
© 2020. Paul Cymerman, Joe Van Dyke & Ian Brown. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Global Journal of Computer Science and Technology: G 
Interdisciplinary  
Volume 20 Issue 3 Version 1.0 Year 2020 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Design Complexity for Objective Function Points 
 By Paul Cymerman, Joe Van Dyke & Ian Brown                                                                                    

Abstract- This paper investigates correlating the basic elements of Unified Modeling Language 
and Cyclomatic Complexity with Function Point Analysis (FPA) principles to develop an 
automated software functional sizing tool. This concept has been difficult to achieve due to the 
logical nature of the FPA sizing methodology versus the physical nature of source lines of code 
(SLOC). In this approach, we examine software complexity from design and maintainability 
perspectives in order to understand relationships in physical code. Our hypothesis is that this 
method will “simulate” FPA principles and produce an objective sizing method. This would 
provide the foundation for an automated tool that scans physical software code to derive 
“Objective Function Points” (OFPs) functional size measure.   

GJCST-G Classification: D.2.9 

 

DesignComplexityforObjectiveFunctionPoints     
 

 
 
 
 
 
 
 
                                                
 

                                                    Strictly as per the compliance and regulations of: 

 



Design Complexity for Objective Function Points 
Paul Cymerman α, Joe Van Dyke σ & Ian Brown ρ

Abstract- This paper investigates correlating the basic 
elements of Unified Modeling Language and Cyclomatic 
Complexity with Function Point Analysis (FPA) principles to 
develop an automated software functional sizing tool. This 
concept has been difficult to achieve due to the logical nature 
of the FPA sizing methodology versus the physical nature of 
source lines of code (SLOC). In this approach, we examine 
software complexity from design and maintainability 
perspectives in order to understand relationships in physical 
code. Our hypothesis is that this method will “simulate” FPA 
principles and produce an objective sizing method. This would 
provide the foundation for an automated tool that scans 
physical software code to derive “Objective Function Points” 
(OFPs) functional size measure. 

I. Unified Modeling Language 
Background 

e investigated using Unified Modeling 
Language (UML) [1] to map to Function Points 
(FPs) [2]. Developed to provide a common 

language for object- oriented modeling, UML was 
designed to be extensible in order to satisfy a wide 
variety of software engineering needs. Like FPs, it was 
also intended to be independent of any specific 
programming languages or development methods. [3] 
Graphical notation represents the UML syntax. UML is 
defined by the following three categories: 

• Static structure diagrams: Describe the structure of 
a system and include class and object diagrams. 

• Behavior diagrams: Describe the behavior /dynamic 
perspective of a system and include use-case 
diagrams, interaction diagrams, sequence 
diagrams, collaborations diagrams, state diagrams 
and activity diagrams. 

• Implementation diagrams: Provide actual source 
code information including component diagrams 
and deployment diagrams. 

Class diagrams describe the static structure of 
the model that is objects, classes and relationships 
between these entities which include generalization and 
aggregation. They also represent the attributes and 
operations of the classes. 

In order to apply FP concepts in a UML context, 
we had to translate between the two. To simplify FP 
terms and definitions into sizing measures that can be 
easily calculated using a tool, the OFP translation is 
included in BLUE. 
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Record Element Type: Most RETs are 
dependent on a parent – child relationship. In this case, 
the child information is a superset where a child 
class/object inherits all attributes and methods of the 
parent information. In a parent-child structure, there are 
one- to-many relationships that define the nature of the 
connection between attributes within entities [4].

RET ~ INHERITANCE

File Type Referenced: Associations between 
files provide mapping of maintained files by the 
application [4]

FTR ~ ASSOCIATION

Data Element Type: UML attributes provide a 
good indication as to what DETs should be counted in 
FPA [4].

DET ~ ATTRIBUTES

II. What is Cyclomatic Complexity?

Cyclomatic Complexity (CC) is a software metric 
used as a limiting function for measuring the complexity 
of routines during program development. When the CC 
of the module exceeds 10 [5], modules are split into 
smaller modules.

CC is one measure of complexity in software 
development. This complexity is specific to the ongoing 
development of routines during overall program 
development. McCabe references this as Design 
Complexity (DC) of the Module. It does not address 
architectural complexity of software design. That would 
be called the DC of the architecture. The more 
interactions between objects and the more associations 
between classes there are, the higher will be the 
complexity. Both the abstract level of the class as well 
as the physical level of the objects are taken into 
consideration. [6]

The following statements from Richard Seidl 
captures the following rational behind DC:

“UML Design Complexity metrics can be 
defined as the relationship of entities to relationships. 
The size of a set is determined by the number of 
elements in that set. The complexity of a set is a 
question of the number of relationships between the 
elements of that set. The more connections or 
dependencies there are relative to the number of 
elements, the greater the complexity.” [6]

“The more interactions and associations there 
are between objects and classes, the greater the 
dependency of those objects and classes upon one 
another. This mutual dependency is referred to a 



coupling. Classes with a high coupling have greater 
domain impacts” [6] 

III. What is Architecture Design 
Complexity (dc)? 

This DC is a software metric used to understand 
the Architecture Design – not just for a specific module, 
but also between modules. This focuses on the Class 
(a.k.a. Module), Methods (a.k.a. Functions) and 
Attributes. 

A class is a set of objects that have common 
structure and behavior. A class consists of a collection 
of states (a.k.a. attributes or properties) and behaviors 
(a.k.a. methods). A class represents the abstract matrix 
of an object before it’s instantiated, where an object is 
an instance of a class. 

A method is an operation, which can update the 
value of the certain attributes of an object. 

An attribute is an observable property of the 
objects of a class. 

The overall Architecture Design considers the 
additional relationships: 

Association is a relationship between classes 
which is used to show that instances of classes could 
be either linked to each other or combined logically or 

physically through a semantic relationship Inheritance is 
a form of Association and a feature of object-oriented 
programming that allows code reusability when a class 
includes property of another class. 

IV. Deriving Design Complexity of the 
Architecture 

The elementary variables in functions above are 
designated as DET. The functional complexity is 
estimated as the total number of user-identifiable 
groups that exists within DETs and is termed as RET in 
Data Functions and all referenced file types are counted 
as FTR in Transactions Functions. A corresponding 
matrix holds the reference function point values for all 
function types namely the ILF, EIF, EI, EO and EQ, with 
respect to the range of DET and RET/FTR in each 
function. The total sum of the high, medium and low 
count of all operations is the unadjusted function point 
count. 

The goal is to extract the DC from the 
complexity fundamentally imbedded in these original 
relationships. This starts with A.J. Albrecht’s original 
Function Point calculations. There are 3 curves, figure 1, 
that show how the FPs are calculated based on some 
level of complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: FPA Tables to Curves

Mapping the Function Types to Figure 1, we 
take the “EI” table and map to the complexity value of 
“1” on the graph. The “EO and EQ” maps to the 
complexity value of 2. “EIF” maps to a complexity value 
of 3 and “ILF” maps to a complexity value of 4. 

Hypothesis 1: Since X-axis references function types that 
have some inherent complexity, assume this complexity 
is the development complexity that CC tries to capture. 
We will shortly address the DC that determines the 
phase shift of the 3 curves. 
McCabe used 4 bins for his Cyclomatic Complexities: 

1. CC value 1-10 
2. CC value 11-20 
3. CC value 21-40 
4. CC value >40 

If we use these bins as our X-axis values, we 
can determine the appropriate Function Point value. 
Thus, the general form equation from the graphs is: 

Function Point  =   “Coefficient A” * CC^2 + 
“Coefficient B” * CC +  
“Coefficient C” 

Hypothesis 2: Observing the spacing between each of 
Albrecht’s original curves, we can assume that another 
order of complexity drove these phase shifts. Since the 
DET, RET and FTR relationships helped build these 
curves, let’s assume that this complexity is the 
imbedded DC that is used but not specifically 
referenced. As previously discussed, the DETs, RETs 
and FTRs are equivalent to ATTRIBUTES, 
INHERITANCES and ASSOCIATIONS. This would show 
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how the architecture works together which is the basis 
for DC. Fitting a quadratic equation: 

Function Point = A * CC^2 + B * CC + C 

permits DC to be represented by the 3 Coefficients:  

 

HIGH:

 

y = x^2 - 2x + 7

 

AVG:

 

y = 0.5x^2 - 0.5x + 4

 

LOW:

 

y = 0.25x^2 + 0.05x + 2.75

 

Where x = CC

 

If we want to model the A Coefficient, we need 
to look problem in Complexity space where the X-axis is 
the HIGH, AVG and LOW.

 

Setting HIGH to 3; AVG to 2; LOW to 1

 
 

 

 

 

 

 

 

 

 

Figure 2:

 

“A” Coefficient by Complexity

 

Following the same process for Coefficient B, we have:

 

Setting HIGH to 3; AVG to 2; LOW to 1

 

 
 

 
 
 

 
 

 
 

 
 

Figure 3:

 

“B” Coefficient by Complexity

 

Following the same process for Coefficient C, we have:

 

Setting HIGH to 3; AVG to 2; LOW to 1

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: “C” Coefficient by Complexity 

The complexity on the X-axis is the DC that we 
are looking for. We now can calculate the coefficients 
based on DC. 

Coefficient A = 0.125 * DC^2 – 0.125 * DC + 0.25 

Coefficient B = -0.475 * DC^2 + 0.875 * DC – 0.35 

Coefficient C = 0.875 * DC^2 – 1.375 * DC + 3.25 

This now leads to a Function Point equation 
dependent on CC and DC: 

Function Point = (0.125 * DC^2 – 0.125 * DC + 0.25) 
* CC^2 + (-0.475 * DC^2 + 0.875 * DC – 0.35) * CC 
+ (0.875 * DC^2 – 1.375 * DC + 3.25) 

Where DC = 1 for LOW; 2 for AVG; 3 for HIGH 

V. Deriving Design Complexity as a 
Function of Inheritance, 

Associations and Attributes 

Referencing Albrecht’s original complexity 
tables regarding DETs, RETs and FTRs, we can 
substitute Inheritance for RETs; Associations for FTRs 
and Attributes for DETs to come up with the following 
table. To focus on Inheritances, Associations, and 
Attributes, we are moving from RET, FTR, DET 
categories to Inheritance, Association, and Attributes 
categories. For Inheritance and Associations, we need 
to consider cases where there are values of “0” so we 
need to adjust the information as follows: 

Category Low Avg High 
Inheritance 0 1-4 >4 
Associations 0-1 2 >2 
Attributes 1-19 20-50 >50 

The next step is to transform this table into 
equations. Starting with the Inheritance category, the 
first row of the table, if we curve fit the values for 
Inheritance, we will see that the curve, when Inheritance 
= 0, we intentionally shift the value by 1. Thus, the X-
axis is based by Inheritance+1. This technique avoids 
dealing with a value of 0 which provides a better fit 
regression curve. When the value on Y-axis is 2 and 
Inheritance+1 = 1, this translates to LOW complexity. 
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A, B, and C.  

Next derive the Design Complexity using the 
values from the 3 curves. 

Next derive the Design Complexity using the 



When Inheritance+1 is ranges 2 to 5, the Y-axis is 
greater than 2 and less than or equal to 3. This 
translates to AVG. When X-axis is greater than 5, the Y-
axis is greater than 3 which translates into HIGH. 

Next we model the Associations category. From 
Function Point Theory, FTRs are scaled a lot lower than 
what is seen in today’s coding with respect to 
Associations even though they are similar. One large 
program shows an average of 2.5 associations, but can 
range up to 188. This is very common in development 
and is a result of improved coding practices since 1979 
when FPs were first developed. When the value on Y-
axis is 1.5 and Association+1 = 1, this translates to 
LOW complexity. When Association+1 is ranges 2 to 5, 
the Y-axis is greater than 2 and less than or equal to 3. 
This translates to AVG. When X-axis is greater than 5, 
the Y-axis is greater than 3 which translates into HIGH. 

Drawing from Function Point mechanics where 
complexity is the average of [(RET Category DET 
Category) + (FTR Category DET Category)] 
Where: 

• (RET Category DET Category) = ∑ (RET Category 
+ DET Category) / 2 

• (FTR Category DET Category) = ∑ (FTR Category + 
DET Category) / 2 

Converting RETs, FTRs, and DETS to 
Inheritances, Associations, and Attributes respectively, 
we get: 

Design Complexity = Average of [(Inheritance Category 
Attribute Category) + (Association Category Attribute 
Category)] 
Where: 

• (Inheritance Category Attribute Category) =            
∑ (Inheritance Category + Attribute Category) / 2 

• (Association Category Attribute Category) =            
∑ (Association Category + Attribute Category) / 2 

VI. Determining the Ranges for Low, 
Avg, and High Design Complexity 

Values 
To understand the response of the DC 

equation, we calculated every case within a reasonable 
range. 

By producing all these cases, we can isolate 
when Design Complexities change in value. We observe 
a pattern that can be expressed through regression. 
This regression analysis will provide the bounding limits 
for Low, Avg and High DC. 

VII. Determining the Missing Data for 
Calculating Design Complexity 

Values 
We need to transform the matrix to have 

Attributes inside, Inheritance going across, and the 

Associations going down. This produces curves 
showing Attributes as a function of Inheritances. Each 
curve is phase- shifted due to their dependence on 
Associations. 

Let’s focus on the first Attribute Limit equation 
where the DC = 2 and the Association = 0: 
• Attribute_Limit = 27.9 * (Inheritance + 1) ^ - 0.701 

o When Inheritance + 1 = 1, the Attribute_Limit  
= 28.0 

o When Inheritance + 1 = 2, the Attribute_Limit  
= 17.0 

o When Inheritance + 1 = 3, the Attribute_Limit  
= 13.0 

Note that 27.9 is the First Term and -0.701 is the 
Second Term. 

We now need to estimate the First and Second 
Terms as a function of DC using regression 

 
 
 
 
 
 
 
 

 

 

Figure 5: First Term Relationship to DC 

 

 

 

 

 

 

 

Figure 6:
 
Second Term Relationship to DC

 

Performing this exercise for additional 
Associations, we get the following values for the First 
Term:

 

• First Term (Association = 0) = 3.524
 

•
 

First Term (Association = 1) = 1.7403
 

•
 

First Term (Association = 2) = 1.2486
 

•
 

And so on … 
 

Next is the Second Term:
 

•
 

Second Term (Association = 0) = 3.0199
 

•
 

Second Term (Association = 1) = 5.8571
 

•
 

Second Term (Association = 2) = 8.9756
 

•
 

And so on …
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We now can perform regression to estimate the 
First and Second Terms as a function of Associations 
and DC. 

VIII. Transformation to Design          
Complexity Space 

Next step we perform regression based on the 
previous analysis. 

 
 
 
 
 
 
 
 
 

 

Figure 7: First Term Relationship to Associations 
Red=HIGH DC; Yellow=AVG DC; Green=LOW DC 

 

 

 

 

 

 

 

 

Figure 8:
 
Second Term Relationship to Associations 

Red=HIGH DC; Yellow=AVG DC; Green=LOW DC
 

We now can use this information and the 
original Attribute Limit formula:

 

•
 

Attribute_Limit = First Term * (Inheritance +
 
1) ^ - 

(Second Term) 
 

When DC = 1
 

•
 

Attribute_Limit_1 = (-1.1377 * Association + 
4.4464) * (Inheritance + 1) ^ - (2.9779 * 
Association + 0.0048)

 

When DC = 2
 

•
 

Attribute_Limit_2 = (-5.4063 * Association + 33.05) 
* (Inheritance + 1) ^ -(0.1976 * Association + 
0.4842)

 

When DC = 3
 

•
 

Attribute_Limit_3 = (-6.8725 * Association + 
102.82) * (Inheritance + 1) ^ - (0.0146 * 
Association + 0.2663)

 

We will know the Class DC after we enter the 
known Inheritance, Associations and Attributes for the 
specific Class. 

• If Attributes < Attribute_Limit_1 
o then DC = 0 

• If Attribute_Limit_1 ≤ Attributes < Attribute_Limit_2 
o then DC = 1 

• If Attribute_Limit_2 ≤ Attributes < Attribute_Limit_3 
o then DC = 2 

• If Attribute_Limit_3 ≤ Attributes 
o then DC = 3 

For example: 

• Inheritances =1 
• Associations = 2 
• Attributes = 15  

Thus, 

• Attribute_Limit_1 = 0.03 
• Attribute_Limit_2 = 12.09 
• Attribute_Limit_3 = 72.58 

Since Attributes = 15, the DC = 2 since 
Attributes are between 12.09 and 72.58. 

This calculates DC for a combination of 
Inheritances, Associations, and Attributes. 

IX. Using Design Complexity and 
Cyclomatic Complexity to        

Calculate Ofps 

Going back to previous section where we 
solved the following equation: 

Function Point = (0.125 * DC^2 – 0.125 * DC + 0.25)* 
CC^2 + (-0.475 * DC^2 + 0.875 * DC – 0.35) * CC 
+(0.875 * DC^2 – 1.375 * DC + 3.25) 

Where: 

DC = 1 for LOW; 2 for AVG; 3 for HIGH CC values 
fall into 4 bins: 

1. CC value 1-10 
2. CC value 11-20 
3. CC value 21-40 
4. CC value >40 

We now can simplify to a table that provides the 
OFPs in a simple form: 

     

 
  

For example: 

• If CC = 7, 
o then CC bin = 1; 
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OFP    CC_BIN1  CC_BIN2   CC_BIN3    CC_BIN4

DC=0   1     2         3              4
DC=1   3      4         5              7
DC=2   4      5         7              10
DC=3   6      7        10              15



                 
 

o then DC = 2, 
• Then the OFP = 4 

Note that for DC = 0, we needed to minimize 
the weighting to reflect cases where the design is 
simplistic in nature. It made little sense to apply a 
weighting of 3 to a design that had zero Inheritance, 
zero Associations and zero Attributes. To account for 
someone thinking of implementing this design, we 
choose a value of 1 Function Point and went from there 
using CC. 

X. Summary 

This methodology successfully creates a new 
and simple OFP table that is dependent on CC and DC. 
We extracted a DC that captures interface relationships 
based on inheritances, associations and attributes in the 
actual code. This DC is based on Albrecht’s original 
analysis where DC was a factor but never exclusively 
identified. This new table is independent of transactional 
and database qualifiers. Next steps are to incorporate 
this methodology into an automated Function Point 
counter that reads actual source code to extract UML 
definition such as inheritances, associations and 
attributes to derive the OFPs. This effort is being 
implemented into the Objective Function Point counter 
that will reside in the Unified Code Counter Govt (UCC-
G) version and the University of Southern California 
(USC) Unified Code Counter Java version (UCC-J). 
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• If Inheritances =1; Associations = 2; Attributes = 
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