
© 2013. Dr. N. Balaji, N. Shivakumar & V. Vignaraj Ananth. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 8 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Software Cost Estimation using Function Point with Non
Algorithmic Approach

 By Dr. N. Balaji, N. Shivakumar & V. Vignaraj Ananth
Thiagarajar College of Engineering, India

Abstract - Cost estimation is one of the most challenging tasks in project management. It is to
accurately estimate needed resources and required schedules for software development projects.
The software estimation process includes estimating the size of the software product to be produced,
estimating the effort required, developing preliminary project schedules, and finally, estimating overall
cost of the project. Nearly one-third projects over run their budget and late delivered and two-thirds
of all major projects substantially over run their original estimates. Effort is a function of size. For
estimating effort first we face sizing problem. In direct approach size is measured in lines of code
(LOC). In indirect approach, size is represented as Function Points (FP). In this paper we use both
approach with different technique.

Keywords : estimation; budget; effort; LOC; FP.

GJCST-C Classification : D.2.9

Software Cost Estimation using Function Point with Non Algorithmic Approach

Strictly as per the compliance and regulations of:

Software Cost Estimation using Function Point
with Non Algorithmic Approach

Dr. N. Balaji
 α, N. Shivakumar

 σ & V. Vignaraj Ananth
 ρ

Abstract

-

Cost estimation is one of the most challenging tasks

in project management. It is to accurately estimate needed
resources and required schedules for software development
projects. The software estimation process includes estimating
the size of the software product to be produced, estimating
the effort required, developing preliminary project schedules,
and finally, estimating overall cost of the project. Nearly one-
third projects over run their budget and late delivered and two-
thirds of all major projects substantially over run their original
estimates. Effort is a function of size. For estimating effort first
we

face sizing problem. In direct approach size is measured in

lines of code (LOC). In indirect approach, size is represented
as Function Points (FP). In this paper we use both approach
with different technique.

Keywords : estimation; budget; effort; LOC; FP.

I.

Introduction

ut of the three principal components of cost i.e.,
hardware

costs, travel and training costs, and

effort costs, the effort

cost is dominant. Software

cost estimation starts at the

proposal state and
continues throughout the life time of a

project.

There are several techniques of software cost
estimation:

•

Algorithm Cost Model

•

Expert Judgments

•

Estimation by Analogy

•

Top-down Estimation

•

Bottom-up Estimation

a)

Expert Judgment Method

Expert judgment techniques involve consulting

with software cost estimation expert or a group of the

experts to use their experience and understanding of the

proposed project to arrive at an estimate of its cost.

b)

Estimating by Analogy

Estimating by analogy means comparing the

proposed project to previously completed similar project

where the project development information id known.

Actual data from the completed projects are
extrapolated to

 estimate

the

proposed

project.

This

Author α

: Professor and Head Information Technology

KLN College

of Engineering Madurai, India.

E-mail : balajin@klnce.edu

Author

σ

: Assistant Professor, Department of Computer Science

Thiagarajar College of Engineering Madurai, India.

E-mail : shiva@tce.edu

Author

ρ

: PG Student, Department of Computer Science

Thiagarajar

College of Engineering Madurai, India.

E-mail : vignarajcse@tce.edu

method can be used

either at system-level or at the

component-level.

c)

Top Down Estimating Method

Top-down estimating method is also called
Macro

Model. Using top-down estimating method, an

overall cost

estimation for the project is derived from the

global

properties of the software project, and then the

project is

partitioned into various low-level components.

d)

Bottom Up Estimating Method

Using bottom-up estimating method, the cost of

each software components is estimated and then
combine

the results to arrive at an estimated cost of

overall project. It

aims at constructing the estimate of a

system from the

knowledge accumulated about the
small software

components and their interactions.

e)

Algorithmic Method

The algorithmic method is designed to provide

some mathematical equations to perform software

estimation. These mathematical equations are based on

research and historical data and use inputs such as
Source

Lines of Code (SLOC), number of functions to

perform, and

other cost drivers.

II.

Direct Approach

Source lines of code (SLOC) is a software

metric used to measure the size of a software program
by

counting the number of lines in the text of the

program's

source code. SLOC is typically used to
predict the amount

of effort that will be required to

develop a program, as well

as to estimate programming

productivity or maintainability

once the software is
produced. There are two major types of

SLOC

measures: physical SLOC (LOC) and logical SLOC

(LLOC). Specific

definitions of these two measures vary,

but the most common definition of physical SLOC is a

count of lines in the text of the program's source code

including comment lines. Blank lines are also included

unless the lines of code in a section consists of more
than

25% blank lines. Logical SLOC attempts to

measure the

number of executable "statements", but
their specific

definitions are tied to specific computer

languages.

The COCOMO cost estimation model is used

by thousands of software project managers, and is
based on

a study of hundreds of software projects.

Unlike other cost

estimation models, COCOMO is an

O

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

open model. COCOMO estimates are more objective
and repeatable than estimates made by methods relying
on proprietary models. The most fundamental
calculation in the COCOMO model is the use of the
Effort Equation to estimate the number of Person-
Months required to develop a project. COCOMO has
cost drivers that assess the project, development
environment and team to set each cost driver. The cost
drivers are multiplicative factors that determine the effort
required to complete your software project. number of
executable "statements", but their specific definitions are
tied to specific computer languages.
Effort is calculated by

Effort= a*

Where ‘a’ and ‘b’ are empirically determined
constants. Size is length of the code in KLOC.

The Effort Adjustment Factor in the effort
equation is

simply the product of the effort multipliers

corresponding to

each of the cost drivers.

For example, if your project is rated Very High
for

Complexity (effort multiplier of 1.34), and Low for

Language & Tools Experience (effort multiplier of 1.09),

and all of the other cost drivers are rated to be Nominal

(effort multiplier of 1.00), the EAF is the product of 1.34

and 1.09.

The COCOMO schedule equation predicts the

number of months required to complete your software

project. The duration of a project is based on the effort

predicted by the effort equation:

Duration=3.67*(Effort)SE

Where

Effort is the effort from the COCOMO

effort
equation.

SE is the schedule equation exponent derived

from the cost

Drivers.

The Man per month is calculated by

Average staffing = (Person-Months) / (Duration)

III.

Indirect Approach

a)

Function Point Analysis (FPA)

It begins with the decomposition of a project or

application into its data and transactional functions. The

data functions represent the functionality provided to the

user by attending to their internal and external
requirements

in relation to the data, whereas the

transactional functions

describe the functionality
provided to the user in relation to

the processing this

data by the application.

Each function is classified according to its
relative functional complexity as low, average or high.
The data functions relative functional complexity is
based on the number of data element types (DETs) and
the number of record element types (RETs). The
transactional functions are classified according to the
number of file types referenced (FTRs) and the number
of DETs. The number of FTRs is the sum of the number
of ILFs and the number of EIFs updated or queried
during an elementary process.
The data functions are:
1. Internal Logical File (ILF)
2. External Interface File (EIF)
The transactional functions are:
1. External Input (EI)
2. External Output (EO)
3. External Inquiry (EI)
The actual calculation process consists of three steps:
1. Determination of unadjusted function points (UFP).
2. Calculation of value of adjustment factor (VAF).
3. Calculation of final adjusted functional points.

b) Evaluation of Unadjusted FP
The unadjusted Functional points are evaluated

in the following manner
UFP= ΣΣFij*Zij, for j= 1 to 3 and i = 1 to 5,

where Zij denotes count for component i at level (low,
average or high) j, and Fij is corresponding Function
Points.

c) Evaluation of Value Adjusted FP
Value Adjustment Factor (VAF) is derived from

the sum of the degree of influence (DI) of the 14 general
system characteristics (GSCc). General System
characteristics are:
1. Data communications
2. Distributed data processing
3. Performance
4. Heavily utilised configuration
5. Transaction rate
6. On-line data entry
7. End-user efficiency
8. On-line update
9. Complex processing
10. Reusability
11. Installations ease
12. Operational ease
13. Multiple sites/organisations
14. Facilitate change

Function points can be converted to Effort in
Person Hours. Numbers of studies have attempted to
relate LOC and FP metrics. The average number of
source code statements per function point has been
derived from historical data for numerous programming
languages. Languages have been classified into

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

2

(
DDDD D DDD

)
Y
e
a
r

01
3

2
C

Software Cost Estimation Using Function Point with Non Algorithmic Approach

Type of project A B

Organic 3.2 1.05
Semi detached 3.0 1.12
Embedded 2.8 1.20

(Size)
b

different levels according to the relationship between

.

 LOC and FP. Programming language levels and
 average numbers of source code statements per

function

point.

d)

Fuzzy Logic

 Fuzzy logic is used to find fuzzy functional
points

and then the result is defuzzified to get the

functional points

and hence the size estimation in
person hours. Triangular

fuzzy numbers are used to

represent the linguistic terms in

Function Point Analysis

(FPA) complexity matrixes. A

fuzzy set is characterized

by a membership function, which

associates with each

point in the fuzzy set a real number in

the interval [0,1],

called degree or grade of membership.

The
membership function may be triangular, trapezoidal,

 parabolic etc. Fuzzy numbers are special convex and
normal

fuzzy sets, usually with single modal value,

representing

uncertain quantitative information. A
triangular fuzzy

number (TFN) is described by a triplet

(α,

m, β), where m is

the modal value, α

and β

are

the right and left boundary

respectively.

 We take each linguistic variables as a triangular
Fuzzy

numbers, TFN (α, m, β), α

≤ m, β

≥ m. The

membership

function (μ(x)) for which is defined as:

The five major components mentioned above,
they

have to be rated as either Low, Average, or High.
Ranking

is commonly based on File Types Referenced,

Data Element

Types and Record Element Types. File
Types Referenced

(FTRs) represents the total number of
internal logical files

(ILFs) maintained, read, or
referenced and the external

interface files read or
referenced by the EI/EO transaction.

Data Element Type
(DET) can be defined as unique user

recognizable non-
recursive fields including foreign key

attributes that are
maintained on ILF/EIF. Record element

type (RET) is a
subgroup of data elements within an

ILF/EIF. For each
of the components belonging to

Transactional functions,
the ranking is based on the number

of files updated or
referenced (FTRs) and number of data

element types
(DETs). For the data components viz., Internal

Logical
Files (ILF) and External Interface Files (EIF),

ranking is
based on the number of Data Element Types

(DETs)
and number of Record Element Types (RETs).

Based on
the ratings the domain character values are

fuzzified
using the Triangular membership function. The

value
thus obtained is called membership function output,

whose domain is specified, usually the set of real
numbers and whose range is the span of positive
numbers in the

closed interval [0, 1]. Each numerical
value of the domain is

assigned a specific value and 0
represents the smallest

possible value of the

membership function, while the largest

possible value
is 1.

e)

Defuzzification

Defuzzification means the fuzzy to crisp
conversions.

The fuzzy results generated cannot be
used as such to the

hence it is necessary to convert the
fuzzy quantities into

crisp quantities for further
processing. This can be achieved

by using
defuzzification process. The defuzzification has the

capability to reduce a

fuzzy to a crisp single-valued
quantity

or as a set, or converting to the form in which
fuzzy quantity

is present. Defuzzification can also be
called as “rounding

off” method. Defuzzification reduces
the collection of

membership function values in to a
single sealer quantity.

Defuzzification is the process of producing a
quantifiable

result in fuzzy logic, given fuzzy sets and
corresponding

membership degrees. It will have a
number of rules that

transform a number of variables
into a fuzzy result, that is,

the result is described in terms
of membership in fuzzy sets.

The defuzzification is
applied to the value that had been

obtained from the
fuzzification process. The fuzzified

output has to be
defuzzified into the real number so that it

will give the
effort that has been needed for the cost

estimation.

IV.

Various Criterions for Assessment
of Software Cost Estimation

Models

There are 4 important criterions for assessment
of software

cost estimation models:

1.

VAF (Variance Accounted For) (%):

VAF (%) =

2.

Mean absolute Relative Error (%):

Mean absolute error (%) =

 3.

Variance Absolute Relative Error (%):

VAR (%) =

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Software Cost Estimation Using Function Point with Non Algorithmic Approach

 0 , x 
 x - / m - , x m
µx- x / - m , mx 

 , x≥

µ(x)*w1 0<c(x)≤1

≤2
 D(y)= µ(x)*w2+(1-µ(x))*w1 2<c(x)≤3.5

µ(x)*w2+(1-µ(x))*w3 3.5<c(x)≤ 5
µ(x)*w3+(1-µ(x))*w2 5<c(x)≤ 6.5

≤ 8

4. Pred (n): Prediction at level n((Pred (n)):

Var x =

𝑣𝑎𝑟(𝐸 − 𝐸)

𝑣𝑎𝑟 𝐸
−1()

𝑓


∗ 100

Σ𝑓𝑓 (𝑅𝑅𝐸𝐸−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
Σ𝑓𝑓

* 100

Σ𝑓𝑓(𝑥𝑥
Σ𝑓𝑓

)

∗

V.

Experimental Results

Performance of the effort can be predicted
based on the

MARE and Prediction n method.

The
estimated effort of

LOC is compared with the actual
effort of LOC in the first

graph.

The estimated effort of
FP is compared with the

actual effort of FP in the
second graph.

The MARE of LOC

and FP is compared
in the third graph.

It has been clearly

identified that
Function point based estimation is better than

the LOC
estimation.

The Table 1 indicates the lines of code with the
actual

effort and the estimated effort using the cocomo
model. Both

MARE analysis and Prediction n method
has been applied to

the direct approach and the indirect
approach.

The actual

effort is the original effort and the
estimated effort is the one

which has been done in the
estimation process using the

cocomo method.

The next table shows the function point with
actual effort

and the estimate effort.

The graph shows the variation between the
actual and

estimated effort using LOC.

Software Cost Estimation Using Function Point with Non Algorithmic Approach

LOC Actual effort Estimated effort
48 1107.3 1465.83
50 84 145
39 72 112

164 246 510
200 130 625
40.5 82.5 160.7

LOC in FP Actual effort Estimated effort
15.23 40 52
10.1 12 36
17 50 67
20 60 83
18 52 73
22 90 105

© 2013 Global Journals Inc. (US)

4

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

(
DDDD D DDD

)
C

VI. Conclusion and Future Work

This project proposes an efficient way of
estimating the effort. The results of the estimation based
on the Direct method shows that the deviation between

the actual and the estimated effort is more. The result of
Indirect method using the algorithmic technique cocomo
model based estimation reduces the relative error and
the mean absolute relative error. So the analysis of the
effort from Direct method and Indirect method gives that
Function point based estimation is the efficient method
for the estimation process.

Though Cocomo model which is algorithmic
method is an open model. It has some limitations also.
In the FP based estimation also exists the deviation
between actual and estimated effort. So the same effort
can be implemented by using the Non algorithmic
Method. Fuzzy logic is one type of Non algorithmic
method. This fuzzy based estimation using the
Triangular Membership Function has been proposed in
this paper. In future this non algorithmic based

estimation can be done to achieve the better
performance.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Software Cost Estimation Using Function Point with Non Algorithmic Approach

The MARE analysis is given as follows

References Références Referencias

1. M. Boraso, C. Montangero, and H. Sedehi,
"Software cost estimation: An experimental study of
model performances", tech. rep., 1996.

2. O. Benediktsson, D. Dalcher, K. Reed and M.
Woodman, "COCOMO based effort estimation for
iterative and incremental software development",
Software Quality Journal, vol. 11, pp. 265-281, 2003.

3. T. Menzies, D. Port, Z. Chen, J. Hihn and S. Stukes,
"Validation Methods for calibrating software e_ort
models", ICSE '05: Proceedings of the 27th

international conference on Software engineering,
(New York, NY, USA),,pp. 587-595, ACM Press,
2005.

4. Boehm, B., Abts, C., Brown, A. W., Chulani, S.,
Clark, B.K., Horowitz, E., Madachy, R., Reifer, D. J.,
Steece, B. Software cost estimation with COCOMO
II. Prentice-Hall, Upper Saddle River, NJ, February
2000.

5. IFPUG. Function Point Counting Practices Manual:
Release 4.0. International Function Point Users
Group, Princeton Junction, NJ, 1994.

6. Alaa f. sheta," Estimation of the COCOMO Model
Parameters Using Genetic Algorithm for NASA
Software Projects", Journal of Computer Science,
2(2):118-123, 2006.

7. Ali Idri, alain Abran and Laila Kijri, "COCOMO cost
modeling using Fuzzy Logic", International
conference on Fuzzy Theory and technology At-
lantic, 7 New Jersy, March 2000.

8. Baiely, j.w Basili, "A Meta model for Software
Development Resource Expenditure", Proc. Intl.
Conference Software Egg., pp : 107-115,1981.

9. Idri, A. and Abran, A.:"COCOMO Cost Model Using
fuzzylogic”.

10. IFPUG. Function Point Counting Practices Manual:
Release 4.0. International Function Point Users
Group, Princeton Junction, NJ, 1994.

© 2013 Global Journals Inc. (US)

The following graph shows the variation
between the actual and estimated effort using LOC in
FP.

This page is intentionally left blank

Software Cost Estimation Using Function Point with Non Algorithmic Approach

© 2013 Global Journals Inc. (US)

6

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
III

 V
er
sio

n
I

(
DDDD D DDD

)
C

	Software Cost Estimation using Function Point with Non Algorithmic Approach
	Author's
	Keywords
	I. Introduction
	a) Expert Judgment Method
	b) Estimating by Analogy
	c) Top Down Estimating Method
	d) Bottom Up Estimating Method
	e) Algorithmic Method

	II. Direct Approach
	III. Indirect Approach
	a) Function Point Analysis (FPA)
	b) Evaluation of Unadjusted FP
	c) Evaluation of Value Adjusted FP
	d) Fuzzy Logic
	e) Defuzzification

	IV. Various Criterions for Assessmentof Software Cost EstimationModels
	V. Experimental Results
	VI. Conclusion and Future Work
	References Références Referencias

