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BER Performance Analysis of OFDM, W-OFDM 
and F-OFDM for 5G Wireless Communications

MD. Hasan Mahmud α, Mirza Abir Mahmud σ, MD. Hafizul Islam ρ & MD. Maruf HosainѠ

Abstract- Orthogonal Frequency Division Multiplexing (OFDM) 
is a pertinent multi-carrier modulation approach that is more 
immune to frequency selective fading. In the 5G waveform, in 
order to reduce the traffic in OFDM based on technology, it is 
important to re-size the bandwidth. Consequently, a spectrally 
localized waveform technology called Filtered Orthogonal 
Frequency Division Multiplexing (F-OFDM), which is primarily 
an approach to sub-band based filtering is introduced.
Windowed-OFDM (W-OFDM), which is basically a classical 
OFDM scheme where each symbol is windowed and 
overlapped in the time domain. Each of the different sub-
bands can be processed according to the traffic scenario. This 
paper presents the comparison of the performance analysis of 
MIMO-OFDM, MIMO-WOFDM, and MIMO-FOFDM systems 
using BPSK, QPSK, 16-PSK, QAM, 8-QAM and 16-QAM 
modulation techniques under Rayleigh fading channel. The 
main aim of this paper is to focus on analyzing the 
performance of OFDM, W-OFDM, and F-OFDM in terms of 
Power Spectral Density (PSD), Bit error rate (BER) and signal 
to noise ratio. The spectral efficiency in F-OFDM is 
dramatically increased by the reduction of out-of-band (OOB) 
emission rather than OFDM and W-OFDM. Simulation for the 
performance analysis of OFDM, W-OFDM, and F-OFDM is 
represented in terms of PSD and BER have done in MATLAB.
Keywords: OFDM, F-OFDM, W-OFDM, relay, MIMO, 
BPSK, QAM, BER, ISI.

I. Introduction

fter  years of discussions through the industry and 
academia, the requirements and expectations for 
the 5th generation (5G) cellular networks have 

been made clear. Whilst the millimeter wave is expected 
to deliver short-range with high-speed radio access by 
tens of Gbps the lower frequency bands (e.g., those are 
currently used by the 4G long-term evolution networks) 
will continue to provide ubiquitous and reliable radio 
access, but with an improved spectrum efficiency [1]. To 
this end, the air interface, mainly the underlying 
waveform, should be revisited. Next-generation cellular 
networks present the most challenging issues for 
researchers and engineers.

The main aim is to improve the actual LTE 
performance, in order to meet the growing data demand 
from the newly provisioned technologies and services 
[2]. For instance, increasing the data rate by a factor 
100 with respect to LTE, while decreasing the latency 
from the actual 15 ms down to as low as approximately, 

1 ms. Massive MIMO Enabling new technologies and 
services, such as Device-to-Device communications 
(D2D), Wireless Software Defined Networking (WSDN), 
Millimeter Wave communications and network 
Densification, are being utilized in order to reach 5G’s 
goals [3] [4].

In this paper, we deal with problems concerning 
Radio Access techniques. As stated earlier, new 
services in 5G require high data rates with large spectral 
efficiency. For this reason, we focus on the spectral 
efficiency problem of a legacy the Orthogonal 
Frequency Division Multiplexing (OFDM) system, which 
has to improve its performance to achieve the required 
goal. As is well known, OFDM is the most important 
transmission technique of the recent past, largely used 
in LTE standards [5]. The principle of OFDM based on 
sub-carrier the division has been well studied and 
performed during the years and the first advantage of 
this scheme is its simplicity of implementation. 
Moreover, OFDM allows for simple modulation and 
demodulation and is highly MIMO friendly. On the other 
side, OFDM suffers from high PAPR (Peak-to-Average 
Power Ratio) and most of high Out-Of-Band (OOB) 
emissions. The required Cyclic Prefix (CP) and strict 
bounds for synchronization are other disadvantages of 
OFDM. Indeed, in a 5G scenario, it is desirable to use 
sub-bands that do not need to be perfectly 
synchronized with each other due to the different 
requirements of the multitude of devices on the network. 
In fact, in 5G we will have different kinds of devices that 
rarely connect to the network [5] [6]. For instance, an 
IoT (Internet of Things) device needs to send a few 
control bytes on rare occasions, and several kinds of 
devices will have a very short battery life. For these 
causes, it may be desirable to use a waveform with 
relaxed synchronization requirements [7].

This article attempts to summarize benefits and 
disadvantages of these two schemes currently being 
considered by 3GPP (Third Generation Partnership 
Project) for 5G applications, namely F-OFDM (Filtered 
OFDM) and W-OFDM (Windowed OFDM) based one 
BER, PSD and signal to noise ratio using BPSK, QPSK, 
16-PSK, QAM, 8-QAM and 16-QAM modulation, we 
consider standard OFDM sub-bands, without using any 
strategy to reduce OOB emissions [8]. In the F-OFDM 
schemes, we consider low-pass filters in order to 
attenuate the OOB emissions and have an efficient sub-
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II. Ofdm (Orthogonal Frequency-
Division Multiplexing)

OFDM means Orthogonal frequency-division
multiplexing. OFDM scheme requires N number of sub-
carriers to transmit the number of data streams. Each of 
these carriers is orthogonal to other and centered at 
multiples of frequencies. These serial data streams are 
converted to N parallel data streams and then they are 
digitally modulated using appropriate modulation 
techniques like BPSK, QAM, PSK and others [11]. The 
constellation mapper or Lookup Table is used for the 
special purpose that is the modulation. For the 
superimposition of the modulated data on the 
orthogonal sub-carriers, it demands N sinusoidal 
oscillators tuned with N orthogonal frequencies that are 
parallel to each other.

Figure 1: OFDM Architecture

The output of the sinusoidal oscillators is added 
up together that results to produce an final OFDM 
signal. These oscillators and the summer are replaced 
with an IFFT block that was recommended by Weinstein 
and Ebert to scale down the complexity of OFDM [11] 
[12]. From the IFFT output, the OFDM symbol samples 
are attained. The IFFT block switches the signal from 
frequency domain to time domain. Fig. 1 above shows 
the OFDM Architecture.

The Inter-symbol-Interference (ISI) imposes a 
negative impact on the OFDM which is induced by the 
specific delay spread. Delay spread occurs since 
multiple copies of the transmitted signals are received at 
different intervals of time rather than a single time. But 
the ISI results when the delay spread goes beyond the 

symbol time duration. The ISI can be eliminated by the 
use of the cyclic prefix [12]. The cyclic prefix is a manner 
of adjoining some portion of the OFDM symbol at the 
beginning of the OFDM symbol. The Inter-carrier-
interference (ICI) can also be eliminated by the proper 
use of the cyclic prefix. The channel portion adds AWGN 
(Additive White Gaussian noise) to the received signal. 
The reverse operation of transmitter section appears at 
the receiver side. At the receiver section, the transmitted 
signal is converted from analog to digital and then 
removes the cyclic prefix portion. The receiver has to 
perform synchronization (both channel timing and 
frequency), channel estimation, demodulation, and 
decoding systems. The output from FFT and the input of 
the IFFT are same range [13] [14]. Finally, the original 
signal can be recovered by reassembling all data 
streams from the individual carrier.

III. Windowed Ofdm (W-ofdm)

In this section, we illustrate time domain 
windowing strategy. Since, the signal high frequency 
components are generated by the discontinuities 
between adjacent OFDM symbols, softening these 
singularities with a proper transition lowers the OOB 
emissions [10].

Figure 2: CP, prefix and suffix extension for a W-OFDM 
symbol

Figure 3: W-OFDM Architecture

The OFDM symbols must be elongated with the 
insertion of CP, prefix and suffix, then windowed and 
finally concatenated (by partially overlapping two 
consecutive symbols) according to fig.2. W-OFDM 
Architecture model is denoted by fig.3.

emissions are reduced by smoothing the symbol 
transitions with a time domain window applied on each 
sub-band. Other results on f-OFDM can be found in the 
[10], which gives a closed form for ISI (Inter-Symbol 
Interference), ICI (Inter-Carrier Interference) and ACI 
(Adjacent-Channel Interference). Suggests a filter-bank 
version of f-OFDM, while discusses PAPR reduction in 
F-OFDM.
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samples of the (i+1)𝑡𝑡ℎ ) W-OFDM symbol. The 
windowed symbol 𝑥𝑥𝑚𝑚 is obtained from the extended 
symbol x via equation (1).

𝑥𝑥𝑚𝑚= 𝑥𝑥𝑔𝑔 .𝑤𝑤𝑔𝑔                                           (1)

Where, 𝑤𝑤𝑔𝑔 represents the window of 
length𝑁𝑁𝑔𝑔

(𝑤𝑤). We use a window defined via equation (2).

𝑤𝑤𝑔𝑔 = �
0(𝑁𝑁𝑚𝑚𝑔𝑔 −𝑁𝑁𝑡𝑡𝑡𝑡𝑔𝑔 /2 ).

1(𝑁𝑁𝑔𝑔+𝑁𝑁𝑔𝑔𝑔𝑔−𝑁𝑁𝑡𝑡𝑡𝑡𝑔𝑔 +1).

0(𝑁𝑁𝑚𝑚𝑔𝑔 −𝑁𝑁𝑡𝑡𝑡𝑡𝑔𝑔 /2 ).

�                                    (2)

Where, 0𝐿𝐿represents a column vector of L 
elements filled by zeros, likewise 1𝐿𝐿 is the similar type of 
vector filled by ones. The parameter 𝑁𝑁𝑡𝑡ℎ represents the 
window transition length, i.e. the number of samples the 
window spends to go from zero-to-one and from one-to-
zero, 𝑁𝑁𝑡𝑡𝑔𝑔 is the transition length in the  𝑔𝑔𝑡𝑡ℎ of sub-band.

IV. Filtered Ofdm (f-Ofdm)

The transmission chain for f-OFDM is similar to
that for the CP-OFDM, with an additional low-pass filter
introduced  

Figure 4: Downlink transceiver structure of F-OFDM

After the CP concatenation and the frequency
shift in order to reduce the OOB emissions. Downlink 
transceiver structure of F-OFDM. is denoted by fig.4. 
Clearly, the structure of the transmitter low-pass filter is 
numerous important for reducing OOB emissions and 
possible interference. we want a filter perfectly flat in 
pass-band and zero outside this band, with null 
transition bands [17] [18]. This kind of filter is 
unrealizable but can be approximated by truncating and 
windowing the ideal sinc (.) impulse response. This 
operation introduces the new element in this framework,
the filter transition bands. It is important to note that the
transition bands are completely independent of 
frequency guard bands. Obviously having the transition
band contained in the guard band could guarantee 
better performances. The filter has to be as flat as 
possible in the pass-band with tight transition bands 
section. To achieve this specific goal we have chosen a
windowed-sinc filter with ideal impulse response

𝑝𝑝𝑔𝑔 (n) =  Sinc (Δ𝑓𝑓𝑔𝑔(𝑁𝑁𝑢𝑢𝑔𝑔 + 2𝑅𝑅𝑔𝑔) 𝑛𝑛 𝑁𝑁𝑔𝑔� )              (3)

For – [𝐿𝐿𝑔𝑔/2] ≤ n ≤ [𝐿𝐿𝑔𝑔/2], Where 𝐿𝐿𝑔𝑔 represents 
the filter order and Δ𝑓𝑓𝑔𝑔𝑅𝑅𝑔𝑔 the transition band in one side. 
pi (n) doesn’t represent our final filter, it is only a 
truncated based sinc. The Role of transition bands of 
the filter is given below by the fig.5.

Figure 5: Role of transition bands of the filter

The final coefficients of our normalized low pass 
filters are given by the equation (4).

𝑓𝑓𝑔𝑔 (n) = 𝑝𝑝𝑔𝑔(𝑛𝑛).𝑤𝑤𝑔𝑔(𝑛𝑛)
∑𝑘𝑘 𝑝𝑝𝑔𝑔(𝑘𝑘).𝑤𝑤𝑔𝑔(𝑘𝑘)                         (4)

𝑤𝑤𝑔𝑔(𝑛𝑛) =(0.5(1+cos(2𝜋𝜋𝑛𝑛
𝐿𝐿𝑔𝑔−1

)))0.5                    (5)

Where, n is bounded as in equation. The filter 
impulse response contains 2𝐿𝐿𝑔𝑔+1 samples, that causes 
a signal extension in the time domain by 2 𝐿𝐿𝑔𝑔 samples. 
Fortunately, this kind of filter has the major part of its 
energy concentrated in the Sinc lobe, so the elongation 
is important just for a small time period during the CP of 
the symbol [19]. For this reason, it is not necessary to 
choose Li to be very small, specifically 𝐿𝐿𝑔𝑔   can be larger 
than 𝐿𝐿𝑔𝑔𝑔𝑔   (length of the cyclic prefix).

symbol, as typically done for CP-OFDM [15]. The first 
𝑁𝑁𝑚𝑚𝑔𝑔 samples are denoted as “prefix”, while the 
remaining 𝑁𝑁𝑔𝑔𝑔𝑔 are denoted by CP. The W- OFDM 
symbol is then further extended by copying the first 
𝑁𝑁𝑚𝑚𝑔𝑔+ 1 samples of the native OFDM symbol at the end 
of the new W-OFDM symbol, as shown in the Figure. 
Native OFDM symbols in each sub-band may have 
different lengths; hence the parameter 𝑁𝑁𝑚𝑚𝑔𝑔 is used to 
denote the prefix or suffix parameter for the 𝑔𝑔𝑡𝑡ℎ sub-
band. At this point the W-OFDM symbol that is denoted 
as 𝑋𝑋𝑔𝑔 contains 𝑁𝑁𝑔𝑔𝑊𝑊=𝑁𝑁𝑔𝑔 + 𝑁𝑁𝑔𝑔𝑔𝑔 + 2𝑁𝑁𝑚𝑚𝑔𝑔 + 1 samples [16]. 
However, prefix and suffix both will be smoothed with a 
windowing operation, and then the suffix of the 𝑔𝑔𝑡𝑡ℎ W-
OFDM symbol will be overlapped with the first 𝑁𝑁𝑚𝑚𝑔𝑔+1 

The first operation is to extend the OFDM 
symbol by copying the last 𝑁𝑁𝑔𝑔𝑔𝑔 samples of the native 
OFDM symbol at the beginning of the new W-OFDM 
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the different modulation techniques such as BPSK,
QPSK, 16-PSK, QAM, 8-QAM and 16-QAM. The signals 
are encoded via orthogonal space time block codes for 
transmission over the Rayleigh fading channel. Five 
independent antennas links are formed, out of which 
four are served as transmitting antennas and the
remaining four are acting as receiving antennas. During 
the transmission through the channel, IDWT 
transformation is performed after the OSTBC encoding. 
For W-OFDM transmission, the information is first 
grouped and mapped according to the modulation and 
hen, is sent to inverse discrete wavelet transform 
(IDWT), which converts frequency domain signal into 
time domain signal and also provides orthogonality 
similarly for F-OFDM. The simulation adds white the 
Gaussian noise at the receiver process. Then, it 
combines the signals from both receive antennas into a 
single stream for the demodulation. Afterward, DWT is 
applied at the receiver side to reconstruct the signal in 
frequency domain. Total of 192 Samples per frame have 
been taken. Bits per symbol considered for the 
simulation is 100. W-OFDM and F-OFDM symbol rates 
are 10Ksps and the symbol period is 10-6s. The system 
is designed over four transmitting antennas and four 
receiving antennas (4 x 4) employing an independent 
Rayleigh fading for transmission of data.

V. System Model

Figure 6: MIMO incorporated OFDM, WOFDM and F-
OFDM wireless system

The MIMO incorporated OFDM, W-OFDM and 
F-OFDM-WOFDM systems are modeled using 
Orthogonal Space Time Block Coding (OSTBC) 
technique, having symbol wise maximum likelihood (ML) 

decoding, to attain the high diversity gains in order to 
obtain higher data rates. The proposed system model is 
demonstrated in Fig.6. For simulation, the random 
binary signal is created and modulated by employing 
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VI. Results and Analysis

Table 1: Summary of Simulated Model Parameters

Parameter Considerations for Simulation
Modulation Scheme BPSK,QPSK,16-PSK,QAM,8QAM, and 16-QAM

Channel Rayleigh Fading Channel
Multiplexing OFDM, W-OFDM, F-OFDM

Samples per frame 192
No. of transmitting &
receiving antennas 4*4

Signal to Noise Ratio 0 to 25dB



 
 

 
 

 
 
 
 
 
 
 
 
 
 Figure 7: Power spectral density (PSD) of OFDM.
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Figure 8: Power spectral density (PSD) of W-OFDM
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Figure 9: Power spectral density (PSD) of F-OFDM

Figure 10: BER FOR MIMO-OFDM, MIMO-WOFDM and MIMO-FOFDM over Rayleigh Fading Channel using BPSK
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Figure 11: BER For MIMO-OFDM, MIMO-WOFDM and MIMO-FOFDM over Rayleigh Fading Channel using QPSK
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Figure 12: BER for MIMO-OFDM, MIMO-WOFDM and MIMO-FOFDM over Rayleigh fading channel using 16-PSK

Figure 13: BER for MIMO-OFDM, MIMO-WOFDM and MIMO-FOFDM over Rayleigh fading channel using QAM
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Figure 14: BER for MIMO-OFDM,MIMO-WOFDM and MIMO-FOFDM over Rayleigh fading channel using 8-QAM.
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Figure 15: BER for MIMO-OFDM, MIMO-WOFDM and MIMO-FOFDM over Rayleigh fading channel using 16-QAM

Table 2: Data Table of Modulations, Multiplexing, Ber (Bit Error Rate) and Snr (Signal to Noise Ratio)

Modulation Multiplexing BER SNR

BPSK

OFDM 10−5 23 dB

W-OFDM 10−5 21 dB

F-OFDM 10−5 18 dB

QPSK
OFDM 10−5 24 dB

W-OFDM 10−5 23 dB
F-OFDM 10−5 19.6 dB

16-PSK

OFDM 10−5 29 dB

W-OFDM 10−5 24 dB

F-OFDM 10−5 21 dB

QAM

OFDM 10−5 21 dB

W-OFDM 10−5 17 dB

F-OFDM 10−5 14.8 dB
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VII. Conclusions

In this paper, the performance of MIMO-
WOFDM system and its assessment with MIMO-OFDM, 
MIMO-WOFDM and MIMO-FOFDM systems by means 
of various modulations techniques is presented in this 
work. The SNR requirements for higher order PSK 
schemes are more to the acceptable range of BER over 
the simulated channel. It is also noteworthy that the 
higher orders of the QAM scheme have a little bit of 
significant influence over the performance of the both 

simulated systems. Moreover, QAM requests lesser 
SNR as contrast to PSK for suitable BER for both the 
systems. To analyze BER, PSD and signal to noise ratio 
with BPSK, QPSK, 16-PSK, QAM, 8-QAM and 16-QAM 
modulation it can be concluded that among three 
multiplexers (OFDM, W-OFDM, and F-OFDM) F-OFDM 
provides high performance and bandwidth efficient in 
the wireless system.
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