
Comparative Study of OpenCV Inpainting Algorithms1

Souradeep Ghosh2

Received: 6 September 2021 Accepted: 2 October 2021 Published: 15 October 20213

4

Abstract5

Digital image processing has been a significant and important part in the realm of computing6

science since its inception. It entails the methods and techniques that are used to manipulate7

a digital image using a digital computer. It is a type of signal processing in which the input8

and output maybe image or features/characteristics associated with that image. In this age of9

advanced technology, digital image processing has its uses manifold, some major fields being10

image restoration, medical field, computer vision, color processing, pattern recognition and11

video processing. Image inpainting is one such important domain of image processing. It is a12

form of image restoration and conservation. This paper presents a comparative study of the13

various digital inpainting algorithms provided by Open CV (a popular image processing14

library) and also identifies the most effective inpainting algorithm on the basis of Peak Signal15

to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and runtime metrics.16

17

Index terms— image processing, openCV, Image Inpainting, Artificial Intelligence, Machine Learning18

1 Introduction19

mage processing is the technique of performing operations on an image to enhance the quality of the image,20
extract useful information from it, or manipulate it for better usage. Digital image processing techniques are21
applied in fields of computer vision, pattern recognition, video processing, image restoration and image correction22
[1].23

Image restoration [2] and correction entails all the techniques used to restore a damaged image. It includes24
noise removal from the image, correcting a blurred photo, enhancing an image with defocused subject, converting25
a black and white image to color image, removing stains and unwanted marks from the image, etc. Image26
inpainting is one such technique that falls under image restoration.27

Image inpainting [3] is a form of image restoration and conservation. The technique is generally used to repair28
photos with missing areas due to damage or aging, or mask out unpleasant deformed areas of the image. The use of29
inpainting can be traced back to the 1700s when Pietro Edwards, director of the Restoration of the Public Pictures30
in Venice, Italy, applied his scientific methodology to restore and preserve historic artworks. The modern approach31
to inpainting was established in 1930 during the International Conference for the Study of Scientific Methods32
for the Examination and Preservation of Works of Art. Technological advancements led to new applications of33
inpainting. Since the mid-1990’s, the method of inpainting has evolved to include digital media. Widespread use34
of digital inpainting techniques range from entirely automatic computerized inpainting to tools used to simulate35
the process manually. Digital inpainting includes the use of software that relies on sophisticated algorithms to36
replace lost or corrupted parts of the image data. There are various advanced inpainting methodologies [4],37
namely Partial Differential Equation (PDE) based inpainting [5], Texture synthesis based inpainting [6], Hybrid38
inpainting [7], Example based inpainting [8] and Deep generative model based inpainting [9].39

In this paper, we have presented a detailed comparative study of the three inpainting algorithms natively40
provided by the Open CV library, and also stated which is the most effective algorithm out of them. The paper is41
structured as follows: Section II contains the related work done in the past on comparative analysis of inpainting42
techniques and algorithms. Section III contains a brief theory behind the inpainting algorithms to be discussed.43
Section IV contains the details of the comparative study and experimental setup. Section V presents the results44
we obtained from our study and their critical explanations. Section VI details the possibilities of further work45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



6 B) INPAINT_NS

that can be performed on this topic. Section VII concludes the paper. We have focused more on the practical46
analysis of the three algorithms, and less on the theoretical and mathematical interpretation of the algorithms.47

2 II.48

3 Related Work49

The first inpainting algorithm provided by OpenCV is established on the paper ”An Image Inpainting Technique50
based on the Fast Marching method” by Alexandru Telea [10] in 2004. It is based on the Fast Marching51
Method. The second inpainting algorithm provided by OpenCV is established on the paper ”Navier-Stokes,52
Fluid Dynamics, and Image and Video Inpainting” by M. Bertalmio et al [11] in 2001. It is based on fluid53
dynamics. The third inpainting algorithm was reviewed in the paper ”Demonstration of Rapid Frequency Selective54
Reconstruction for Image Resolution Enhancement” by Nils Genser et al [12] in 2017. It is based on the Rapid55
Frequency Selective Reconstruction (FSR) method. They applied the algorithm on Kodak and Tecnick image56
datasets over custom error masks and presented the Peak Signal to Noise Ratio (PSNR), Structural Similarity57
Index (SSIM) and runtime metrics. We have used the same metrics for comparison, explained later in Section IV.58
Supriya Chhabra et al [13] presented a critical analysis of different digital inpainting algorithms for still images,59
and also a comparison of the computational cost of the algorithms. We have considered execution time and60
memory consumption as metrics to compare computational cost between the algorithms. Raluca Vreja et al [14]61
published a detailed analytical overview of five advanced inpainting algorithms and measurement benchmarks.62
They emphasized on the advantages and disadvantages of the used algorithms and also proposed an improved63
adaptation of the Oliviera’s [15] and Hadhoud’s [16] inpainting algorithms.64

Kunti Patel et al [17] presented a study and analysis of image inpainting algorithms and concluded that65
exemplar based techniques are generally more effective than PDE based or texture synthesis based techniques.66
They also extensively listed the merits and demerits of the algorithms, which makes it easy to choose for end67
users without further research. Anupama Sanjay Awati et al [18] detailed a review of digital image inpainting68
algorithms, comparing hybrid techniques against commonly used ones. K. Singh et al [19] presented a comparison69
of patch based inpainting techniques and proposed an adaptive neighborhood selection method for efficient patch70
inpainting.71

4 III.72

5 Theory73

OpenCV is a library of programming functions mainly aimed at real-time computer vision. It is a huge open74
source library for computer vision, machine learning, image and video processing tasks. OpenCV is used in a lot75
of machine learning problems like face recognition, object detection, image segmentation, etc. mainly due to its76
simple syntax and presence of a large number of predefined functions and modules.77

There are several algorithms present for digital image inpainting, but OpenCV natively provides three of78
This algorithm is based on the paper ”An Image Inpainting Technique based on the Fast Marching method” by79
Alexandru Telea [10] in 2004. It is based on the Fast Marching Method (FMM), a solutional paradigm which80
builds a solution outwards starting from the ”known information” of a problem. It is a numerical method created81
by James Sethian for solving boundary value problems of the Eikonal equation [20]. A simple explanation of the82
working of the algorithm follows, extracted from the original paper [10].83

The first and foremost step in any inpainting method is to identify the region to be inpainted. There is the84
region to be inpainted, also known as the unknown region and the surrounding known region of the image.85

The algorithm first considers the boundary of the unknown region, which is of infinitesimal width, and inpaints86
one pixel lying on the boundary. Then it iterates over all the pixels lying on the boundary to inpaint the whole87
boundary. A single pixel is inpainted as a function of all other pixels lying in its known neighborhood by summing88
the estimates of all pixels, normalized by a weighting function. A weighting function is necessary as it ensures89
the inpainted pixel is influenced more by the pixels lying close to it and less by the pixels lying far away. After90
the boundary has been inpainted, the algorithm propagates forward towards the center of the unknown region.91

To implement the propagation, the Fast Marching Method (FMM) is used. FMM ensures the pixels near the92
known pixels are inpainted first, so that it mimics a manual inpainting technique. The FMM’s main advantage is93
that it explicitly maintains a narrow band that separates the known from the unknown image area and specifies94
which pixel to inpaint next.95

6 b) INPAINT_NS96

This algorithm provided by OpenCV is established on the paper ”Navier-Stokes, Fluid Dynamics, and Image97
and Video Inpainting” by M. Bertalmio et al [11] in 2001. This algorithm is based on fluid dynamics (fluid98
dynamics is a sub-discipline of fluid mechanics that describe the flow of fluids: liquids and gases) and utilizes99
partial differential equations. The method involves a direct solution of the Navier-Stokes equation [21] for an100
incompressible fluid. A simple explanation of the working of the algorithm follows, extracted from the original101
paper [11].102

2



The basic principle is heuristic. After the user selects the unknown region, the algorithm first travels along103
the edges from known regions to unknown regions, and automatically transports information into the inpainting104
region. The algorithm makes use of isophotes (a line in a diagram connecting points where the intensity of light105
or brightness is the same). The fill-in is done is such a way that the isophote lines arriving at the unknown106
region’s boundary are completed inside, which allows the smooth continuation of information towards the center107
of the unknown region. M. Bertalmio et al [11] drew an analogy between the image intensity function of an108
image and the stream function in a 2D incompressible fluid, and used techniques from the computational fluid109
dynamics to produce an approximate solution to image inpainting problem.110

7 c) INPAINT_FSR111

FSR stands for Rapid Frequency Selective Reconstruction [12]. It is a high quality signal extrapolation algorithm.112
FSR has proven to be very efficient in the domain of inpainting. The FSR is a powerful approach to reconstruct113
and inpaint missing areas of an image.114

The signal of a distorted block is extrapolated using known samples and already reconstructed pixels as115
support. This algorithm iteratively generates a generic complex valued model of the signal, which approximates116
the undistorted samples in the extrapolation area of a particular size as a weighted linear combination of Fourier117
basic function. The Fourier basic function is a method to smooth out data varying over a continuum (here the118
unknown region) and exhibiting a cyclical trend. An important feature of FSR algorithm is that the calculations119
are carried out in the Fourier domain, which leads to fast implementation.120

There are two implementations of the FSR inpainting algorithm -INPAINT_FSR_FAST and IN-121
PAINT_FSR_BEST. The Fast implementation of FSR provides a great balance between speed and accuracy,122
and the Best implementation mainly focuses on the accuracy, with speed being slower compared to Fast.123

IV.124

8 Comparative Study a) Theoretical Comparison125

All the three inpainting algorithms provided by OpenCV are unique and works on different methodologies. The126
similarity between the algorithms is the inpainting procedure starts with the pixels lying in the boundary of the127
unknown region, and slowly propagates towards the centre of the unknown region. All the three algorithms are128
heuristic in nature. The propagation method used in each is different. TELEA uses the Fast Marching Method129
(FMM), NS uses fluid dynamics equations and FSR extrapolates the pixel values of the unknown region using130
known samples.131

9 b) Practical Comparison132

For practical comparison of the 3 algorithms, we ran some code in Python. Our testing setup had the following133
specifications:134

-CPU : i7-8700K (3.70 GHz) -RAM : 16 GB (3200 MHz) -GPU : 8 GB GTX 1080135
We took the Kodak image set (which contains 25 uncompressed PNG true colour images of size 768x512 pixels)136

and four custom error masks for the dataset. We applied all the inpainting algorithms individually over each137
error mask on the images. We compared the results using four main metrics:138

-Peak Signal to Noise Ratio (PSNR): It is the ratio between the maximum possible power of a signal and the139
power of corrupting noise. To estimate the PSNR of an image, it is necessary to compare the distorted image to140
an ideal clean image with the maximum possible power. PSNR is commonly used to estimate the efficiency of141
compressors, filters etc. A higher value of PSNR suggests an efficient manipulation method. In our case, we will142
compute the PSNR between the original image and the inpainted image. The Python code to calculate PSNR143
is given in Fig 2. -Memory: It is the total memory consumed by the algorithm while completing the task. We144
use tracemalloc module, which is a debug tool to trace memory blocks allocated by Python. We find the peak145
memory usage during the working of the algorithm.146

10 Fig. 5: Memory code147

All the values have been taken up to three decimal places. Apart from the four main metrics, we also considered148
two hybrid metrics defined in Section V. We also curated some custom images for testing of certain specific cases.149
The results obtained are given in the next section, along with their critical explanation.150

V.151

11 Results and Discussion152

12 a) Kodak image dataset results153

There are 19 landscape and 6 portrait oriented photos in the Kodak image set. We initially made the custom154
error masks for landscape orientation, and rotated them to fit the portrait orientation. We chose striped masks155
as the error regions are equally distributed. The four custom error masks we considered are: Fig. ??: Four156
custom error masks157

3



15 C) PATTERN INPAINTING RESULTS

The white stripes are the areas to be inpainted. We have displayed the image results for just 1 landscape photo158
(2 error masks) and 1 portrait photo (2 error masks). These are the following results we obtained:-Sample_1159
(Landscape)160

The original, distorted and 4 inpainted results of the first image sample over the first error mask are given in161
Fig 7. The metric values calculated for the first image sample over the first error mask are given in Table 1. The162
metric values calculated for the first image sample over the second error mask are given in Table 2. We have not163
given the image results for the third and fourth error masks, only the metric values. The metric values calculated164
for the first image sample over the third error mask are given in Table 3. The metric values calculated for the165
first image sample over the fourth error mask are given in Table 4.166

13 Sample_2 (Portrait)167

For portrait images, the error masks have been rotated 90 degree clockwise to fit the orientation. Given are the168
original, distorted and 4 in painted results of the second image sample over the first error mask in Fig 9. The169
metric values calculated for the second image sample over the first error mask are given in Table 5. The metric170
values calculated for the second image sample over the first error mask are given in Table 6. We have not given171
the image results for the third and fourth error masks, only the metric values. The metric values calculated172
for the second image sample over the third error mask are given in Table 7. The metric values calculated for173
the second image sample over the fourth error mask are given in Table 8. Generally speaking, lower memory174
consumption and runtime values mean a better algorithm. For other metrics, the higher the PSNR and SSIM175
value, the better the algorithm. The average memory consumption, as seen from Table 9,10,11,12 is same for176
any mask on any image for any algorithm for the particular dataset. Hence we will not consider it as a factor for177
deciding the most efficient algorithm. We have defined two hybrid metrics X and Y for deciding which algorithm178
is most efficient based on our data. Metric X is directly proportional to PSNR, directly proportional to SSIM179
and inversely proportional to Runtime value:X ? PSNR X ? SSIM X ? (1/Runtime)180

Combining all three above equations we get:X ? (PSNR * SSIM)/Runtime X = k * ((PSNR * SSIM)/Runtime)181
where k is a constant, taken to be 1 for comparison purposes. Hence X = (PSNR * SSIM)/Runtime A high182

value of metric X means an effective algorithm. We used the values obtained in Table 9,10,11,12 and calculated183
metric X values for the four error masks. The values are given in Table 13. From Table 13, we can see that184
TELEA algorithm gets the highest value in all four error masks. Hence, TELEA is the most efficient in painting185
algorithm when we consider metric X to be the comparison metric.186

But as we can infer from the definition of metric X, it has the runtime factor associated with it. Runtime187
is an important factor for analysing algorithms, but can be subjective at times to different end users. Some188
users may have a time constraint, some users may not. Hence we need to define such a metric which does not189
include the runtime factor. Therefore, we define metric Y. Metric Y is directly proportional to PSNR and directly190
proportional to SSIM value: Y ? PSNR Y ? SSIM Combining all two above equations we get:Y ? PSNR * SSIM191
Y = k * (PSNR * SSIM)192

where k is a constant, taken to be 1 for comparison purposes. Hence Y = PSNR * SSIM A high value of193
metric Y means an effective algorithm, without taking the runtime factor into account. Similarly, we used the194
values in Table 9,10,11,12 and calculated metric Y values for the four error masks. The values are given in Table195
14. From Table 14, we can see that FSR_BEST algorithm gets the highest value in all four error masks. Hence,196
FSR_BEST is the most efficient inpainting algorithm when we consider metric Y to be the comparison metric,197
which does not take the runtime factor into account.198

Summing up our observation and results for the Kodak image dataset, we can say that the most efficient199
inpainting algorithm when runtime is a constraint is TELEA algorithm and the most efficient inpainting algorithm200
when runtime is not a constraint is FSR_BEST algorithm.201

14 b) Edge inpainting results202

The inpainting algorithms produce very different results when working on edges. To compare the working, we203
have chosen an image which has clear distinct foreground and background. We distorted a part of the edge, and204
applied the inpainting algorithms to it. The image results are given in ??ig 11, and metric values are given in205
Table 15.206

As we can see from the results, TELEA has the highest value for X metric. That is if we consider runtime to207
be a factor, TELEA is the most efficient algorithm. But FSR_BEST has the highest value for Y metric, i.e. if208
we do not consider runtime to be a factor, then FSR_BEST is the most efficient algorithm for edge inpainting.209
We can also see from the image results that FSR_BEST produces the most believable result, but also has the210
largest runtime. TELEA and NS do a decent job in filling up the edges and maintaining the edge difference. But211
still some parts are hazed and distorted. FSR_FAST does the worst job, mainly because it trades off accuracy212
for runtime, and the result is bad.213

15 c) Pattern inpainting results214

The inpainting algorithms produce very different results when working on patterns. To compare the working, we215
have chosen a checkerboard image as it is the easiest pattern to replicate. We distorted a part of the image in216

4



the centre, and applied the inpainting algorithms to it. The image results are given in ??ig 12, and metric values217
are given in Table 16.218

As we can see from the image results, none of the inpainting algorithms can replicate the pattern in the219
unknown region, which is understandable because the inpainting algorithms are focused on filling up the unknown220
region progressively based on information from the nearest known region. They work on the small scale spatial221
influences. In order to inpaint a pattern, the algorithm must work over a broad range of the known region to222
understand the dynamics of the pattern. An exemplar based inpainting or patch based inpainting method can223
work for pattern inpainting.224

Comparing the metric values, TELEA has the highest X value and FSR_BEST has the highest Y value. From225
the image results, TELEA still does a decent job of producing an arbitrary pattern, while FSR_BEST fills the226
whole unknown region with a singular colour. Hence, no algorithm provided by OpenCV is perfectly suitable for227
inpainting a pattern, but TELEA can be used as a last resort.228

16 d) Text error mask inpainting results229

We also tested the working of the inpainting algorithms on a custom text error mask. We took an image from230
the Kodak dataset and wrote some random text on it as error regions, then applied the algorithms on it. The231
image results are given in Fig 13, and metric values are given in Table 17.232

Comparing the metric values, NS has the highest X value and FSR_BEST has the highest Y value. All233
the algorithms work decent, but from the image results we can see that TELEA and NS have some distortions234
near the fence area, while FSR_FAST and FSR_BEST have inpainted smoothly in that area. If runtime is a235
constraint, then NS is the most effective algorithm to be used. Although, TELEA can also be used as it produces236
very similar results to NS. If runtime is not a constraint, then FSR_BEST is the most effective choice for text237
error mask inpainting.238

17 e) Monochromatic image inpainting results239

We tested the working of the inpainting algorithms on a monochromatic image. We took an image from the240
Kodak dataset and converted it into monochrome and used a spiral error mask on it. The image results are given241
in Fig 14, and metric values are given in Table 18.242

Comparing the metric values, NS has the highest X value and FSR_BEST has the highest Y value. All the243
algorithms work decent, but from the image results, we see that TELEA and NS have some distortions near244
the beak of the bird, while FSR_FAST and FSR_BEST have inpainted smoothly in that area. If runtime is245
a constraint, then NS is the most effective algorithm to be used. Although, TELEA can also be used as it246
produces very similar results to NS. If runtime is not a constraint, then FSR_BEST is the most effective choice247
for monochromatic image inpainting.248

18 f) Discussions249

Summing up our observations and results for the Kodak image dataset and other specific cases, we can say that250
the TELEA inpainting algorithm is the most efficient algorithm if runtime is a constraint i.e. the user needs to251
perform the inpainting operation as fast as he can and produce the best results. On the other hand, FSR_BEST252
inpainting algorithm is the most efficient algorithm if runtime is not a constraint i.e. the user has no time limit253
for the inpainting operation and wants to get the best result. The average memory consumption for all the254
inpainting algorithms are modest, hence memory will hardly be an issue in any system while running the Open255
CV inpainting algorithms.256

19 Future Scope257

Our inpainting comparison study was done on the Kodak image dataset, a relatively small dataset containing 25258
images only. The study can be done on a larger, more robust dataset which contains variety of images. This can259
be done to get more extensive results. We compared our results on the basis of four metrics only; more intricate260
metrics may be defined for the testing. Our study can be a base for analysing how various OpenCV inpainting261
methods work on images with different colour profiles.262

We ran tests using four custom error masks. The error masks considered were mostly linear in shape. Other263
type of error masks such as curved, mixture of linear and curved can be taken for testing. This study can be a264
base for a comprehensive study on video inpainting techniques, which would be beneficial for people looking to265
work in this field.266

20 VII.267

21 Conclusion268

In conclusion, we present a comparative study of the various OpenCV inpainting algorithms, focusing extensively269
on their practical uses. The purpose of this paper is to apprise new users and researchers of the most efficient270
inpainting algorithm provided by OpenCV: TELEA algorithm for time constrained operations and FSR_BEST271

5



21 CONCLUSION

algorithm for non time constrained operations. We present the most efficient OpenCV inpainting algorithm to272
be used for various scenarios, which can help a beginner at inpainting to make his decision wisely without any273
further research. This study can be a base for more detailed comparative works on image and video inpainting.274
Inpainting is an evolving domain of image processing with major strides being made in the past, and much more275
sophisticated algorithms yet to arrive. It opens up the doorway for new image processing researchers to better276
the existing algorithms and create finer advanced inpainting algorithms which achieve near perfect accuracy.

Figure 1:

1

Figure 2: Fig. 1 :
277
278

6



2

Figure 3: Fig. 2 :

3

Figure 4: Fig. 3 :

4

Figure 5: Fig. 4 :

7



21 CONCLUSION

7

Figure 6: Fig. 7 :

8



8

Figure 7: Fig. 8 :

9



21 CONCLUSION

9

Figure 8: Fig. 9 :

10



10

Figure 9: Fig. 10 :

11



21 CONCLUSION

11

Figure 10: Fig. 11 :

12



12

Figure 11: Fig. 12 :

13



21 CONCLUSION

13

Figure 12: Fig. 13 :

14



14

Figure 13: Fig. 14 :

15



21 CONCLUSION

1

Fast FSR Best TELEA NS
PSNR [dB] 27.218 26.713 26.612 26.315
SSIM 0.889 0.889 0.887 0.884
Runtime [s] 5.349 96.199 1.089 1.085
Memory [MB] 1.339 1.339 1.339 1.339

Figure 14: Table 1 :

2

Fast FSR Best TELEA NS
PSNR [dB] 34.577 34.764 30.556 30.689
SSIM 0.974 0.975 0.950 0.952
Runtime [s] 2.887 35.132 1.049 1.047
Memory [MB] 1.339 1.339 1.339 1.339

Figure 15: Table 2 :

3

Fast FSR Best TELEA NS
PSNR [dB] 27.143 27.229 27.096 26.796
SSIM 0.890 0.892 0.888 0.883
Runtime [s] 5.210 97.800 1.091 1.091
Memory [MB] 1.339 1.339 1.339 1.339

Figure 16: Table 3 :

4

Fast FSR Best TELEA NS
PSNR [dB] 34.788 34.897 30.709 31.209
SSIM 0.975 0.976 0.952 0.955
Runtime [s] 3.114 39.762 1.055 1.049
Memory [MB] 1.339 1.339 1.339 1.339

Figure 17: Table 4 :

5

Fast FSR Best TELEA NS
PSNR [dB] 31.739 32.738 31.398 31.133
SSIM 0.936 0.941 0.934 0.932
Runtime [s] 4.574 65.644 1.092 1.088
Memory [MB] 1.339 1.339 1.339 1.339

Figure 18: Table 5 :

16



6

error mask
Fast FSR BestTELEA NS

PSNR [dB] 39.632 39.673 36.063 35.106
SSIM 0.983 0.983 0.972 0.971
Runtime [s] 2.568 23.655 1.044 1.052
Memory [MB] 1.339 1.339 1.339 1.339

Figure 19: Table 6 :

7

error mask
Fast FSR BestTELEA NS

PSNR [dB] 32.105 31.834 30.596 30.268
SSIM 0.933 0.936 0.929 0.927
Runtime [s] 4.334 67.520 1.089 1.085
Memory [MB] 1.339 1.339 1.339 1.339

Figure 20: Table 7 :

8

error mask
Fast FSR BestTELEA NS

PSNR [dB] 39.689 39.532 37.029 37.092
SSIM 0.985 0.985 0.975 0.975
Runtime [s] 2.634 25.407 1.056 1.057
Memory [MB] 1.339 1.339 1.339 1.339
We applied the in painting algorithms to all the
25 images present in the dataset. The average metric
values for first, second, third and fourth error masks are
given in tables 9,10,11,12 respectively.
Average metric values for first error mask

Fast FSR BestTELEA NS
PSNR [dB] 29.719 30.017 29.145 28.891
SSIM 0.929 0.932 0.925 0.923
Runtime [s] 4.346 72.229 1.089 1.091
Memory [MB] 1.339 1.339 1.339 1.339

Figure 21: Table 8 :

17



21 CONCLUSION

10

Fast FSR Best TELEA NS
PSNR [dB] 34.002 37.734 33.421 33.406
SSIM 0.952 0.983 0.968 0.969
Runtime [s] 3.546 27.488 1.047 1.048
Memory [MB] 1.339 1.339 1.339 1.339

Figure 22: Table 10 :

9

Fast FSR Best TELEA NS
PSNR [dB] 28.948 29.143 28.602 28.376
SSIM 0.925 0.927 0.922 0.920
Runtime [s] 4.282 73.604 1.095 1.093
Memory [MB] 1.339 1.339 1.339 1.339

Figure 23: Table 9 :

12

Fast FSR Best TELEA NS
PSNR [dB] 37.831 38.039 34.088 33.958
SSIM 0.983 0.984 0.970 0.969
Runtime [s] 2.725 31.751 1.052 1.051
Memory [MB] 1.339 1.339 1.339 1.339

Figure 24: Table 12 :

13

Fast FSR BestTELEA NS
1 st Error Mask 6.353 0.387 24.756 24.442
2 nd Error Mask 9.129 1.349 30.899 30.888
3 rd Error Mask 6.253 0.367 24.083 23.885
4 th Error Mask 13.647 1.179 31.431 31.309

Figure 25: Table 13 :

14

Fast FSRBestTELEA NS
1 st Error Mask 27.609 27.976 26.959 26.666
2 nd Error Mask 32.369 37.093 32.352 32.370
3 rd Error Mask 26.779 27.016 26.371 26.106
4 th Error Mask 37.188 37.430 33.065 32.905

Figure 26: Table 14 :

18



15

Fast FSR Best TELEA NS
PSNR [dB] 35.249 43.100 38.577 37.973
SSIM 0.995 0.996 0.994 0.994
Runtime [s] 1.642 21.282 1.028 1.023
Memory [MB] 2.079 2.079 2.079 2.079
X 21.359 2.017 37.301 36.897
Y 35.073 42.928 38.346 37.745

Figure 27: Table 15 :

16

Fast FSR Best TELEA NS
PSNR [dB] 20.094 21.881 19.017 18.872
SSIM 0.959 0.964 0.962 0.958
Runtime [s] 2.827 60.066 1.051 1.047
Memory [MB] 1.188 1.188 1.188 1.188
X 6.816 0.351 17.407 17.268
Y 19.270 21.093 18.294 18.079

Figure 28: Table 16 :

17

Fast FSR Best TELEA NS
PSNR [dB] 45.019 45.497 30.784 31.571
SSIM 0.995 0.996 0.962 0.967
Runtime [s] 4.019 36.729 2.659 2.133
Memory [MB] 1.339 1.339 1.339 1.339
X 11.146 1.234 11.137 14.313
Y 44.794 45.315 29.614 30.529

Figure 29: Table 17 :

18

Fast FSR Best TELEA NS
PSNR [dB] 45.649 46.040 36.509 36.417
SSIM 0.997 0.998 0.987 0.988
Runtime [s] 1.744 13.549 1.163 1.097
Memory [MB] 1.339 1.339 1.339 1.339
X 26.096 3.391 30.984 32.799
Y 45.512 45.948 36.034 35.979

Figure 30: Table 18 :

19



21 CONCLUSION

19

With runtime as Without runtime as
a constraint a constraint

Most effective
OpenCV TELEA algorithm FSR_BEST
inpainting algorithm
algorithm
VI.

Figure 31: Table 19 :

20



[Sreelakshmy and Kovoor ()] ‘A Hybrid Inpainting Model Combining Diffusion and Enhanced Exemplar Meth-279
ods’. I J Sreelakshmy , B C Kovoor . Journal of Data and Information Quality 2021. 13 p. .280

[Singh and Shaveta ()] ‘A Review on Patch Based Image Restoration or Inpainting’. K Singh , J Shaveta .281
International Journal of Computer Sciences and Engineering 2017. 5 p. .282

[Farhan ()] ‘A Review on Some Methods used in Image Restoration’. R Farhan . International Multidisciplinary283
Research Journal 2020. 10 p. .284

[Chhabra et al. ()] ‘An Analytical Study of Different Image Inpainting Techniques’. S Chhabra , R Lalit , S285
Saxena . Indian Journal of Computer Science and Engineering 2012. 3 p. .286

[Telea ()] ‘An Image Inpainting Technique Based on the Fast Marching Method’. A Telea . Journal of Graphics287
Tools 2004. 9 (1) p. .288

[Genser et al. ()] ‘Demonstration of Rapid Frequency Selective Reconstruction for Image Resolution Enhance-289
ment’. N Genser , J Seiler , M Jonscher , A Kaur . the Proceedings of IEEE International Conference on290
Image Processing, 2017.291

[Hadhoud et al. ()] ‘Digital Images Inpainting using Modified Convolution Based Method’. M M Hadhoud , K A292
Moustafa , S Shenoda . Optical Pattern Recognition XX, 2009. 7340.293

[Oliveira et al. ()] ‘Fast Digital Image Inpainting’. M M Oliveira , B Bowen , R Mckenna , Y Chang . the294
Proceedings of International Conference on Visualization, Imaging and Image Processing, 2001.295

[Sethian ()] ‘Fast Marching Methods’. J A Sethian . SIAM Review 1999. 41 (2) p. .296

[Yu et al. ()] ‘Generative Image Inpainting with Contextual Attention’. J Yu , Z Lin , J Yang , X Shen , X Lu ,297
T S Huang . the Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.298

[Beniwal and Ahlawat ()] ‘Image Inpainting Algorithms: A Survey’. A Beniwal , D Ahlawat . International299
Journal of Recent Research Aspects 2016. 3 (2) p. .300

[Vreja and Brad ()] ‘Image Inpainting Methods Evaluation and Improvement’. R Vreja , R Brad . The Scientific301
World Journal 2014. 2014.302

[Gaonkar et al. ()] ‘Image Inpainting using Robust Exemplar-based Technique’. S R Gaonkar , P D Hire , P S303
Pimple , Y R Kotwal , B A Ahire . International Journal of Computer Sciences and Engineering 2014. 2 p. .304

[Elharrous et al. ()] ‘Image inpainting: A review’. O Elharrous , N Almaadeed , S Al-Maadeed , Y Akbari .305
Neural Processing Letters 2007-2028, 2019. 51.306

[Hegadi ()] ‘Image Processing: Research Opportunities and Challenges’. R S Hegadi . the Proceedings of National307
Seminar on Research in Computers, 2010.308

[Bertalmio et al. ()] ‘Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting’. M Bertalmio , A L309
Bertozzi , G Sapiro . the Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern310
Recognition, 2001.311

[Algazin ()] ‘Numerical Study of Navier-Stokes equations’. S Algazin . Journal of Applied Mechanics and Technical312
Physics 2007. 48 (5) p. .313

[Zhang et al. ()] ‘Partial Differential Equation Inpainting Method Based on Image Characteristics’. F Zhang , Y314
Chen , Z Xiao , L Geng , J Wu , T Feng , P Liu , Y Tan , J Wang . Image and Graphics 2015. 9219 p. .315

[Zhou et al. ()] Patch-based Texture Synthesis for Image Inpainting, T Zhou , B Johnson , R Li .316
arXiv:1605.01576v1. 2016.317

[Awati and Patil ()] ‘Review of Digital Image Inpainting Algorithms’. A S Awati , M R Patil . International318
Journal of Latest Trends in Engineering and Technology 2013. p. .319

[Patel and Yerpude ()] ‘Study and Analysis of Image Inpainting Algorithms’. K Patel , A Yerpude . International320
Journal of Engineering Research and Technology 2015. 3 p. .321

21


	1 Introduction
	2 II.
	3 Related Work
	4 III.
	5 Theory
	6 b) INPAINT_NS
	7 c) INPAINT_FSR
	8 Comparative Study a) Theoretical Comparison
	9 b) Practical Comparison
	10 Fig. 5: Memory code
	11 Results and Discussion
	12 a) Kodak image dataset results
	13 Sample_2 (Portrait)
	14 b) Edge inpainting results
	15 c) Pattern inpainting results
	16 d) Text error mask inpainting results
	17 e) Monochromatic image inpainting results
	18 f) Discussions
	19 Future Scope
	20 VII.
	21 Conclusion

