Abstract- Fractals are objects, have the property of a system scale invariance or self-similarity. These objects are accruing in nature in the form of cost, hills, clouds, and waving act. These structures are need computer assistance for a generation. In this paper, the fractal dimensions were studied. Some methods and techniques are studied to simplify the Computer generation of fractals. Python programming is given to generate fractal graphics.

Keywords: fractals, fractal generation, fractal dimension, iteration, recursion, parallelism, python.

GJCST-F Classification: I.3.6

Computer Generation of Fractals Some Methods and Techniques

By Poli Venkata Subba Reddy

Sri Venkateswara University

Strictly as per the compliance and regulations of:
Computer Generation of Fractals Some Methods and Techniques

Poli Venkata Subba Reddy

Abstract- Fractals are objects, have the property of a system scale invariance or self-similarity. These objects are accursed in nature in the form of cost, hills, clouds, and walking act. These structures are need computer assistance for a generation. In this paper, the fractal dimensions were studied. Some methods and techniques are studied to simplify the Computer generation of fractals. Python programming is given to generate fractal graphics.

Keywords: fractals, fractal generation, fractal dimension, iteration, recursion, parallelism, python.

I. INTRODUCTION

Fractal structures of nature [1] are similar to themselves on different length-scales of observation. This geometrical property is studied for a great variety of irregular shapes, many of which result from the growth process.

Fractals geometry is introduced by Mandelbrot [1] as “the Geometry of Nature”. Clouds are not spheres, mountains are not cones, coastlines are not circles and nor does lightning travel in a straight line, says Dr. Beroit Mandelbrot.

Human expertise is not sufficient to generate Fractals of nature. Fractals need computer assistance. Even Computer programming also requires methods and techniques to generate fractals. In the following, some methods and techniques are proposed for Computer generation of fractals.

II. METHODS AND TECHNIQUES

a) Iteration

Iteration is the method in which output function value may be taken an input value to the function. This method is proposed to reduce the complexity of Computer generation of fractals. This is given by

\[n = f(n) \]

For instance, \(N = \frac{1}{3} \) \(N = \frac{1}{3} \) \(N = \frac{1}{3} \)

Here, the number of self similarities can be defined as \(N = f(N) \).

\[D = \log(2/3) = 0.6309 \]

b) Recursion

Recursion is a process that calls itself, directly or indirectly. This method can be applied to simplify the complexity of Computer generation of fractals using programming.

For instance, consider the generation of the Koch curve. The recursion method is applied to call self-similarity.

III. METHODS AND TECHNIQUES

Computer generation of fractals shall be simplified by introducing methods and techniques. In the following, three methods and techniques are introduced to simplify the complexity of Computer generation of fractals.

<table>
<thead>
<tr>
<th>N</th>
<th>r</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

For instance, \(N = 2 \) \(r = 3 \) \(N = 4 \) \(r = 6 \)

Here, the number of self similarities can be defined as \(N = f(N) \).

\[D = \log(2/3) = 0.6309 \]

Figure 2: Iteration

Figure 3: Recursion

Author: Department of Computer Science and Engineering, College of Engineering, Sri Venkateswara University, Tirupati, India.
e-mail: pvsreddy@hotmail.co.in

© 2021 Global Journals

Global Journal of Computer Science and Technology (F) Volume XXI Issue I Version I
D = \log 4 / \log 3 = \log 16 / \log 9 = .26

c) **Parallel fractals**

The parallel processing technique is divide number of sub-task of the task and each task will processed independently with individual processors in the Multiprocessing computer system. This parallel processing technique is proposed for Computer generation of fractals when the large number of computations and having the number of sub-tasks. The computer generation of fractals, in which the fractal can be divided into the number of sub-tasks, and each sub-task will be processed with independent processor and generate the self-similarities.

For instance, consider the Sierpinski gasket in which the triangle is divided into three triangles and each triangle will self-similarly generate with independent processor in Multiprocessing computer system.

![Figure 4: Parallel Sierpinski gasket](image)

\[r(\text{linear}) = \frac{\sqrt{3}}{2}, \quad r(\text{area}) = \frac{1}{4}, \quad N = 16, \quad A = \frac{1}{16} \]

\[D = \log N / \log (1/r) = \log 16 / \log 1/16 \log 16 / \log 4 = 2 \]

Figure 5: Parallel fractals

IV. Computer Generating Fractals

Computer generation fractals are any type of graphics with scale-similarities [3]. The recursion technical is used to generate fractals with self-similarities. The applications of fractal graphics ranging from graphics design to designing fractals on garments Python Programming is to generate Fractal Graphics [2]

```python
def mink(lengthSide, levels):
    if levels == 0:
        forward(lengthSide)
        return
    lengthSide /= 3.0
    mink(lengthSide, levels-1)
    left(60)
    mink(lengthSide, levels-1)
    right(120)
    mink(lengthSide, levels-1)
    left(60)
    mink(lengthSide, levels-1)

if __name__ == "__main__":
    speed(0)
    length = 300.0
    pendown()
    for i in range(4):
        mink(length, 4)
        right(120)
    mainloop()
```

![Figure 6: Koch curve](image)

V. Conclusion

Fractals are structures which having the property of Scale-invariance or self-similarity. Self-similarity of a system implies that features of a structures are lookalike similar structures at different scales of length. Fractal Graphics have the number of applications in designing clothes and crafts. These applications are describes as fractals. Fractal dimension will identify the fractal structures or not. For instance, circles are not fractals. Different fractal structures are studied. The methods and techniques are also
proposed for Computer generation of the fractals to simplify the process.

REFERENCES Références Referencias