
Design Complexity for Objective Function Points1

Ian Brown2

Received: 7 December 2019 Accepted: 5 January 2020 Published: 15 January 20203

4

Abstract5

This paper investigates correlating the basic elements of Unified Modeling Language and6

Cyclomatic Complexity with Function Point Analysis (FPA) principles to develop an7

automated software functional sizing tool. This concept has been difficult to achieve due to8

the logical nature of the FPA sizing methodology versus the physical nature of source lines of9

code (SLOC). In this approach, we examine software complexity from design and10

maintainability perspectives in order to understand relationships in physical code. Our11

hypothesis is that this method will ?simulate? FPA principles and produce an objective sizing12

method. This would provide the foundation for an automated tool that scans physical13

software code to derive ?Objective Function Points? (OFPs) functional size measure14

15

Index terms—16

1 Design Complexity for Objective Function Points17

Paul Cymerman ? , Joe Van Dyke ? & Ian Brown ? Abstract-This paper investigates correlating the18
basic elements of Unified Modeling Language and Cyclomatic Complexity with Function Point Analysis (FPA)19
principles to develop an automated software functional sizing tool. This concept has been difficult to achieve20
due to the logical nature of the FPA sizing methodology versus the physical nature of source lines of code21
(SLOC). In this approach, we examine software complexity from design and maintainability perspectives in order22
to understand relationships in physical code. Our hypothesis is that this method will ”simulate” FPA principles23
and produce an objective sizing method. This would provide the foundation for an automated tool that scans24
physical software code to derive ”Objective Function Points” (OFPs) functional size measure.25

2 I.26

3 Unified Modeling Language Background27

e investigated using Unified Modeling Language (UML) [1] to map to Function Points (FPs) [2]. Developed to28
provide a common language for object-oriented modeling, UML was designed to be extensible in order to satisfy29
a wide variety of software engineering needs. Like FPs, it was also intended to be independent of any specific30
programming languages or development methods. [3] Graphical notation represents the UML syntax. UML is31
defined by the following three categories:32

? Static structure diagrams: Describe the structure of a system and include class and object diagrams. ?33
Behavior diagrams: Describe the behavior /dynamic perspective of a system and include use-case diagrams,34
interaction diagrams, sequence diagrams, collaborations diagrams, state diagrams and activity diagrams.35

? Implementation diagrams: Provide actual source code information including component diagrams and36
deployment diagrams.37

Class diagrams describe the static structure of the model that is objects, classes and relationships between38
these entities which include generalization and aggregation. They also represent the attributes and operations of39
the classes.40

In order to apply FP concepts in a UML context, we had to translate between the two. To simplify FP terms41
and definitions into sizing measures that can be easily calculated using a tool, the OFP translation is included42
in BLUE.43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



8 DERIVING DESIGN COMPLEXITY AS A

Record Element Type: Most RETs are dependent on a parent -child relationship. In this case, the child44
information is a superset where a child class/object inherits all attributes and methods of the parent information.45
In a parent-child structure, there are one-to-many relationships that define the nature of the connection between46
attributes within entities [4].47

4 RET ~INHERITANCE48

File Type Referenced: Associations between files provide mapping of maintained files by the application [4] FTR49
~ASSOCIATION Data Element Type: UML attributes provide a good indication as to what DETs should be50
counted in FPA [4].51

DET ~ATTRIBUTES52

5 II.53

What is Cyclomatic Complexity?54
Cyclomatic Complexity (CC) is a software metric used as a limiting function for measuring the complexity of55

routines during program development. When the CC of the module exceeds 10 [5], modules are split into smaller56
modules.57

CC is one measure of complexity in software development. This complexity is specific to the ongoing58
development of routines during overall program development. McCabe references this as Design Complexity59
(DC) of the Module. It does not address architectural complexity of software design. That would be called60
the DC of the architecture. The more interactions between objects and the more associations between classes61
there are, the higher will be the complexity. Both the abstract level of the class as well as the physical level of62
the objects are taken into consideration. [6] The following statements from Richard Seidl captures the following63
rational behind DC:64

”UML Design Complexity metrics can be defined as the relationship of entities to relationships. The size of a65
set is determined by the number of elements in that set. The complexity of a set is a question of the number of66
relationships between the elements of that set. The more connections or dependencies there are relative to the67
number of elements, the greater the complexity.” [6] ”The more interactions and associations there are between68
objects and classes, the greater the dependency of those objects and classes upon one another. This mutual69
dependency is referred to a coupling. Classes with a high coupling have greater domain impacts” [6] III.70

6 What is Architecture Design Complexity (dc)?71

This DC is a software metric used to understand the Architecture Design -not just for a specific module, but also72
between modules. This focuses on the Class (a.k.a. Module), Methods (a.k.a. Functions) and Attributes.73

A class is a set of objects that have common structure and behavior. A class consists of a collection of states74
(a.k.a. attributes or properties) and behaviors (a.k.a. methods). A class represents the abstract matrix of an75
object before it’s instantiated, where an object is an instance of a class.76

A method is an operation, which can update the value of the certain attributes of an object.77
An attribute is an observable property of the objects of a class.78
The overall Architecture Design considers the additional relationships:79
Association is a relationship between classes which is used to show that instances of classes could be either80

linked to each other or combined logically or physically through a semantic relationship Inheritance is a form81
of Association and a feature of object-oriented programming that allows code reusability when a class includes82
property of another class.83

7 IV. Deriving Design Complexity of the Architecture84

The elementary variables in functions above are designated as DET. The functional complexity is estimated as85
the total number of user-identifiable groups that exists within DETs and is termed as RET in Data Functions86
and all referenced file types are counted as FTR in Transactions Functions. A corresponding matrix holds the87
reference function point values for all function types namely the ILF, EIF, EI, EO and EQ, with respect to88
the range of DET and RET/FTR in each function. The total sum of the high, medium and low count of all89
operations is the unadjusted function point count.90

The goal is to extract the DC from the complexity fundamentally imbedded in these original relationships.91
This starts with A.J. Albrecht’s original Function Point calculations. There are 3 curves, figure 1, that show how92
the FPs are calculated based on some level of complexity. Mapping the Function Types to Figure 1, we take the93
”EI” table and map to the complexity value of ”1” on the graph. The ”EO and EQ” maps to the complexity94
value of 2. ”EIF” maps to a complexity value of 3 and ”ILF” maps to a complexity value of 4.95

8 Deriving Design Complexity as a96

Function of Inheritance, Associations and Attributes Referencing Albrecht’s original complexity tables regarding97
DETs, RETs and FTRs, we can substitute Inheritance for RETs; Associations for FTRs and Attributes for DETs98
to come up with the following table. To focus on Inheritances, Associations, and Attributes, we are moving99

2



from RET, FTR, DET categories to Inheritance, Association, and Attributes categories. For Inheritance and100
Associations, we need to consider cases where there are values of ”0” so we need to adjust the information as101
follows:Category Low Avg High Inheritance 0 1-4 >4 Associations 0-1 2 >2 Attributes 1-19 20-50 >50102

The next step is to transform this table into equations. Starting with the Inheritance category, the first row103
of the table, if we curve fit the values for Inheritance, we will see that the curve, when Inheritance = 0, we104
intentionally shift the value by 1. Thus, the Xaxis is based by Inheritance+1. This technique avoids dealing with105
a value of 0 which provides a better fit regression curve. When the value on Y-axis is 2 and Inheritance+1 = 1,106
this translates to LOW complexity.107

When Inheritance+1 is ranges 2 to 5, the Y-axis is greater than 2 and less than or equal to 3. This translates108
to AVG. When X-axis is greater than 5, the Yaxis is greater than 3 which translates into HIGH.109

Next we model the Associations category. From Function Point Theory, FTRs are scaled a lot lower than110
what is seen in today’s coding with respect to Associations even though they are similar. One large program111
shows an average of 2.5 associations, but can range up to 188. This is very common in development and is a112
result of improved coding practices since 1979 when FPs were first developed. When the value on Yaxis is 1.5113
and Association+1 = 1, this translates to LOW complexity. When Association+1 is ranges 2 to 5, the Y-axis is114
greater than 2 and less than or equal to 3. This translates to AVG. When X-axis is greater than 5, the Y-axis is115
greater than 3 which translates into HIGH.116

Drawing To understand the response of the DC equation, we calculated every case within a reasonable range.117
By producing all these cases, we can isolate when Design Complexities change in value. We observe a pattern118

that can be expressed through regression. This regression analysis will provide the bounding limits for Low, Avg119
and High DC.120

9 VII. Determining the Missing Data for Calculating Design121

Complexity Values122

We need to transform the matrix to have Attributes inside, Inheritance going across, and the Associations going123
down. This produces curves showing Attributes as a function of Inheritances. Each curve is phase-shifted due to124
their dependence on Associations.125

Let’s focus on the first Attribute Limit equation where the DC = 2 and the Association = 0: ? Attribute_Limit126
= 27.9 * (Inheritance + 1) ^-0.701 o When Inheritance + 1 = 1, the Attribute_Limit = 28.0 o When Inheritance127
+ 1 = 2, the Attribute_Limit = 17.0 o When Inheritance + 1 = 3, the Attribute_Limit = 13.0128

Note that 27.9 is the First Term and -0.701 is the Second Term.129
We now need to estimate the First and Second Terms as a function of DC using regression We now can130

simplify to a table that provides the OFPs in a simple form: Note that for DC = 0, we needed to minimize the131
weighting to reflect cases where the design is simplistic in nature. It made little sense to apply a weighting of 3132
to a design that had zero Inheritance, zero Associations and zero Attributes. To account for someone thinking133
of implementing this design, we choose a value of 1 Function Point and went from there using CC.134

X.135

10 Summary136

This methodology successfully creates a new and simple OFP table that is dependent on CC and DC. We extracted137
a DC that captures interface relationships based on inheritances, associations and attributes in the actual code.138
This DC is based on Albrecht’s original analysis where DC was a factor but never exclusively identified. This new139
table is independent of transactional and database qualifiers. Next steps are to incorporate this methodology140
into an automated Function Point counter that reads actual source code to extract UML definition such as141
inheritances, associations and attributes to derive the OFPs. This effort is being implemented into the Objective142
Function Point counter that will reside in the Unified Code Counter Govt (UCC-G) version and the University143
of Southern California (USC) Unified Code Counter Java version (UCC-J). 1 2144

1© 2020 Global Journals
2© 2020 Global Journals Design Complexity for Objective Function Points

3



10 SUMMARY

1

Figure 1: Figure 1 :

123

Figure 2: Hypothesis 1 :Figure 2 :Figure 3 :

4



4

Figure 3: Figure 4 :

5



10 SUMMARY

Figure 4:

5

Figure 5: Figure 5 :

6



6

Figure 6: Figure 6 :

7133

Figure 7: Figure 7 : 1 ? 3 ? 3 For?

7



10 SUMMARY

Figure 8: o

8



[Albrecht ()] ‘Function Point Analysis’. A J Albrecht . Encyclopedia of Software Engineering 1994. John Wiley145
& Sons. 1.146

[Uemura et al. (1999)] Function Point Measurement Tool for UML Design Specification, T Uemura , S Kusumoto147
, K Inoue . Nov 1999. Osaka Japan.148

[Seidl ()] Modeling Metrics for UML Diagrams, Richard Seidl . 2010.149

[Mccabe ()] NIST Special Publication 500-235, T Mccabe . 1996.150

[Rational, UML, 1.1 Notation Guide, Rational Software ()] Rational, UML, 1.1 Notation Guide, Rational Soft-151
ware, 1997.152

[Brown ()] Using Entity Relationship Diagrams to Count Data Functions, I Brown . 2007.153

9


	1 Design Complexity for Objective Function Points
	2 I.
	3 Unified Modeling Language Background
	4 RET ~INHERITANCE
	5 II.
	6 What is Architecture Design Complexity (dc)?
	7 IV. Deriving Design Complexity of the Architecture
	8 Deriving Design Complexity as a
	9 VII. Determining the Missing Data for Calculating Design Complexity Values
	10 Summary

