata evolutions of adjoints. Fig. 3 portraits the104

2



first approach of latching of elementary transformations of a genome sequence with various cellular automata105
evolutions of adjoints.106

4 IV. Case Study107

The characteristic sequence of BrucellaSuis 1330 genome sequence is used here for the case study. The length of108
this sequence is 5806. Rule number 90 is used here for the study. The linear Boolean function corresponding to109
this rule is(? ???1 ? ? ??+1 ) + (? ? ???1 ? ??+1 ) Approach #1110

Editing of elementary transformations of a genome sequence with various cellular automata evolutions of111
adjoints Figs. 5 to 8 portrait the first approach of latching of elementary transformations of a genome sequence112
with various cellular automata evolutions of adjoints.113

Fig. 5 shows the result of A-latching the genome sequence, that is, Adenine based genome editing. Since the114
image is quite large, a small portion of it is shown here. It was observed that the A-saturation of the genome115
sequence occurred while editing the previous elementary transformation of the genome sequence using the 32nd116
evolution of the A(n).117

Elementary transformations of the genome sequence are edited using the rule number 90 based cellular118
automaton evolution of A (n). A-saturation occurred when the 32 nd evolution is used for editing. G-saturation119
occurred when the 15 th evolution is used for editing. Approach #2 Editing of a genome sequence with various120
cellular automata evolutions of adjoints Figs. 9 to 14 portrait the second approach of latching of a given genome121
sequence with rule number 90 based cellular automata evolutions of adjoints. Figs. 9 shows Adenine based122
genome editing on original sequence both in Text Form and in Image Form. The Image Form is obtained using123
a color coding scheme which paints a red color for Adenine, green color for Thymine, blue color for Guanine and124
yellow color for Cytosine. Fig. ??0 shows the predominant horizontal lines and vertical lines of the image of125
the edited genome separately. An image processing tool of line detector is used for this purpose. The following126
observations are made from the case study.127

1. Editing a genome is a map or a function that transforms a genome into a desired genome sequence 2.128
Two approaches could be undertaken for genome editing (i) Editing of elementary transformations of a genome129
sequence with various cellular automata evolutions of adjoints and(ii) Editing of the given genome sequence130
with various cellular automata evolutions of adjoints 3. Using approach 1, one would end up with saturation131
in short steps. Using approach 2, one would be able to generate edited versions that exhibit periodicities and132
generic evolutions. 5. The result of each operation exhibits unique behavior in periodicity and generic form. 6.133
Interpretation of these properties could be made in a better way only by an expert in genetic Engineering 1
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