N2 GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: G
INTERDISCIPLINARY

Volume 20 Issue 6 Version 1.0 Year 2020

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Global Journals Inc.

Multi-Dimensional Rajan Transform
By K. Thiagarajan, Manish Prateek & Ethirajan Govindarajan

University of Petroleum and Energy Studies
Abstract- In this paper, we describe the formulation of a novel transform called Multi-Dimensional
Rajan Transform, which is an extension of Rajan Transform. Basically, Rajan Transform operates
on a number sequence, whose length is a power of two. It transforms any sequence of arbitrary
numbers into a sequence of interrelated numbers. As regards 2D Rajan Transform, there are two
methods to implement it: (i) Row- Column method and (ii) Column-Row method. The 2D Rajan
Transform obtained using the first method need not be the same as that obtained using second
method. Similarly, one can implement 3-D Rajan Transform using the following approaches: (i)
Row-Column-Depth approach, (i) Row-Depth- Column approach, (iii) Column-Row-Depth
approach, (iv) Column-Depth-Row approach, (v) Depth-Row-Column approach and (vi) Depth-
Column-Row approach. This paper explains these approaches to implement two and three
dimensional Rajan Transforms.

Keywords: discrete transforms, rajan transform, permutation invariant systems, homomorphic
transforms.

GJCST-G Classification: F.2.1

MULTIDIMENSIONAL RAJANTRANSFORM

Strictly as per the compliance and regulations of:

© 2020. K. Thiagarajan, Manish Prateek & Ethirajan Govindarajan. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Multi-Dimensional Rajan Transform
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Abstract- In this paper, we describe the formulation of a novel
transform called Multi-Dimensional Rajan Transform, which is
an extension of Rajan Transform. Basically, Rajan Transform
operates on a number sequence, whose length is a power of
two. It transforms any sequence of arbitrary numbers into a
sequence of interrelated numbers. As regards 2D Rajan
Transform, there are two methods to implement it: () Row-
Column method and (ii) Column-Row method. The 2D Rajan
Transform obtained using the first method need not be the
same as that obtained using second method. Similarly, one
can implement 3-D Rajan Transform using the following
approaches: (i) Row-Column-Depth approach, (i) Row-Depth-
Column approach, (i) Column-Row-Depth approach, (iv)
Column-Depth-Row  approach, (v) Depth-Row-Column
approach and (vi) Depth-Column-Row approach. This paper
explains these approaches to implement two and three
dimensional Rajan Transforms.

Keywords:  discrete  transforms, rajan  transform,
permutation invariant systems, homomorphic transforms.

I. [NTRODUCTION

sequence, whose length is a power of two. It
transforms any sequence of arbitrary numbers
into a sequence of interrelated numbers. The resulting
sequence is called ‘Rajan  Spectrum’. More
precisely,Rajan Transform is a homomorphic map that
yields the same Rajan Spectrum for an input sequence
and all of its permuted versions. The definition and
various outcomes of One-Dimensional Rajan Transform
(1D-RT) are extended to multi-dimensional case. One-
dimensional Rajan Transform is briefly explained on a
need to have basis.

Definition of Rajan Transform

Rajan Transform is essentially a fast algorithm
developed on the lines of Decimation-In-Frequency Fast
Fourier Transform algorithms, but it is functionally
different from the DIF-FFT algorithm. Given a number
sequence x(n) of length N, which is a power of 2, first it
is divided into the first half and the second half each
consisting of (N/2) points so that the following holds
good.

:{ajan transform essentially operates on a number
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g(i) =x(i)+x(i+N/2) ; 0=j<N/2; 0<i<N/2
h(j) = |x()-x(i-N/2) | ; 0<j=N/2; 0<i<N/2

Now each (N/2) point segment is further divided
into two halves each consisting of N/4 points so that the
following holds good.

g1(k)=g(i) +g(+(N/4)); 0=k=(N/4); 0=j=(N/4)

2(k)=1g()-g(-(N/4) | ; 0=k=(N/4); (N/4)=j=(N/2)
h1(k) h()+h(+(N/4)); 0<k=(N/4); 0<j<(N/4)
h2(k)=|h(j)-h(-N/4) | ; 0<k=<(N/4); 0<j<(N/4)

This process is continued until no more division
is possible. The total number of stages thus turns out to
be log,N. Let us denote the sum and difference
operators respectively as ‘+’ and ‘~’. Then the signal
flow graph for the Rajan Transform of a number
sequence of length 16 would be of the form shown in
Fig. 1. If x(n) is a number sequence of length N=2:
k>0, then its Rajan Transform(RT) is denoted as X(K).
RT is applicable to any number sequence and it induces
an isomorphism in a class of sequence, that is, it maps
a domain set consisting of the cyclic and dyadic
permutations of a sequence on to a range set consisting
of sequence of the form X(k)E(r) where X(k) denotes the
permutation invariant RT and E(r) an encryption code
corresponding to an element in the domain set. This
map is a one-to-one and on to correspondence and an
inverse map also exists. Hence, it is viewed as a
transform. Fig. 1 shows a functional block diagram of a
16-point Rajan Transform algorithm.

It is to be noted that the map x(n) <> X(K)E(r) is
an isomorphic map, and the map x(n) - X(k) is a
homomorphic map. The inverse function is called
Inverse Rajan Transform and is applicable to cases
where Rajan Transform is considered as an isomorphic
function. Homomorphic functions do not have inverse
functions. The operation of Inverse Rajan Transform is
not explained here in this paper for lack of space and for
its irrelevance in the formulation of multi-dimensional
Rajan Transforms. Apart from multi-dimensional Rajan
Transforms, which are conceptual extensions of one-
dimensional Rajan Transform, one can as well develop
notions like “Set-Theoretic Rajan Transform” which are
higher order algebraic tools that work on sequences of
sets, functions and relations. These formulations are not
in the scope of this paper and thus they are not
presented.
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Fig. 1. Signal flow graph of Rajan Transform

[I. Two DIMENSIONAL RAJAN TRANSFORM
AND ITS IMPLEMENTATION

As outlined earlier, one can implement two-
dimensional Rajan Transformin two different ways: (i)
Row-Column method and (ii) Column-Row method. As
stated previously, 2D Rajan Spectrum obtained using
first method need not be the same as the spectrum
obtained using second method. This could be verified
with the help of an example. Consider a two dimensional
array A = [x(m,n)].

0000
1110
0100
0100
2D-RT obtained using Row-Colum method

A = [x(mn)] =

The RT spectra of the four rows of the array A
are the four rows given in the array [X,(g,h)]

0000
3110
1111
1111

Next, the RT spectra of the four columns in the
array [X.(g,h)] are given in the columns of the array
[Xo(k,k2)], which is the 2D-RT of the given array A.

5333
3111
3111
1111
2D-RT obtained using Column-Row method

[X(g.h)] =

Xro(kike)] =

The RT spectra of the four columns of the array
A are the four columns given in the array [X;(g,h)]

1310
1110
1110
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Next, the RT spectra of the four rows in the array
[X.(g,h)] are given in the rows of the array [X. (ki,ko)],
which is the 2D-RT of the given array A.

5133
3111
3111
3111

With reference to the example presented above,
it is proved that [X  (Kko)] #= [X (K ko)] in this case.
However, one can verify that [X .(K; ky)] = [X,(Kq,Kz)] for
symmetric arrays. In order to do this, let us consider
Hilbert matrix H, and obtain 2D-RT spectra using both
methods.

Xer(ki k)] =

1234
2345
3456
4567

The 2D-RT spectra of H, obtained using Row-
Column method is X, .(k;,k,) and it is shown below.

64 08 16 00
08 00 00 00
16 00 00 00
00 00 00 00

The 2D-RT spectra of H, obtained using
Column-Row method is X, (k,k;) and it is shown below.

[Xeolki k)] =

64 08 16 00
~ 08000000
[Xc,r(thZ)] - 16 OO OO OO
00 00 00 00
In  this case of symmetric  matrix

(X o(Ki ko)l = [Xe (Ky ko).
2D-RT Translation invariance property

Consider the two-dimensional array A showing
aT like pattern.

000
1110
A= Kmnl = 5140
0

B is the translated version of A.

0111
0010
B = [Xt(mrn)] = 001 O
0000

One can verify that [X,,(K;,ky)] for both arrays A
and B remain the same. Similarly, one can verify that
[X.o(ki,ko)] remain the same for both arrays A and B.
This amounts to saying that 2D-Rajan Transform is
essentially a translation invariant function, which could
be effectively used in pattern recognition.



111 THREE-DIMENSIONAL RAJAN implement 3-D Rajan Transform using any one of the

: following six methods: (i) Row-Column-Depth method,

TRANSFORM (i) Row-Depth-Column method, (iil) Column-Row-Depth

The definition and various properties associated method, (iv) Column-Depth-Row method, (v) Depth-

with two dimensional RT is extended to the three- Row-Column method and (vi) Depth-Column-Row

dimensional case also. Especially, the basic methods method. Let us consider the three dimensional array of

for implementing2D Rajan Transform like Row-Column  matrix size 4x4x4 as shown in Fig. 2.

method and Column-Row method could further be
generalized to implement 3D Rajan Transform. One can

x4 QuLje 2
. 2,0]0[2
1222
’ 2020
2 213
o 1/o]1]3 .
B sl 3 plane
203211
[x(l,m,n)] = . Tol1To
iz 30 ud
olol213 204 plane
‘ 3208 3
Ll
Ll s «
a1 212 1% plane
11003
0% plane

Fig. 2: Sample three dimensional array

The above 3-D matrix is represented in a linear array of 2-D planes for easy understanding.

1 1 1 3 1 01 0 2 21 3 01 0 2
xdmm- |1 113 1230 1013 2002
21 2 2 0 0 2 3 21 1 1 1 2 2 2
1 0 0 3 30 3 3 2 3 2 1 2 2 0 1
0t plane 1 plane 2% plane 34 plane

3D-RT using Row-Column-Depth (RCD) Approach

The 1D-RT of the four rows of the 0" plane of  {1,0,1,3}>{5,1,3,3}, {2,1,1,1}>{5,1,1,1}, {2,32,1}>
the matrix X are {1,1,1,3}>{6,2,2,2}, {8,0,2,2}. The 1D-RT of the final plane of four rows are
{1,11,3}>{6,2,22}, {21,22}->{7,1,1,1}, {1,003}> {01,02}->{3,3,1,1}, {2,0,02}->{4,04,0}, {1,222}~
{4,2,4,2}. The 1D-RT of the four rows of the 15 plane are  {7,1,1,1}, {2,2,0,1}>{5,1,3,1}.
{1,0,1,0}>4{2,2,0,0}, {1,2,3,0}>{6,2,4,0}, {0,0,2,3}> Now the 3D array of the Rajan Transform
{5,1,5,1}, {3,0,3,3}>{9,3,3,3}. The 1D-RT of the four = computed row wise is given by
rows of the 2™ plane are {2,2,1,0}>{8,22,0},

G .2 2 Z 2 2 00 8 2 2 0 2 8 €. X
1) = 6 2 2 2 6 2 4 0 5 1 3 3 4 0 4 0
Kokk)= 1, 111 s1s51 5111 7111
4 2 4 2 9 3 3 3 8 0 2 2 51 3 1

0" plane 1% plane 27 plane 3 plane

The 1D-RT of the four columns of the 0" plane  plane of four columns are {3,4,7,5}->{19,1,5,3},
of the matrix X(kikoks) are {6,6,7,4}>{23,3,3,1}, {3,0,1,1}>{5,3,3,1}, {1,4,1,3}>{9,5,1,1}, {1,0,1,1}>
{221.2}>{71,11}, {2,2,1,4}->{9,3,3,1}, {2,2,1,2}>  {3,1,1,1}.Now the 3D array of the Rajan Transform Row-
{7.1,1,1}. The 1D-RT of the four columns of the 1%t plane  Column wise is given by
are {2,6,5,9}>{22,8,6,0}, {2,2,1,3}>{8,2,2,0},

{0,4,53}>{12,2,6,4}, {0,0,1,3}>{4,2,4,2}. The 1D-RT
of the four columns of the 2% plane are
{8,5,5,8}>{26,0,6,0}, {2,1,1,0}>{4,2,2,0}, {2,3,1,2}>
{8,2,2,0}, {0,3,1,2}>{6,4,2,0}. The 1D-RTs of the final
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237 9 7 22 8 12 4 26 4 8 6 19 5 9 3
_ 13 1 3 1 g 2 2 2 0 2 2 4 1 3 5 1
Xlokok)= 13 1 3 1 6264 6222 5311
1 1 1 1 00 4 2 0 0 0 0 31 1 1
0% plane 1% plane 2% plane 3 plane
The 1D-RT of the depth wise of four {12,2,42}, {1,24,1}>{8,2,42}, {3,6,6,5}>{20,2,4,2},

corresponding elements in four planes of the matrix
X o(Ky Ko Ks), (RT can compute starting with any element
in O plane, in this example the RTs computed starting
with row wise for easy understanding) are {23,22,
26,19}->{90,8,6,0}, {7,8,4,5}>{24,2,6,0}, {9,12,8,9}>

{1,2,2,3}>{8,2,2,0}, {3,6,2,1}>{12,2,6,4}, {1,421}~
{8,2,42}, {1,0,0,3}>{4,2,42}, {1,00,1}>{2,0,2,0},
{1,4,0,1}>{6,4,4,2} and {1,2,0,1}>{4,2,2,0}. Now the
3D array of the Rajan Transform Row-Column-Depth
wise is given by

{38,4,4,2}, {7,4,6,3}>{20,6,2,0}, {3,8,0,1}>
{22,6,10,4}, {1,2,2,3}>1{8,2,2,0}, {3,2,2,5}>
90 24 38 20 8246 6642 0020
; _ |12 8 12 8 6222 10244 4022
Xecatkvkak)= Hon g 12 8 2222 4264 2042
4 2 6 4 2042 4242 2020
0™ plane 1 plane 244 plane 3t plane
3D-RT using Row-Depth-Column (RDC) Approach
The 3D matrix using Row-Depth-Column Rajan Transform is
90 24 38 20 18 6 1212 24 12 18 12 8 010 4
Xede(ikoky) = |4 2 12 6 2204 4 4 2 0 4020
L 10 6 4 4 102 4 4 8 4 2 4 4024
0 4 2 2 2204 4 4 2 0 0020
0% plane 1% plane 244 plane 3" plan¢
Note that X, . g(Ky,Kao,Ks) # X 4c(Ky,Ko,Ks), but the CPlis same as 90.
3D-RT using Column-Row-Depth (CRD) Approach
The 3D matrix using Column-Row-DepthRajan Transform is
9 18 26 8 8 4 0 6 6 8 8 8 0 2 2 6
Xecatikoks) = |24 12 4 4 6222 6222 4000
34 12 104 42 8 2 108 42 0220
6 2 6 6 2000 2222 0000
0™ plane 1% plane 2 plane 3 plane
Note that X, 4(k,Kz,Ks) is difference from others, but the CPI is same as 90.
3D-RT using Column-Depth-Row (CDR) Approach
The 3D matrix using Column-Depth-RowRajan Transform is
90 6 18 14 124 4 4 200 & 4 117 73
_J2w168 4 6 22 2 8000 2222
Keartkikokd = 134 192 2 4 040 168 44 6222
16 04 4 222 2 6222 0000
0" plane 1 plane 24 plane 3 plane
Note that X, g(Ky,Ko,Kg) # X, 4.(K1,Ko,Ks), but the CPlis same as 90.
3D-RT using Depth-Row-Column (DRC) Approach
The 3D matrix using Depth-Row-ColumnRajan Transform is
90 6 22 10 261012 4 28 6 8 4 162104
Xi,otikok)= |4 40 0 4022 2062 2002
e 106 2 6 622 4 8222 6222
040 4 0002 6000 4000
0™ plane 1% plane 2% plane 3" plane

Note that Xy, .(Ks,Ko,Ks) is difference from others, but the CPI is same as 90.

3D-RT using Depth-Column-Row (DCR) Approach

The 3D matrix using Depth-Column-RowRajan Transform is

© 2020 Global Journals
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3D-RT Translation invariance property
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translated in the 8x8x8 matrix as shown in Fig. 7.

Let us consider a solid 3-D object of 3x3x3 size

placed in top left corner of the lattice grid as shown in
Fig. 3. Now Rajan transform is applied to this 8x8x8

Subsequently RT is applied to this 8x8x8 translated

matrix Row-wise (ref Fig. 8), Column-wise (ref Fig. 9)
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Fig. 8: Resultant 3-D array after applying row wise RT to Fig. 7
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Fig. 10: Resultant 3-D array after applying depth wise RT to Fig. 9

applicable to 3D images also. This amounts to saying

Fig. 11 given in the next page, shows that 3D-

RT of the original 3-D matrix (Fig. 6) and the 3D-RT of
the translated 3-D matrix (Fig. 10) are the same. So, the

that 1D-RT, 2D-RT and 3D-RT could be reliably used in

real world applications.

invariance property of 3D-RT could be seen to be

© 2020 Global Journals
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Cyclic Shift Invariance Property

Consider the sequence x(n)=3,8,5,6,0,2,9,6.
Now, seven more cyclic shifted versions such as
X41(N)=6,3,8,5,6,0,2,9; X(n)=9,6,3,8,5,6,0,2;
X3(N)=2,9,6,3,8,5,6,0; %.4(n)=0,2,9,6,3,8,5,6;
X.5(n)=6,0,2,9,6,3,8,5; X.(N)=5,6,0,2,9,6,3,8 and
x.7(n)=8,5,6,0,2,9,6,3 could be generated from x(n). All
the eight sequences have the same
X(k)=39,5,13,9,13,1,7,5, meaning Rajan Transform of a
given sequence of length N would remain invariant for N
cyclically permuted sequences. This property is satisfied
by higher order RT, that is, 2D-RT and 3D-RT also.
Graphical Inverse Invariance Property

Consider x(n)=3,8,5,6,0,2,9,6. Its graphical
inverse is x'(n)=6,9,2,0,6,5,8,3. Now, one can generate
seven more cyclic shifted versions such as x

'(N)=3,692,0658  x,'(N)=83692065 X4
(nN)=58369206  x,(N)=658360920; X
'(n)=0,6,5,8,3,6,9,2; x.'(n)=2,0,6,5,8,3,6,9 andx.,

'(n)=9,2,0,6,5,8,3,6. One can easily verify that all these
eight sequences have the same X(k)=39,5,13,
9,13,1,7,5, meaning Rajan Transform of a given
sequence of length N would remain invariant for N
graphically inverted sequence and its cyclically
permuted sequences. This property is satisfied by
higher order RT, that is, 2D-RT and 3D-RT also.

Dyadic Shift Invariance Property

Consider x(n)=3,8,5,6,0,2,9,6 and transpose its
first half with the second half. The resulting sequence
Td®[x(n)]=0,2,9,6,3,8,5,6 is the 2-block dyadic shifted
version of x(n). The symbol Td® denotes the 2-block
dyadic shift operator. In the same manner, one would
obtain  Td“[Td®[x(n)]]=9,6,0,2,5,6,3,8 and Td®[Td"
[Td®[x(n)]]]1=6,9,2,0,6,5,8,3. Note that the graphical
inverse of x(n) is x'(n)=(6,9,2,0,6,5,8,3) and it is the
same as Td®[Td®[Td@[x(n)]]]=6,9,2,0,6,5,8,3. One can
easily verify that all these dyadic shifted sequences have
the same X(k), that is, the sequence 39,5,13,9,13,7,5.
There is yet another way of dyadic shifting the input
sequence x(n) to Td@[Td“[Td®[x(n)]]]. Consider the
sequence x(n)=3,8,5,6,0,29,6 and one can obtain
Td®[x(n)]=8,3,6,5,2,0,6,9; Td“[Td®[x(n)]]=6,5,8,3,6,9,
2,0 and Td@[Td“®[Td® [x(n)]]]=6.,9,2,0,6,5,8,3 as dyadic
shifts. Note that Td@[Td“[Td®[x(n)]]] = Td®[Td®
[Td®[x(n)]]]. This property is satisfied by higher order
RT, that is, 2D-RT and 3D-RT also.

Dual Class Invariance Property

Given a sequence x(n), one can construct
another sequence y(n) consisting of at least one number
which is not present in x(n) such that X(k)=Y(k). In such
a case, y(n) is called the ‘dual’ of x(n). Consider two
sequences x(n)=2,42,2 and y(n)=3,1,33 Then
X(K)=Y((K)=10,2,2,2. An underlying theorem to
characterize a sequence of length N=2" to pair up with
a dual sequence is “A sequence is said to have a dual if

© 2020 Global Journals

and only if its CPl is an even number and is divisible by
N/2”. This theorem advocates a necessary condition but
not a sufficient condition. For example, consider the
sequence x(n)=6,8,2,0. This indeed satisfies the
theorem. That is, its CPl is 16 and the value of CPI/(N/2)
is 8. Now its dual is computed as y(n)=2,0,6,8, which is
not a dual of x(n) as per the definition. In such cases,
they are called 'self dual’ pairs. Some of the properties
of dual sequences are: (i) if y(n) is a dual of x(n), then
x(n) is also called the dual of y(n). Hence the
pair<x(n),y(n)> is called ‘dual pair’; (i) dual of a
sequence, say y(n) will necessarily exhibit geometric
symmetry together with the original sequence x(n); (iii)
each dual pair has a value called ‘Differential Mean’
(DM), which is equal to (|x(i)~y(i)|)/2. 0<i=<(N-1) about
which the dual sequences are ‘flip’ symmetric. DM could
be a real number. This property is satisfied by higher
order RT, that is, 2D-RT and 3D-RT also.

Scalar Property

Let x(n) be a number sequence and A be a
scalar. Then the RT of Ax(n) will be AX(k), where X(Kk) is
the RT of x(n). For example, let us consider a sequence
x(n)=1,3,1,2 and a scalar A of value 2. Now the RT X(k)
of x(n) is 7,3,1,1. RT of Ax(n)=2,6,2,4 is 14,6,2,2 which is
nothing but AX(k).This property is satisfied by higher
order RT, that is, 2D-RT and 3D-RT also.
Linearity Property

In general, RT does not satisfy the linearity
property for all sequences. It was observed that for a
pair x(n) and y(n) which are number sequences either in
the increasing order or in the decreasing order, the
linearity property works. That is, for Ax(n)+my(n) where
A and m are scalars and x(n) and y(n) are two number
sequences either in the increasing or decreasing order,
the RT will be AX(k)+mY(k), where X(k) and Y(k) are
respectively the RTs of x(n) and y(n). This property is
satisfied by higher order RT, that is, 2D-RT and 3D-RT
also.
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Fig. 11: Translation invariance property demonstrated by 3D-RT

CONCLUSIONS

V.

This paper introduces the formulation of a novel

transform called Multi-Dimensional Rajan Transform,

which

Rajan

is an extension of One-Dimensional

Transform (1D-RT). 2D and 3D Rajan Transforms are

presented and the translation invariant property of 3D
Rajan Transform demonstrated with the help of an

example. One can explore the algebraic properties of

Multi-Dimensional Rajan Transform as future work.
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