
© 2020. Paul Cymerman, Joe Van Dyke & Ian Brown. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 20 Issue 3 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Design Complexity for Objective Function Points
 By Paul Cymerman, Joe Van Dyke & Ian Brown

Abstract- This paper investigates correlating the basic elements of Unified Modeling Language
and Cyclomatic Complexity with Function Point Analysis (FPA) principles to develop an
automated software functional sizing tool. This concept has been difficult to achieve due to the
logical nature of the FPA sizing methodology versus the physical nature of source lines of code
(SLOC). In this approach, we examine software complexity from design and maintainability
perspectives in order to understand relationships in physical code. Our hypothesis is that this
method will “simulate” FPA principles and produce an objective sizing method. This would
provide the foundation for an automated tool that scans physical software code to derive
“Objective Function Points” (OFPs) functional size measure.

GJCST-G Classification: D.2.9

DesignComplexityforObjectiveFunctionPoints

 Strictly as per the compliance and regulations of:

Design Complexity for Objective Function Points
Paul Cymerman α, Joe Van Dyke σ & Ian Brown ρ

Abstract- This paper investigates correlating the basic
elements of Unified Modeling Language and Cyclomatic
Complexity with Function Point Analysis (FPA) principles to
develop an automated software functional sizing tool. This
concept has been difficult to achieve due to the logical nature
of the FPA sizing methodology versus the physical nature of
source lines of code (SLOC). In this approach, we examine
software complexity from design and maintainability
perspectives in order to understand relationships in physical
code. Our hypothesis is that this method will “simulate” FPA
principles and produce an objective sizing method. This would
provide the foundation for an automated tool that scans
physical software code to derive “Objective Function Points”
(OFPs) functional size measure.

I. Unified Modeling Language
Background

e investigated using Unified Modeling
Language (UML) [1] to map to Function Points
(FPs) [2]. Developed to provide a common

language for object- oriented modeling, UML was
designed to be extensible in order to satisfy a wide
variety of software engineering needs. Like FPs, it was
also intended to be independent of any specific
programming languages or development methods. [3]
Graphical notation represents the UML syntax. UML is
defined by the following three categories:

• Static structure diagrams: Describe the structure of
a system and include class and object diagrams.

• Behavior diagrams: Describe the behavior /dynamic
perspective of a system and include use-case
diagrams, interaction diagrams, sequence
diagrams, collaborations diagrams, state diagrams
and activity diagrams.

• Implementation diagrams: Provide actual source
code information including component diagrams
and deployment diagrams.

Class diagrams describe the static structure of
the model that is objects, classes and relationships
between these entities which include generalization and
aggregation. They also represent the attributes and
operations of the classes.

In order to apply FP concepts in a UML context,
we had to translate between the two. To simplify FP
terms and definitions into sizing measures that can be
easily calculated using a tool, the OFP translation is
included in BLUE.

Author α σ: Quaternion Consulting Inc.
e-mails: pcymerman@quaternion-consulting.com,
jvandyke@quaternion-consulting.com
Author ρ: Galorath, Inc. e-mail: ibrown@galorath.com

W

1

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

20
20

© 2020 Global Journals

Record Element Type: Most RETs are
dependent on a parent – child relationship. In this case,
the child information is a superset where a child
class/object inherits all attributes and methods of the
parent information. In a parent-child structure, there are
one- to-many relationships that define the nature of the
connection between attributes within entities [4].

RET ~ INHERITANCE

File Type Referenced: Associations between
files provide mapping of maintained files by the
application [4]

FTR ~ ASSOCIATION

Data Element Type: UML attributes provide a
good indication as to what DETs should be counted in
FPA [4].

DET ~ ATTRIBUTES

II. What is Cyclomatic Complexity?

Cyclomatic Complexity (CC) is a software metric
used as a limiting function for measuring the complexity
of routines during program development. When the CC
of the module exceeds 10 [5], modules are split into
smaller modules.

CC is one measure of complexity in software
development. This complexity is specific to the ongoing
development of routines during overall program
development. McCabe references this as Design
Complexity (DC) of the Module. It does not address
architectural complexity of software design. That would
be called the DC of the architecture. The more
interactions between objects and the more associations
between classes there are, the higher will be the
complexity. Both the abstract level of the class as well
as the physical level of the objects are taken into
consideration. [6]

The following statements from Richard Seidl
captures the following rational behind DC:

“UML Design Complexity metrics can be
defined as the relationship of entities to relationships.
The size of a set is determined by the number of
elements in that set. The complexity of a set is a
question of the number of relationships between the
elements of that set. The more connections or
dependencies there are relative to the number of
elements, the greater the complexity.” [6]

“The more interactions and associations there
are between objects and classes, the greater the
dependency of those objects and classes upon one
another. This mutual dependency is referred to a

coupling. Classes with a high coupling have greater
domain impacts” [6]

III. What is Architecture Design
Complexity (dc)?

This DC is a software metric used to understand
the Architecture Design – not just for a specific module,
but also between modules. This focuses on the Class
(a.k.a. Module), Methods (a.k.a. Functions) and
Attributes.

A class is a set of objects that have common
structure and behavior. A class consists of a collection
of states (a.k.a. attributes or properties) and behaviors
(a.k.a. methods). A class represents the abstract matrix
of an object before it’s instantiated, where an object is
an instance of a class.

A method is an operation, which can update the
value of the certain attributes of an object.

An attribute is an observable property of the
objects of a class.

The overall Architecture Design considers the
additional relationships:

Association is a relationship between classes
which is used to show that instances of classes could
be either linked to each other or combined logically or

physically through a semantic relationship Inheritance is
a form of Association and a feature of object-oriented
programming that allows code reusability when a class
includes property of another class.

IV. Deriving Design Complexity of the
Architecture

The elementary variables in functions above are
designated as DET. The functional complexity is
estimated as the total number of user-identifiable
groups that exists within DETs and is termed as RET in
Data Functions and all referenced file types are counted
as FTR in Transactions Functions. A corresponding
matrix holds the reference function point values for all
function types namely the ILF, EIF, EI, EO and EQ, with
respect to the range of DET and RET/FTR in each
function. The total sum of the high, medium and low
count of all operations is the unadjusted function point
count.

The goal is to extract the DC from the
complexity fundamentally imbedded in these original
relationships. This starts with A.J. Albrecht’s original
Function Point calculations. There are 3 curves, figure 1,
that show how the FPs are calculated based on some
level of complexity.

Figure 1: FPA Tables to Curves

Mapping the Function Types to Figure 1, we
take the “EI” table and map to the complexity value of
“1” on the graph. The “EO and EQ” maps to the
complexity value of 2. “EIF” maps to a complexity value
of 3 and “ILF” maps to a complexity value of 4.

Hypothesis 1: Since X-axis references function types that
have some inherent complexity, assume this complexity
is the development complexity that CC tries to capture.
We will shortly address the DC that determines the
phase shift of the 3 curves.
McCabe used 4 bins for his Cyclomatic Complexities:

1. CC value 1-10
2. CC value 11-20
3. CC value 21-40
4. CC value >40

If we use these bins as our X-axis values, we
can determine the appropriate Function Point value.
Thus, the general form equation from the graphs is:

Function Point = “Coefficient A” * CC^2 +
“Coefficient B” * CC +
“Coefficient C”

Hypothesis 2: Observing the spacing between each of
Albrecht’s original curves, we can assume that another
order of complexity drove these phase shifts. Since the
DET, RET and FTR relationships helped build these
curves, let’s assume that this complexity is the
imbedded DC that is used but not specifically
referenced. As previously discussed, the DETs, RETs
and FTRs are equivalent to ATTRIBUTES,
INHERITANCES and ASSOCIATIONS. This would show

© 2020 Global Journals

2

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

2
02

0
Design Complexity for Objective Function Points

how the architecture works together which is the basis
for DC. Fitting a quadratic equation:

Function Point = A * CC^2 + B * CC + C

permits DC to be represented by the 3 Coefficients:

HIGH:

y = x^2 - 2x + 7

AVG:

y = 0.5x^2 - 0.5x + 4

LOW:

y = 0.25x^2 + 0.05x + 2.75

Where x = CC

If we want to model the A Coefficient, we need
to look problem in Complexity space where the X-axis is
the HIGH, AVG and LOW.

Setting HIGH to 3; AVG to 2; LOW to 1

Figure 2:

“A” Coefficient by Complexity

Following the same process for Coefficient B, we have:

Setting HIGH to 3; AVG to 2; LOW to 1

Figure 3:

“B” Coefficient by Complexity

Following the same process for Coefficient C, we have:

Setting HIGH to 3; AVG to 2; LOW to 1

Figure 4: “C” Coefficient by Complexity

The complexity on the X-axis is the DC that we
are looking for. We now can calculate the coefficients
based on DC.

Coefficient A = 0.125 * DC^2 – 0.125 * DC + 0.25

Coefficient B = -0.475 * DC^2 + 0.875 * DC – 0.35

Coefficient C = 0.875 * DC^2 – 1.375 * DC + 3.25

This now leads to a Function Point equation
dependent on CC and DC:

Function Point = (0.125 * DC^2 – 0.125 * DC + 0.25)
* CC^2 + (-0.475 * DC^2 + 0.875 * DC – 0.35) * CC
+ (0.875 * DC^2 – 1.375 * DC + 3.25)

Where DC = 1 for LOW; 2 for AVG; 3 for HIGH

V. Deriving Design Complexity as a
Function of Inheritance,

Associations and Attributes

Referencing Albrecht’s original complexity
tables regarding DETs, RETs and FTRs, we can
substitute Inheritance for RETs; Associations for FTRs
and Attributes for DETs to come up with the following
table. To focus on Inheritances, Associations, and
Attributes, we are moving from RET, FTR, DET
categories to Inheritance, Association, and Attributes
categories. For Inheritance and Associations, we need
to consider cases where there are values of “0” so we
need to adjust the information as follows:

Category Low Avg High
Inheritance 0 1-4 >4
Associations 0-1 2 >2
Attributes 1-19 20-50 >50

The next step is to transform this table into
equations. Starting with the Inheritance category, the
first row of the table, if we curve fit the values for
Inheritance, we will see that the curve, when Inheritance
= 0, we intentionally shift the value by 1. Thus, the X-
axis is based by Inheritance+1. This technique avoids
dealing with a value of 0 which provides a better fit
regression curve. When the value on Y-axis is 2 and
Inheritance+1 = 1, this translates to LOW complexity.

3

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

2
02

0

© 2020 Global Journals

Design Complexity for Objective Function Points

A, B, and C.

Next derive the Design Complexity using the
values from the 3 curves.

Next derive the Design Complexity using the

When Inheritance+1 is ranges 2 to 5, the Y-axis is
greater than 2 and less than or equal to 3. This
translates to AVG. When X-axis is greater than 5, the Y-
axis is greater than 3 which translates into HIGH.

Next we model the Associations category. From
Function Point Theory, FTRs are scaled a lot lower than
what is seen in today’s coding with respect to
Associations even though they are similar. One large
program shows an average of 2.5 associations, but can
range up to 188. This is very common in development
and is a result of improved coding practices since 1979
when FPs were first developed. When the value on Y-
axis is 1.5 and Association+1 = 1, this translates to
LOW complexity. When Association+1 is ranges 2 to 5,
the Y-axis is greater than 2 and less than or equal to 3.
This translates to AVG. When X-axis is greater than 5,
the Y-axis is greater than 3 which translates into HIGH.

Drawing from Function Point mechanics where
complexity is the average of [(RET Category DET
Category) + (FTR Category DET Category)]
Where:

• (RET Category DET Category) = ∑ (RET Category
+ DET Category) / 2

• (FTR Category DET Category) = ∑ (FTR Category +
DET Category) / 2

Converting RETs, FTRs, and DETS to
Inheritances, Associations, and Attributes respectively,
we get:

Design Complexity = Average of [(Inheritance Category
Attribute Category) + (Association Category Attribute
Category)]
Where:

• (Inheritance Category Attribute Category) =
∑ (Inheritance Category + Attribute Category) / 2

• (Association Category Attribute Category) =
∑ (Association Category + Attribute Category) / 2

VI. Determining the Ranges for Low,
Avg, and High Design Complexity

Values
To understand the response of the DC

equation, we calculated every case within a reasonable
range.

By producing all these cases, we can isolate
when Design Complexities change in value. We observe
a pattern that can be expressed through regression.
This regression analysis will provide the bounding limits
for Low, Avg and High DC.

VII. Determining the Missing Data for
Calculating Design Complexity

Values
We need to transform the matrix to have

Attributes inside, Inheritance going across, and the

Associations going down. This produces curves
showing Attributes as a function of Inheritances. Each
curve is phase- shifted due to their dependence on
Associations.

Let’s focus on the first Attribute Limit equation
where the DC = 2 and the Association = 0:
• Attribute_Limit = 27.9 * (Inheritance + 1) ^ - 0.701

o When Inheritance + 1 = 1, the Attribute_Limit
= 28.0

o When Inheritance + 1 = 2, the Attribute_Limit
= 17.0

o When Inheritance + 1 = 3, the Attribute_Limit
= 13.0

Note that 27.9 is the First Term and -0.701 is the
Second Term.

We now need to estimate the First and Second
Terms as a function of DC using regression

Figure 5: First Term Relationship to DC

Figure 6:

Second Term Relationship to DC

Performing this exercise for additional
Associations, we get the following values for the First
Term:

• First Term (Association = 0) = 3.524

•

First Term (Association = 1) = 1.7403

•

First Term (Association = 2) = 1.2486

•

And so on …

Next is the Second Term:

•

Second Term (Association = 0) = 3.0199

•

Second Term (Association = 1) = 5.8571

•

Second Term (Association = 2) = 8.9756

•

And so on …

© 2020 Global Journals

4

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

2
02

0
Design Complexity for Objective Function Points

We now can perform regression to estimate the
First and Second Terms as a function of Associations
and DC.

VIII. Transformation to Design
Complexity Space

Next step we perform regression based on the
previous analysis.

Figure 7: First Term Relationship to Associations
Red=HIGH DC; Yellow=AVG DC; Green=LOW DC

Figure 8:

Second Term Relationship to Associations

Red=HIGH DC; Yellow=AVG DC; Green=LOW DC

We now can use this information and the
original Attribute Limit formula:

•

Attribute_Limit = First Term * (Inheritance +

1) ^ -

(Second Term)

When DC = 1

•

Attribute_Limit_1 = (-1.1377 * Association +
4.4464) * (Inheritance + 1) ^ - (2.9779 *
Association + 0.0048)

When DC = 2

•

Attribute_Limit_2 = (-5.4063 * Association + 33.05)
* (Inheritance + 1) ^ -(0.1976 * Association +
0.4842)

When DC = 3

•

Attribute_Limit_3 = (-6.8725 * Association +
102.82) * (Inheritance + 1) ^ - (0.0146 *
Association + 0.2663)

We will know the Class DC after we enter the
known Inheritance, Associations and Attributes for the
specific Class.

• If Attributes < Attribute_Limit_1
o then DC = 0

• If Attribute_Limit_1 ≤ Attributes < Attribute_Limit_2
o then DC = 1

• If Attribute_Limit_2 ≤ Attributes < Attribute_Limit_3
o then DC = 2

• If Attribute_Limit_3 ≤ Attributes
o then DC = 3

For example:

• Inheritances =1
• Associations = 2
• Attributes = 15

Thus,

• Attribute_Limit_1 = 0.03
• Attribute_Limit_2 = 12.09
• Attribute_Limit_3 = 72.58

Since Attributes = 15, the DC = 2 since
Attributes are between 12.09 and 72.58.

This calculates DC for a combination of
Inheritances, Associations, and Attributes.

IX. Using Design Complexity and
Cyclomatic Complexity to

Calculate Ofps

Going back to previous section where we
solved the following equation:

Function Point = (0.125 * DC^2 – 0.125 * DC + 0.25)*
CC^2 + (-0.475 * DC^2 + 0.875 * DC – 0.35) * CC
+(0.875 * DC^2 – 1.375 * DC + 3.25)

Where:

DC = 1 for LOW; 2 for AVG; 3 for HIGH CC values
fall into 4 bins:

1. CC value 1-10
2. CC value 11-20
3. CC value 21-40
4. CC value >40

We now can simplify to a table that provides the
OFPs in a simple form:

For example:

• If CC = 7,
o then CC bin = 1;

5

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

2
02

0

© 2020 Global Journals

Design Complexity for Objective Function Points

OFP CC_BIN1 CC_BIN2 CC_BIN3 CC_BIN4

DC=0 1 2 3 4
DC=1 3 4 5 7
DC=2 4 5 7 10
DC=3 6 7 10 15

o then DC = 2,
• Then the OFP = 4

Note that for DC = 0, we needed to minimize
the weighting to reflect cases where the design is
simplistic in nature. It made little sense to apply a
weighting of 3 to a design that had zero Inheritance,
zero Associations and zero Attributes. To account for
someone thinking of implementing this design, we
choose a value of 1 Function Point and went from there
using CC.

X. Summary

This methodology successfully creates a new
and simple OFP table that is dependent on CC and DC.
We extracted a DC that captures interface relationships
based on inheritances, associations and attributes in the
actual code. This DC is based on Albrecht’s original
analysis where DC was a factor but never exclusively
identified. This new table is independent of transactional
and database qualifiers. Next steps are to incorporate
this methodology into an automated Function Point
counter that reads actual source code to extract UML
definition such as inheritances, associations and
attributes to derive the OFPs. This effort is being
implemented into the Objective Function Point counter
that will reside in the Unified Code Counter Govt (UCC-
G) version and the University of Southern California
(USC) Unified Code Counter Java version (UCC-J).

References Références Referencias

1. Rational, UML, 1.1 Notation Guide, Rational
Software, 1997.

2. A.J. Albrecht. Function Point Analysis. Encyclopedia
of Software Engineering, 1: John Wiley & Sons,
1994.

3. T. Uemura, S. Kusumoto, and K. Inoue, Function
Point Measurement Tool for UML Design
Specification, Osaka Japan, Nov 1999.

4. I. Brown, Using Entity Relationship Diagrams to
Count Data Functions, 2007.

5. McCabe T., “NIST Special Publication 500-235”,
1996.

6. Richard Seidl “Modeling Metrics for UML
Diagrams”, 2010.

© 2020 Global Journals

6

(
)

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
II

V
er
sio

n
I

Y
e
a
r

Design Complexity for Objective Function Points

• If Inheritances =1; Associations = 2; Attributes =
15

20
20

	Design Complexity for Objective Function Points
	Author
	I. Unified Modeling Language Background
	II. What is Cyclomatic Complexity?
	III. What is Architecture Design Complexity (dc)?
	IV. Deriving Design Complexity of the Architecture
	V. Deriving Design Complexity as a Function of Inheritance, Associations and Attributes
	VI. Determining the Ranges for Low, Avg, and High Design Complexity Values
	VII. Determining the Missing Data for Calculating Design Complexity Values
	VIII. Transformation to Design Complexity Space
	IX. Using Design Complexity and Cyclomatic Complexity to Calculate Ofps
	X. Summary
	References Références Referencias

