
© 2021. Poli Venkata Subba Reddy & Srivibha Vadravu. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Green Computing using Perl and Python

By Poli Venkata Subba Reddy & Srivibha Vadravu
 Sri Venkatesswara University

Abstract- Green computing or clean computing is necessary for Software Engineering. Perl and
Python are important programming languages for green computing. Perl is regular language.
Perl is mainly used for server-side programming because it is a regular language. It a portable
and green programming language. It can be used as object-oriented (OO) or non object-
oriented (Non-O-O) programming language. Python is preprocessor. It is a portable language for
software engineering. It has an import feature for Green computing.

Keywords: green computing, regular expressions objectoriented, perl, preprocessor, python.

GJCST-C Classification:

GreenComputingusingPerlandPython

 Strictly as per the compliance and regulations of:

Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 21 Issue 1 Version 1.0 Year 2021

K.7

Green Computing using Perl and Python
Poli Venkata Subba Reddy α & Srivibha Vadravu σ

Abstract- Green computing or clean computing is necessary
for Software Engineering. Perl and Python are important
programming languages for green computing. Perl is regular
language. Perl is mainly used for server-side programming
because it is a regular language. It a portable and green
programming language. It can be used as object-oriented
(OO) or non object-oriented (Non-O-O) programming
language. Python is preprocessor. It is a portable language for
software engineering. It has an import feature for Green
computing.
Keywords: green computing, regular expressions object-
oriented, perl, preprocessor, python.

reen Computing or Clean Computing is
necessary to solve different types of problem
solving. The Programming is needed portability

of the code, and less computation time. There are
different techniques methods are used for Green
Computing like recursion, parallelism, regular
expression and Object-Oriented. The recursion is the
calling function itself. Parallelism is computing the
number of tasks at a time. The regular expression is
simplifies the code. The Object-Oriented shall made
program is independent.

II. Green Computing Methods

Programming is the main component for
problem solution. The Green programming has some of
the main features.

Portability
Less computing time
Reusability
Green Computing maybe studied with three methods.

a) Analysis
There are different analysis methods. Mainly

Time Complexity
Space Complexity

b) Design
There are different design method are used f
Divide and Conquer
Object-Oriented
Component based

c) Coding
The Programming Languages fall under

different paradigms Imperative, Functional, Logical, and
Object-Oriented and regular it is difficult to learn all the
programming languages. It easy to learn programming
languages through common principles like iteration,
recursion, control statements, functions, functions,
subroutines, Object-oriented, etc. All principles and
techniques are not available in single programming
language. The selected Programming Languages are
discussed for Green Computing.

Programming languages are designed based
on Automata. Context-Free Language is the recursively
representation of Finite Automata.

For green computing, Recursive Algorithms and
Parallel algorithms are used until recently. Programming
languages are playing a main role.

We consider Perl and Python for green
computing. Perl is the regular language. It simplifies the
programming, and it reduces time.

Python is the preprocessing language. It
simplifies the with the import feature, it simplify the code.

III. Component Technology

All components are specialized, independently
deployed and extendable for the product. These
components are also extendable to multi versions of the
components. The following are the characteristics of the
components.

G

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

15

 (

)
C

© 2021 Global Journals

Y
e
a
r

20
21

Author α: Department of Computer Science and Engineering, College
of Engineering, Sri Venkatesswara University, Tirupati-517502, India.
e-mail: vsrpoli@hotmail.com
Author σ: Software Engineer, InfoSys, Hyderabad.
e-mail: vadrevu@gmail.com

The components have an externally accessible view.
The semantics such as business rules and

regulations are defined for the composition of
components.

As Component software extended, the
components are extendable.

The component must be relocate and replace a
component for other implantations or the development
of new software system.

The semantic primitives must be extendable to
new components.

The composition of components is tightly
coupled.

The components are substituted and integrated
into the other systems. Sometimes this maybe referred
to as off-the-components.

a) Component Architecture
The component architecture mainly consists of

Conceptual component model, infrastructure
technologies and structured domain concepts. The

I. Introduction

component architecture comes across distributed,
heterogeneous and new infrastructure technology.
Integrated component architecture is the mechanism
universal Component architecture and it may be referred
to integration of independent component architectures.
The integration may be loosely coupled and tightly
coupled. It Describes implementation of Component
infrastructure, Structured conceptual model, and
domain concepts.

Figure 1: Component Architecture

b) Component Implementation
The component model is translated into

component ware with tools for automation and
management of components and interfaces. Interface to
understand system architecture with the interface
specifications that implement, reuse, and replacement
of components. They are two types of component ware
implementation for products.

Self-development in which component were
developed from the scratch.

Off-the-self components in which component
ware developed by black box assembling commercially
available components and such components are
documented, assembled and adapted.

The following are the characteristics of the
implementation enterprise model. The components of
the product may represent entire system

Generosity: It is stepwise instantiation and
controlled processes that use specifications,
inheritance, relationships and contexts.

Domain system: It represents a particular area
of components.

Domain object: It represents a particular
process of components.

Semantic primitives: These are rules and kinds
of relationships between objects.

These domain concepts are used to compose
domain components of individual components.

IV. Perl Programming

The Programming Languages fall under
different paradigms Imperative, Functional, Logical, and
Object-Oriented and Regular. It is difficult to learn all
the programming languages. It made easy to learn

programming languages through common principles
like iteration, recursion, control statements, functions,
functions, subroutines, Object-oriented etc. All principles
and techniques are not available in single programming
language. The selected Programming Languages are
discussed for Green Computing.

The Programming Languages are constructed
mainly based on Finite Automata (FA) and Regular (RE).

The Formal Languages (FL) are simple
representation of Context-Free Language) CFL). The
CFL is recursion of FA.

FA M = {Σ, Q, δ, q0, F}

For instance,

Σ=a-z(a-z, 0-9)

Id= {num, num1, x1, …}

Regular

M={Σ*, Q, δ, q0, F}

Σ*={a-z, 0-9}*

Id=a-z(A-Z, 0-9)*

Id={x, x11, num, sum, sum12, …}

The CFL is defined as

M= < V, T, P, S>

E=E+E/E-E/E*E/id

The grammar

G= { A◊αw}, where αЄV, wЄ { N UΣ}

The regular grammar

G*= { A◊αw*}, where αЄV, w*Є { N UΣ*}

For instance,

Σ=a-z(a-z, 0-9)

Id= num, id=x1 etc.

Σ*={a-z, 0-9}*

Id=a-z(A-Z, 0-9)*

Id={x, x11, num, sum, sum12, …}

Perl is only Regular Language. Perl can be used
as Non-Object-Oriented and Object-Oriented. Perl is
Portable because like Algorithmic language. Perl is
green programming longuge. The main concepts of Perl
are recursion, regular, parallelism and client/server.

a) Recursion
Recursion is calling function by itself.

For instance,
$n=<STDIN>;
$factorial=fact($n);
print "$factorial\n";

Green Computing using Perl and Python
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

16

 (

)
C

Y
e
a
r

20
21

© 2021 Global Journals

sub fact($num)
{
 if ($num==1) {return 1;}
else { return $num*fact($num-1);}
}

b) Regular
A regular expression is simply Expression of

Finite Automate.

Consider the Regular Expression
Id =digit*. digit)+

Regular expressions are used to match the pattern,
sting with

"m//", "s///", "qr//" and "split" operators
Simple string matching

c) Object-Oriented
Object are often called instance data or object

attributes, and data fields

 sub teacher ::pvsr{
 print "teaching dbms\n";
 }
 sub student::syam{
 print "tacking dbms course \n";
 }
 sub room::cse201{
 print "course in a201\n"
 }
 teacher::pvsr;
 student::dbms;
 room:cse201;
 "Class->method" invokes subroutine "method" in
 package "Class “
 teacher->dbms;
 student>dbms;
 room->cse201;

d) Threads
The “use thread” creates one or more threads.

 use threads;
 $thr1= threads->new(\&ascending);
 $thr2= threads->new(\&decending);
my $num ;
 sub ascending {
 my $num;
 while (10)
 print " $num++\n";
 }
sub decending {
 my $num=10;
 while (0)
 print " $num--\n";
 }
$thr1-> join;
$thr2->join;

e) Client/Server
Perl is powerful server side programming

language because Perl is the only regular language.
For instance,
Computing two numbers at sever side
Client programming
 use IO::Socket;
$socket = new IO::Socket::INET (
 PeerAddr => '127.0.0.1',
 PeerPort => 7008,
 Proto => 'tcp',
)
or die "Couldn't connect to Server\n";
 $socket->recv($recv_data,1024);
 if($recv_data){
 print "Sum is is $recv_data\n";
 }
 else
 {print("Server is not working:Restart the sever and
recompile the server program\n");}
 sleep(20);
Server Programming
use IO::Socket;
$| = 1;
$socket = new IO::Socket::INET (
 LocalHost => '127.0.0.1',
 LocalPort => '7008',
 Proto => 'tcp',
 Listen => 5,
 Reuse => 1
);
die "Coudn't open socket" unless $socket;
print "\nTCPServer Waiting for client on port 7008";
while(1)
{
 my($new_sock,$buf);
 $buf=sum2();
 $client_socket = "";
 $client_socket = $socket->accept();
 $peer_address = $client_socket->peerhost();
 $peer_port = $client_socket->peerport();
 print "\n I got a connection from (
$peer_address , $peer_port) ";
 $client_socket->send($buf);
 close $client_socket;
sub sum2() {return 7+3;}
}

V. Python Programming

Python is preprocessor and portable language.
Python has import and other features for green
computing

a) Recursion
factorial
def fact(n):
 if (n <= 1):

Green Computing using Perl and Python

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

17

 (

)
C

© 2021 Global Journals

Y
e
a
r

20
21

 return 1
 else:
 return n * fact(n - 1)

b) Regular

#Searching text
txt = "Artificial Intelligence"
x = re.search("Intel", txt)
print(x)

c) Object-Oriented

print(fact(6))class table():
 # init method or constructor
 def __init__(self, customer, barrar, table):
 self.cust = customer
 self.barrar = barrar
 self.table = table
 def show(self):
 print("customer is", self.cust)
 print("supplier is", self.barrar)
 print("table is", self.table)
both objects have different self which
contain their attributes
table1 = table("rama", "barrar1", "table1")
table2 = table("krishna", "barrar2", "table2")
table1.show()
table2.show()

The output is given by

customer is rama
supplier is barrar1
table is table1
customer is krishna
supplier is barrar2
table is table2

Python is portable using import.

import string
text = input('text: ')
symptoms = text.split()
symptom1='appreciating-colors'
symptom2='glaring'
symptom3='recognizing-faces'

If symptom1 in symptoms and symptom2 in
symptoms and symptom3 in symptoms:
Print ('patient diagnosed cateract')

d) Client and Server
Python is portable to use for client/server

programming.
For instace,

Server

import socket
serv = socket. Socket (socket.AF_INET, socket.
SOCK_STREAM)
serv.bind(('0.0.0.0', 8080))
serv.listen(5)
while True:

 conn, addr = serv.accept()
 from_client = ''
 while True:
 data = conn.recv(4096)
 if not data: break
 from_client += data
 print from_client
 conn.send("I am SERVER
")
 conn.close()
 print 'client disconnected'

Client

import socket
client=socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
client.connect(('0.0.0.0', 8080))
client.send("I am CLIENT
")
from_server = client.recv(4096)
client.close()
print from_server

VI. Green Computing Technology

Green computing technology mainly has two
criterions fundamentals of computer science and nature
of computer science.

a) Fundamentals of Computer Science
Fundamentals of computer science may be

defined as

Finite Automata
Regular Expression
Context-Free Grammar
Turing Machine
Digital Logic

b) Nature of Computer Science
Some of Nature of computer science may be defined as

Nature of Clouds
Nature of Neurons
Nature of Genetics
Nature of Trees and Forest
Nature of Proteins

VII. Conclusion

Perl and Python are best for Green Computing
or clean computing. Perl is regular language and
powerful at sever side programming. Python is pre-
processor and it is portable with import feature. We try
to discuss m Perl and Python programming languages
for green computing.

References Références Referencias

1. Wojtek Kozaczynski and Grady Booch,
“Component-Based Software Engineering”, IEEE
Software, 1998, pp.34-36.

Green Computing using Perl and Python
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

18

 (

)
C

Y
e
a
r

20
21

© 2021 Global Journals

2. Alan W. Brown and Kurt C. Wallnau, “The current
state of CBSE”, IEEE Softwarepp.3 pp.7-36, 1998.

3. Elaine Weyuker, “Testing Component-Based
Software: A cautionary Tale”, IEEE Software, 1998,
pp.54-59.

4. Tom Digre, “Business Object Component
Architecture”, IEEE Software, pp.60-69, 1998.

5. Pamela Zave and Michael Jackson,” A Component-
Based Approach to Telecommunication Software”,
IEEE Software, 1988, pp.70-78.

6. Israel Ben-Shaul, James W. Gish, and William
Robinson, “An Integrated Network Component
Architecture”, IEEE Software1998,, pp.79-87,1998.

7. Szyperski, C., Component software: Beyond Object-
Oriented Programming, Addision Wesley Longman,
and Reading, Mass., 1998.

8. Cox, B.J., Object Oriented Programming: An
Evolutionary Approach, Addison Wesley Longman,
and Reading, Mass., 1987.

9. Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F,
Lorensen, W, Object- Oriented Modeling and
Design, Prentice-Hall, NJ, 1991.

10. Booch, G, Object-Oriented Analysis and Design with
Applications, Second Edition, Benjamin/Cummings,
Redwood city,CA,1994.

11. Booch, G., Roumbaugh, J. and Jacobson, I., The
Unified Modeling Language-Use Guide, Addison-
Wesley Longman mc, Reading, MA, 1999.

12. P. Venkata Subba Reddy, “Object-Oriented
Software Engineering through Java and Perl”, CiiT
International Journal of Software Engineering and
Technology, vol.5, 2010, pp.29-31.

Green Computing using Perl and Python

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

19

 (

)
C

© 2021 Global Journals

Y
e
a
r

20
21

	Green Computing using Perl and Python
	Author
	Keywords
	I. Introduction
	II. Green Computing Methods
	III. Component Technology
	a) Component Architecture
	b) Component Implementation

	IV. Perl Programming
	a) Recursion
	b) Regular
	c) Object-Oriented
	d) Threads
	e) Client/Server

	V. Python Programming
	a) Recursion
	b) Regular
	c) Object-Oriented
	d) Client and Server

	VI. Green Computing Technology
	a) Fundamentals of Computer Science
	b) Nature of Computer Science

	VII. Conclusion
	References Références Referencias

