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Activation Function: Key to Cloning from Human 
Learning to Deep Learning 

Pranit Gopaldas Shah α & Hiral Pranit Shah σ

Abstract- Maneuvering a steady on-road obstacle at high 
speed involves taking multiple decisions in split seconds. An 
inaccurate decision may result in crash. One of the key 
decision that needs to be taken is can the on-road steady 
obstacle be surpassed. The model learns to clone the drivers 
behavior of maneuvering a non-surpass-able obstacle and 
pass through a surpass-able obstacle. No data with labels of 
“surpass-able” and “non-surpass-able” was provided during 
training. We have development an array of test cases to verify 
the robustness of CNN models used in autonomous driving. 
Experimenting between activation functions and dropouts the 
model achieves an accuracy of 87.33% and run time of 4478 
seconds with input of only 4881 images (training + testing). 
The model is trained for limited on-road steady obstacles. This 
paper provides a unique method to verify the robustness of 
CNN models for obstacle mitigation in autonomous vehicles. 
Keywords: BC, end-to-end learning, saliency map, 
computer vision, behavioral cloning, autonomous 
vehicles, self-driving, obstacle mitigation. 

I. Introduction 

ffordability of powerful computational hardware 
and advances in deep learning techniques has 
made vision-based autonomous driving an active 

research focus within the transport industry. There are 
considerable drawbacks in the techniques to overcome, 
even though the research worldwide has already taken 
giant leap. Foremost downside is the inability to 
explicitly model each possible scenario. Driving needs 
responding to a large variety of complex environmental 
conditions and agent behaviors.  

End-to-end method and perception-driven 
method are the two popular vision-based paradigms for 
self-driving cars. A perception-based method lacks self-
learning ability and all features including task plans are 
manually hand crafted. This is the major disadvantage 
of perception-based method. 

End-to-end Behavior cloning (Off-policy 
imitation learning) provides an alternative to traditional 
modular approach by simultaneously learning both 
perception and control using deep network. 

Maneuvering each and every steady on-road 
obstacle either surpass able or non-surpass-able is cost 
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intensive. Again maneuvering a steady on-road obstacle 
at high speed involves taking multiple decisions in split 
seconds. An inaccurate decision may result in crash. 
One of the key decision that needs to be taken is can 
the steady on-road obstacle be surpassed. 

Clearly, an autonomous driving vehicle 
successfully navigating through the streets should be 
able to follow the roadway as well as maneuver only in 
cases required. If the autonomous vehicle can surpass 
a steady on-road obstacle without being unstable it 
must do so. Therefore, we here in propose an improved 
convolution neural network model. Overall, this research 
work makes the following contributions: 

• Provides evaluation method for popular learning 
models by defining test cases to mitigate an on-
road obstacle. 

• Identify, evaluate and validate the configuration 
producing optimum results by performing 
combination of activation function and dropout. 

• Improve prediction accuracy by validating statistical 
data with visual saliency map. 

The paper has been organized as follows: 
Section 2 gives an overview of related work done in past 
and present. Section 3 describes the methodology 
used. Section 4 Experimental Setup, Results and 
Discussion. Finally, Section 5 concludes this paper. 

II. Related Work 

Perception-driven method ad End-to-end 
method are the two popular vision-based paradigms for 
self-driving cars. Both the perception and end-to-end 
methods have been reviewed extensive through 
literature study and presented here. However, the key 
aspect of autonomous driving is the problem of object 
detection itself. Hence in the later part of this section we 
review our study on object detection in the context of 
Deep Learning. 

a) Perception-driven Learning Methods  
Traditional Perception based method has made 

remarkable achievements, in past decades, in the field 
of self-driving cars. Several methods of detections have 
been proposed to generate a description of the local 
environment. Depending on the technique used current 
detection research can be broadly classified as shown 
in Figure 1 below.  

A 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
 I
ss
ue

 I
 V

er
sio

n 
I 

  
  
   

19

Y
e
a
r

20
20

  
 (

)
D

© 2020 Global Journals

Vadodara, India. e-mail: Hiral@teerhubtech.com



 

 

 

 

 

 

 

 

 

 

 

 

  

i. Vision Based Detection 
Object location through enclosing boxes has 

been adopted by researchers as a part of object 
detection task. This bounding box can be anything from 
a steady road signs, traffic signs, moving cars, moving 
bicycles, etc. The model is trained with labeled data of 
objects. The key factor in case of self-driving car is an 
ability to identify if there is an obstacle and at what 
distance. It is immaterial to have the exact location of the 
bounding box. 

Kwang Eun An [10] used Deep Convolutional 
Neural Network (DCNN) for image classification into 
obstacle/pothole or non-pothole. The method compared 
Inception_v4, Inception_ResNet_v2, ResNet_v2_152 and 
MobileNet_v1 for comparison between color and 
grayscale images. This method is limited in its efficiency 
in processing single frame of image. 

Canny edge detection or Hough transformation 
area is implemented to locate lane position through 
many lane detection methods. There are no specific 
geometric restrictions required to identify uneven lane 
boundaries in these methods. 

ii. 3D Reconstruction 
There are three major approaches for 3D 

reconstruction of obstacle/pothole each with its own 
drawback. 
1. Chang et al. [19] used a Grid based processing 

technique. Here a surface receives laser incidents 
and digitally implements the bounced back pulse to 
generate a precise. The output was accurate, 
however this was expensive. Li et al.[20] used 
infrared laser line projectors, a digital camera and a 
multi-view coplanar scheme for calibrating the 
lasers. The method plotted more feature points in 
the cameras point of view and was much more cost 
effective. 

2. Wang [21] used a series of cameras. This method 
generated a 3D surface model through a series of 

2D images captured. High computation requirement 
was key backdrop. 

3. Xbox Kinect sensor was used by Joubert et al.[22] 
and Moazzam et al.[23]. The method could not 
minimize the error and power for computing, even 
though equipment price was minimized. 

iii. Vibration based detection 
Umang Bhatt [26] combined accelerometer, 

gyroscope, location and speed data to classify road 
condition and detect potholes/obstacles. SVM with 
radial basic function (RBF) kernel was used for road 
condition classification.SVM and gradient boost were 
used for pothole/non-pothole classification. Failure 
attributed includes inability to accurately classify 
between good and bad road due to insufficient data for 
all road types. The key backdrop was inability to 
distinguish between a bump, a manhole or a pothole. 

One key takeaway from all the above work done 
in perception based learning provides proactive data to 
the driver regarding the obstacle. These methods do not 
provide any method for routing through obstacle. Again, 
there is not classification if an obstacle can be 
surpassed or not. 

b) End-to-end Learning Methods  
Pomerleau [9] pioneered end-to-end training of 

neural network to steer a car. In 1989 Pomerleau built 
the Autonomous Land Vehicle in a Neural Network 
(ALVINN) system.  

In the scenario of autonomous driving one of 
the key requirement is an ability to identify salient 
objects. 
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Activation Function: Key to Cloning from Human Learning to Deep Learning

Fig. 1: Perception-driven learning



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: End-to-end Learning 

i. Sensitivity Based 
After 25 years of advances in data and 

computational power DAVE-2 in [3] demonstrated the 
potential of end-to-end learning. A CNN based model 
introducing PilotNet Network Architecture designed by 
NVIDIA. The key differentiator for this architecture was its 
ability to identify salient objects without the need for 
hand-coded rules and instead learn by observing. 
However Dave’s PilotNet model admits that the 
convolutional layers were chosen empirically and hence 
the performance was not sufficiently reliable to provide a 
full alternative to more modular approaches to off-road 
driving. 

ii. Deconvolution Based 
Matthew [28] presented a method for mid and high-level 
feature learning like corners, junctions and object parts. 
Mattew [28] resolves the two fundamental problems 
found in image descriptors like SIFT, HOG or edge 
gradient calculators followed by some histogram or 
pooling operation. First being invariance to orientation 
and scale. Secondly a CNN models inefficiency in 
training each model with respect to input. Visualization 
available is for one activation per layer. 

iii. Layer-wise Relevance Propagation 
Alexander Binder [29] implemented Layer-wise 

relevance propagation to compute scores for image 
pixels and image regions denoting the impact of the 
particular image region on the prediction of the classifier 
for one particular test image. Alexander Binder [29] 
demonstrated controlling the noisiness of the heatmap, 
however an optimal trade between numerical stability 
and sparsity/meaningfulness of the heatmap was kept 
as item for future work. 

Salient object based methods does identify the 
key features that impact the steering angles. However 
these methods have not been explicitly 
developed/tested for identifying if an obstacle can be 
surpassed or not. 

To overcome the above mentioned limitations, 
we propose to perform extensive training and testing for 
a neural network to clone an obstacle mitigation policy. 
Even though there is a great deal of work and literature 

on the task of steering angle prediction, our goal is not 
to propose yet another method for prediction, but rather 
provide a different perspective on on-road steady 
obstacles mitigation model. A model to not only detect 
an on-road steady obstacle but also to predict the 
obstacle can be surpassed to avoid unnecessary 
maneuvering. 

III. Methodology 

This section provides the details on CNN 
models used for validation and steps performed on data 
for accurate prediction. 

a) Preprocessing  
Network Model continuously predicts the 

steering angle to clear all test cases with an input of raw 
pixels incorporating attention in an end-to-end manner. 
It’s important that our experiments and results are 
independent of car geometry, hence we represent 
steering command as inverse turning radius 𝑟𝑟𝑡𝑡−1  (r is 
turning radius at time stamp t). We use inverse to 
prevent numerical instability, singularity, and smooth 
transitions through zero from left turns to right turns. The 
relation between steering angle 𝜃𝜃𝑡𝑡  and inverse turning 
radius can be given as  

𝜃𝜃𝑡𝑡 = 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑢𝑢𝑡𝑡) = 𝑢𝑢𝑡𝑡𝑑𝑑𝑤𝑤𝐾𝐾𝑠𝑠(1 + 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑡𝑡2 .                      (1) 

Where 𝜃𝜃𝑡𝑡
 in degree and 𝑣𝑣𝑡𝑡

 (m/s) is a steering angle and 
velocity at time 𝑡𝑡 , respectively. 𝐾𝐾𝑠𝑠 , 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and 𝑑𝑑𝑤𝑤
 are 

vehicle-specific parameters.𝐾𝐾𝑠𝑠
 is steering ratio between 

the turn of the steering and the turn of the wheels.𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

represents the relative motion between the front and rear 
wheels. 
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b)
 

Data Bias Removal 
 

  

Fig. 3: Left: Data with 5000+ images having ‘0’ steering Right: Non-biased data with sample                                    
reduced to 400+ per bin to have a uniformly distributed steering. 

The general tendency of every driver is to drive 
as steady as possible without lot of maneuvering. 
However in case of behavioral cloning if the driver drives 
steady during training then all the model will learn is to 
maintain a zero steering angle. Such a training would 
generate results bias to zero output. In order to avoid 
output bias towards a –ve/+ve steering angle driving the 
training is done for complete track in clockwise and then 
anticlockwise direction over track. In fact additional 
recovery training tracks are also done where the car is 
take off the center lane and then recovered to back. The 
data bias is removed by trimming samples per bin as 
shown in Figure 3. 

c) Encoder model: Convolution to clone obstacle 
mitigation behavior  

Convolutional Neural Networks (CNN) are 
adaptations of multi-layer perceptron and are 
biologically-inspired. In context of self-driving cars, 
CNNs are able to learn the entire task of lane and road 
following without manual decomposition into road or 
lane marking detection, semantic abstraction, path 
planning and control. The network learns to detect the 
outline of a road without the need of explicit labels 
during training. The following research implements 
variants of the CNN architecture established by NVIDIA 
for self-driving cars, the PilotNet[3] and DroNet[32]. 

IV. Experimental Setup, Results and 
Discussion 

This section presents the basic description of 
experimental setup for data collection, training and 
testing. We elaborate further on the configuration of 
hardware and software used. Later we enlist the training 
cases and test cases for model evaluation and the 
evaluation criteria. Eventually we enlist the results from 
our experiment. 

Model training and testing is performed in a 
virtual environment Unity 2017 in the interest of research 
cost. Other software tools include Visual studio for Unity, 
Atom, Jupyter Notebook and Anaconda. GitHub for 
online code repository and Google Colab platform for 
online code execution. Programming is done in c# and 
python. Multiple packages including OpenCV, numpy, 
matplotlib, Keras (model, optimizer, layers), pandas and 
sklearn are used. Hardware includes my laptop with Intel 
i5 processor@1.27GHz, 8GB RAM and Intel HD 
Graphics family with 2GB RAM. 

Virtual 3D models of non-surpass-able and 
surpass-able obstacles are created in unity as shown in 
Figure 4 below. 

 
 

Fig. 4: Left: Car model alongside non-surpass-able obstacle.                                                                                      
Right: Car model alongside surpass-able obstacle.
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3 Cameras are mounted in front of the model car to capture left, center and right images.  

 
 

Fig. 5: Left: Front camera to capture images. Right: Steering angle and car driving direction

a) Training and Test cases  
Our network model is trained on only 4 cases 

and is expected to pass 10 test cases based on 
training. These training cases are to train the network to 

clone driver’s behavior while driving through both non-
surpass-able and surpass-able obstacles. Training 
cases are as listed in Figure 6 below 

  

  

Fig. 6: Top Left: Training Case-TRC01: The track is empty without any obstacles. The model is trained on this empty 
track.  Top Right: TRC02: The track has a non-surpass-able obstacle on the right of simulated car. The model it 
trained to maneuver through the obstacle. Bottom Left: TRC03: The track has a surpass-able obstacle in the centre 
of track. The model it trained to pass through the obstacle. Bottom Right: TRC04: The track has a non-surpass-able 

 

Test case are to verify the robustness of networks ability to learning to maneuver through varied 
configurations of obstacles. Test cases are as listed in Figure 7 below 

     

  
 

  

Fig. 7: Starting from Top Left 1st: Test Case-TC01: The track is empty without any obstacles. The model is supposed 
to drive through the entire track to call it has passes this test case. 2nd:TC02: The track has a non-surpass-able 
obstacle on the right of simulated car. The model is supposed to maneuver through the obstacle and retain a steady 
drive to call it has passes this test case. 3rd:TC03: The track has a surpass-able obstacle. The model is supposed to 
pass through the obstacle with minimum vehicle instability and maintain a steady drive to call it has passes this test 
case. 4th:TC04: The track has a non-surpass-able obstacle on the left of simulated car. The model is supposed to 
maneuver through the obstacle and retain a steady drive to call it has passes this test case. 5th:TC05: The track has 
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obstacle on the left of simulated car. The model it trained to maneuver through the obstacle.



 

 

an array of multiple surpass-able obstacles. The model is supposed to pass through the obstacles with minimum 
vehicle instability and maintain a steady drive to call it has passes this test case. Starting Bottom Left 1st:TC06: The 
model is supposed to maneuver through an array of left and right non-surpass-able obstacles and retain a steady 
drive to call it has passes this test case. 2nd:TC07: The track has an array of both multiple left and right non-surpass-
able and surpass-able obstacles. The model is supposed to pass through surpass-able obstacles and maneuver 
through the obstacle to call it pass. 3rd:TC08: In this case an unknown bridge, which has a different track, has to be 
crossed to call this case passes. 4th:TC09: In this case an unknown unpaved path has to be avoided by the model. 
The model has not been trained for this behavior. 5th:TC10: In model is expected to clear all the obstacles, pass 
through unknown bridge and unpaved path all in a single stretch. 

b) Model Accuracy Calculation  
Each model is trained in 4 cases and tested for 

10 cases. The model accuracy is defined as follows 

Number of test cases model passed: P 
Score for a test cases in which model self-recovered: SR 
Model Accuracy: MA 
Total test cases: T 

Number of obstacles correctly maneuvered or 
surpassed: SRo 
Total maneuverable and surpass-able obstacles: To 

               MA = ((P+SR)/ T)/100                              (2) 

                    SR = SRo/To                                                                     (3) 

c)
 

Dataset Characteristics 
 

Right size of data set is the key to accurate 
predictable solution.

 
Initial training was started with 

30,000 images, however due to resource constraints, we 
reached an optimal data size of 9970 images that 
produced reliable results.

 
Zero steering bias images are 

removed from input images.
 

Data augmentation is 
performed to increase the data size and accuracy.

 
The 

final data set is classified using test_train_split 
functionality in sklearn library.

 
All models are trained 

using 3904 samples and validated with 977 samples as 
shown in Table 1 below 

 

Table 1: Data Characteristics for different models 

Model Input Data 
Input Data after removing bias Trainable 

parameters Training Samples Validation Samples 
DroNet 9930 3904 977 311777 

PilotNet 9930 3904 977 252219 

This paper represents two deep learning 
models tested with a combination of activation function 
and dropout on same database. Table 2 below shows 
model used, code assigned for ease, configurations 

used and val_loss achieved.
 

Table 2 below clearly 
indicated that model P1, PilotNet with elu and No 
Dropout, achieved the best val_loss of 0.0250.

 

 Configuration and val_loss comparison for different models 

Model Code Configuration val_loss 

DroNet D1 
D2 

Dropout + Relu 
No Dropout + elu 

0.0295 
0.0731 

PilotNet 

P1 
P2 
P3 
P4 
P5 

No Dropout+ elu 
Dropout + elu 

No Dropout + Relu 
No Dropout + Sigmoid 
No Dropout + Softmax 

0.0250 
0.0454 
0.0276 
0.0934 
0.0863 

 

  

Fig. 8: Left: Prediction Accuracy. Right: Processing time 
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Table 2:



 

 

Figure 8 Left and right shows the prediction 
accuracy and model running time when using different 
configurations on two learning models using same 
dataset. Model P1, PilotNet with elu and no dropout, 
achieves highest prediction accuracy of 87.33%. Model 
P4 and P5 has the least accuracy of 10%. The highest 
accuracy achieved by both DroNet model D1 and D2 

are 50% and 30% respectively with heavy processing 
time of 12000s and 8280s respectively. Model P1 
achieves the highest accuracy consuming the 
processing time of 4478 seconds. 

Model P1, PilotNet with elu and no-dropout, 
performed a self-recovery in test cases 6 and 7 as listed 
in Table 5 below 

Table 3: Path Followed and individual test case accuracy for Model P1

 Test Case 6 Test Case 7 

Path 
Followed 

  

Description 

The model maneuvers 1st, 
skips 2nd by going off the 
track and recovers back post 
skipping 3rd obstacle. 

The model maneuvers 1st, 
pass through 2nd, skips 3rd by 
going off the track and 
recovers back post skipping 
4th and 5th obstacle. 

SR 
calculation SRo = 1; To = 3; SR6 = 0.33 SRo = 2; To = 5; SR7 = 0.4 

Overall Model Accuracy for model P1 is 
calculated as below 
MAP1 = ((PP1+SRP1)/ T)/100 
         = ((8 + (0.33+0.4))/10)/100 
         = 87.33% 

Saliency Map is generated to co-related and 
validate the statistical results obtained. PilotNet models 
are taken for saliency mapping for identification of left 

non-surpass-able, surpass-able and right non-surpass-
able obstacles. As depicted in table below model P4 
and P5 has failed completely which co-relates with only 
prediction accuracy of 10%. Model P2 has wrongly 
detected the saliency for surpass-able obstacle and has 
not detected the lane boundaries at all. Model P1 
perform better than P3 with better saliency map both for 
obstacles and lanes as depicted in table 6 

Table 4: Saliency Map for PilotNet based Models 

Model 
Non-surpass-able 
left(alpha=0.004) 

Surpass-able 
(alpha=0.003) 

Non-surpass-able 
right(alpha=0.0045) 

P2 
   

P3 
   

P1 
   

P4 
   

P5 
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V. Conclusion

In this paper, we presented and compared two 
most popular autonomous driving methods including 
DroNet and PilotNet. We experimented with 
combinations of different activation functions with-
without dropout. The experiment has demonstrated the 
PilotNet model P1 is able to learn the entire task of non-
surpass-able obstacle maneuvering and passing 

through a surpass-able obstacle. The experiment has 
provided us with a clear insight into effect of each 
activation function and dropout on steering angle 
prediction. PilotNet model P1 has the highest prediction 
accuracy, lowest val_loss and reasonable processing 
time with best visual saliency map for obstacles with 
current dataset. The experiment has clearly concluded 
that PilotNet, with activation function elu without dropout, 
outperforms all other models and configurations.



 

 

The system learned to mitigate through an 
obstacle without the need of explicit surpass-able and 
non-surpass-able obstacle labeling during training. 

In the future work, we would like to optimize 
PilotNet to improve prediction accuracy. We would also 
like to introduce a custom-Net that would outperform all 
current autonomous driving methods.  
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