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reen Computing or Clean Computing is 
necessary to solve different types of problem 
solving. The Programming is needed portability 

of the code, and less computation time. There are 
different techniques methods are used for Green 
Computing like recursion, parallelism, regular 
expression and Object-Oriented. The recursion is the 
calling function itself. Parallelism is computing the 
number of tasks at a time. The regular expression is 
simplifies the code. The Object-Oriented shall made 
program is independent.   

II. Green Computing Methods 

Programming is the main component for 
problem solution. The Green programming has some of 
the main features. 

Portability  
Less computing time 
Reusability 
Green Computing maybe studied with three methods. 

a) Analysis  
There are different analysis methods. Mainly  

Time Complexity 
Space Complexity 

b) Design 
There are different design method are used f  
Divide and Conquer 
Object-Oriented 
Component based 
 
 
 

 

 
   

 

c) Coding 
The Programming Languages fall under 

different paradigms Imperative, Functional, Logical, and 
Object-Oriented and regular   it is difficult to learn all the 
programming languages. It easy to learn programming 
languages through common principles like iteration, 
recursion, control statements, functions, functions, 
subroutines, Object-oriented, etc. All principles and 
techniques are not available in single programming 
language. The selected Programming Languages are 
discussed for Green Computing.  

Programming languages are designed based 
on Automata. Context-Free Language is the recursively 
representation of Finite Automata.   

For green computing, Recursive Algorithms and 
Parallel algorithms are used until recently. Programming 
languages are playing a main role.   

We consider Perl and Python for green 
computing. Perl is the regular language. It simplifies the 
programming, and it reduces time. 

Python is the preprocessing language. It 
simplifies the with the import feature, it simplify the code. 

III. Component Technology 

All components are specialized, independently 
deployed and extendable for the product. These 
components are also extendable to multi versions of the 
components. The following are the characteristics of the 
components. 
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The components have an externally accessible view.
The semantics such as business rules and 

regulations are defined for the composition of 
components.

As Component software extended, the 
components are extendable.

The component must be relocate and replace a 
component for other implantations or the development 
of new software system.

The semantic primitives must be extendable to 
new components.

The composition of components is tightly 
coupled.

The components are substituted and integrated 
into the other systems. Sometimes this maybe referred 
to as off-the-components.

a) Component Architecture
The component architecture mainly consists of 

Conceptual component model, infrastructure 
technologies and structured domain concepts. The 

I. Introduction



component architecture comes across distributed, 
heterogeneous and new infrastructure technology. 
Integrated component architecture is the mechanism 
universal Component architecture and it may be referred 
to integration of independent component architectures. 
The integration may be loosely coupled and tightly 
coupled. It Describes implementation of Component 
infrastructure, Structured conceptual model, and 
domain concepts. 

 

Figure 1: Component Architecture 

b) Component Implementation 
The component model is translated into 

component ware with tools for automation and 
management of components and interfaces. Interface to 
understand system architecture with the interface 
specifications that implement, reuse, and replacement 
of components. They are two types of component ware 
implementation for products.  

Self-development in which component were 
developed from the scratch.  

Off-the-self components in which component 
ware developed by black box assembling commercially 
available components and such components are 
documented, assembled and adapted. 

The following are the characteristics of the 
implementation enterprise model. The components of 
the product may represent entire system 

Generosity: It is stepwise instantiation and 
controlled processes that use specifications, 
inheritance, relationships and contexts. 

Domain system: It represents a particular area 
of components. 

Domain object: It represents a particular 
process of components. 

Semantic primitives: These are rules and kinds 
of relationships between objects. 

These domain concepts are used to compose 
domain components of individual components. 

IV. Perl Programming 

The Programming Languages fall under 
different paradigms Imperative, Functional, Logical, and 
Object-Oriented and Regular.   It is difficult to learn all 
the programming languages. It made easy to learn 

programming languages through common principles 
like iteration, recursion, control statements, functions, 
functions, subroutines, Object-oriented etc. All principles 
and techniques are not available in single programming 
language. The selected Programming Languages are 
discussed for Green Computing. 

The Programming Languages are constructed 
mainly based on Finite Automata (FA) and Regular (RE).  

The Formal Languages (FL) are simple 
representation of Context-Free Language) CFL). The 
CFL is recursion of FA. 

FA M = {Σ, Q,  δ, q0, F} 

For instance, 

Σ=a-z(a-z, 0-9) 

Id= {num, num1, x1, …} 

Regular 

M={Σ*, Q,  δ, q0, F} 

Σ*={a-z, 0-9}* 

Id=a-z(A-Z, 0-9)* 

Id={x, x11, num, sum, sum12, …} 

The CFL is defined as  

M= < V, T, P, S> 

E=E+E/E-E/E*E/id 

The grammar 

G= { A◊αw}, where αЄV, wЄ { N UΣ} 

The regular grammar  

G*= { A◊αw*}, where αЄV, w*Є { N UΣ*} 

For instance, 

Σ=a-z(a-z, 0-9) 

Id= num, id=x1 etc. 

Σ*={a-z, 0-9}* 

Id=a-z(A-Z, 0-9)* 

Id={x, x11, num, sum, sum12, …} 

Perl is only Regular Language. Perl can be used 
as Non-Object-Oriented and Object-Oriented. Perl is 
Portable because like Algorithmic language. Perl is 
green programming longuge. The main concepts of Perl 
are recursion, regular, parallelism and client/server. 

a) Recursion 
Recursion is calling function by itself. 

For instance,           
$n=<STDIN>; 
$factorial=fact($n); 
print "$factorial\n"; 
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sub  fact($num) 
{ 
 if ($num==1) {return 1;} 
else { return $num*fact($num-1);} 
}  

b) Regular 
A regular expression is simply Expression of 

Finite Automate.  

Consider the Regular Expression  
Id =digit*. digit )+ 

Regular expressions are used to match the pattern, 
sting with  

"m//", "s///", "qr//" and "split" operators 
Simple string matching 

c) Object-Oriented 
Object are often called instance data or object 

attributes, and data fields 

           sub teacher ::pvsr{ 
             print "teaching dbms\n"; 
           } 
           sub student::syam{ 
             print "tacking dbms course \n"; 
           } 
           sub room::cse201{ 
             print "course in a201\n" 
           } 
           teacher::pvsr;  
           student::dbms; 
           room:cse201; 
         "Class->method" invokes subroutine "method" in 
       package "Class “ 
           teacher->dbms; 
           student>dbms; 
           room->cse201; 

d) Threads 
The “use thread” creates one or more threads. 

            use threads; 
           $thr1= threads->new(\&ascending); 
          $thr2= threads->new(\&decending); 
my $num ; 
           sub ascending { 
                my $num; 
            while ( 10) 
               print " $num++\n"; 
           }     
sub decending { 
              my $num=10; 
            while (  0) 
               print " $num--\n"; 
           }     
$thr1-> join; 
$thr2->join; 
 

e) Client/Server 
Perl is powerful server side programming 

language because Perl is the only regular language. 
For instance,  
Computing two numbers at sever side 
Client programming 
 use IO::Socket; 
$socket = new IO::Socket::INET ( 
                       PeerAddr  => '127.0.0.1', 
                        PeerPort  =>  7008, 
                         Proto => 'tcp', 
                               ) 
or die "Couldn't connect to Server\n"; 
    $socket->recv($recv_data,1024); 
    if($recv_data){ 
    print "Sum is is $recv_data\n"; 
    } 
    else 
    {print("Server is not working:Restart the sever and 
recompile the server program\n");} 
    sleep(20); 
Server Programming 
use IO::Socket; 
$| = 1; 
$socket = new IO::Socket::INET ( 
                               LocalHost => '127.0.0.1', 
                                LocalPort => '7008', 
                                 Proto => 'tcp', 
                                  Listen => 5, 
                                  Reuse => 1 
                               ); 
die "Coudn't open socket" unless $socket; 
print "\nTCPServer Waiting for client on port 7008"; 
while(1) 
{ 
 my($new_sock,$buf); 
        $buf=sum2(); 
 $client_socket = ""; 
 $client_socket = $socket->accept(); 
 $peer_address = $client_socket->peerhost(); 
 $peer_port = $client_socket->peerport(); 
 print "\n I got a connection from ( 
$peer_address , $peer_port ) "; 
        $client_socket->send($buf); 
        close $client_socket; 
sub sum2() {return 7+3;} 
} 

V. Python Programming 

Python is preprocessor and portable language. 
Python has import and other features for green 
computing 

a) Recursion 
# factorial 
def fact(n): 
    if (n <= 1): 
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        return 1 
    else: 
        return n * fact(n - 1) 

b) Regular 

#Searching text 
txt = "Artificial Intelligence" 
x = re.search("Intel", txt) 
print(x) 

c) Object-Oriented 

print(fact(6))class table():  
    # init method or constructor  
    def __init__(self, customer, barrar, table):  
        self.cust = customer 
        self.barrar = barrar 
        self.table = table 
    def show(self):  
        print("customer is", self.cust )  
        print("supplier is", self.barrar )  
        print("table  is", self.table )  
# both objects have different self which   
# contain their attributes  
table1 = table("rama", "barrar1", "table1")  
table2 = table("krishna", "barrar2", "table2")  
table1.show()      
table2.show()   

The output is given by 

customer is rama 
supplier is barrar1 
table  is table1 
customer is krishna 
supplier is barrar2 
table  is table2 

Python is portable using import. 

import string 
text = input('text: ')  
symptoms = text.split() 
symptom1='appreciating-colors' 
symptom2='glaring'  
symptom3='recognizing-faces' 

If symptom1 in symptoms and symptom2 in 
symptoms and symptom3 in symptoms: 
Print ('patient diagnosed cateract') 

d) Client and Server 
Python is portable to use for client/server 

programming. 
For instace,  

Server 

import socket 
serv = socket. Socket (socket.AF_INET, socket. 
SOCK_STREAM) 
serv.bind(('0.0.0.0', 8080)) 
serv.listen(5) 
while True: 

    conn, addr = serv.accept() 
    from_client = '' 
    while True: 
        data = conn.recv(4096) 
        if not data: break 
        from_client += data 
        print from_client 
        conn.send("I am SERVER<br>") 
    conn.close() 
    print 'client disconnected' 

Client 

import socket 
client=socket.socket(socket.AF_INET, 
socket.SOCK_STREAM) 
client.connect(('0.0.0.0', 8080)) 
client.send("I am CLIENT<br>") 
from_server = client.recv(4096) 
client.close() 
print from_server 

VI. Green Computing Technology 

Green computing technology mainly has  two 
criterions fundamentals of computer science and nature 
of computer science. 

a) Fundamentals of Computer Science 
Fundamentals of computer science may be 

defined as 

Finite Automata 
Regular Expression 
Context-Free Grammar 
Turing Machine 
Digital Logic 

b) Nature of Computer Science 
Some of Nature of computer science may be defined as 

Nature of Clouds 
Nature of Neurons 
Nature  of Genetics 
Nature of Trees and Forest 
Nature of Proteins  

VII. Conclusion 

Perl and Python are best for Green Computing 
or clean computing. Perl is regular language and 
powerful at sever side programming. Python is pre-
processor and it is portable with import feature. We try 
to discuss m Perl and Python programming languages 
for green computing. 
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