
© 2021. Preeti Chatterjee, Subhadeep Jana & Souradeep Ghosh. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 21 Issue 2 Version 1.0 Year 2021
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Comparative Study of OpenCV Inpainting Algorithms
 By Preeti Chatterjee, Subhadeep Jana & Souradeep Ghosh

Abstract- Digital image processing has been a significant and important part in the realm of
computing science since its inception. It entails the methods and techniques that are used to
manipulate a digital image using a digital computer. It is a type of signal processing in which the
input and output maybe image or features/characteristics associated with that image. In this age
of advanced technology, digital image processing has its uses manifold, some major fields
being image restoration, medical field, computer vision, color processing, pattern recognition
and video processing. Image inpainting is one such important domain of image processing. It is
a form of image restoration and conservation. This paper presents a comparative study of the
various digital inpainting algorithms provided by Open CV (a popular image processing library)
and also identifies the most effective inpainting algorithm on the basis of Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index (SSIM) and runtime metrics.

Keywords: image processing, openCV, Image Inpainting, Artificial Intelligence, Machine Learning.

GJCST-G Classification:

ComparativeStudyofOpenCVInpaintingAlgorithms

 Strictly as per the compliance and regulations of:

B.2.4

Comparative Study of OpenCV Inpainting
Algorithms

Preeti Chatterjee α, Subhadeep Jana σ & Souradeep Ghosh ρ

Abstract- Digital image processing has been a significant and
important part in the realm of computing science since its
inception. It entails the methods and techniques that are used
to manipulate a digital image using a digital computer. It is a
type of signal processing in which the input and output maybe
image or features/characteristics associated with that image.
In this age of advanced technology, digital image processing
has its uses manifold, some major fields being image
restoration, medical field, computer vision, color processing,
pattern recognition and video processing. Image inpainting is
one such important domain of image processing. It is a form
of image restoration and conservation. This paper presents a
comparative study of the various digital inpainting algorithms
provided by Open CV (a popular image processing library)
and also identifies the most effective inpainting algorithm on
the basis of Peak Signal to Noise Ratio (PSNR), Structural
Similarity Index (SSIM) and runtime metrics.
Keywords: image processing, openCV, Image Inpainting,
Artificial Intelligence, Machine Learning.

I. Introduction

mage processing is the technique of performing
operations on an image to enhance the quality of the
image, extract useful information from it, or

manipulate it for better usage. Digital image processing
techniques are applied in fields of computer vision,
pattern recognition, video processing, image restoration
and image correction [1].

Image restoration [2] and correction entails all
the techniques used to restore a damaged image. It
includes noise removal from the image, correcting a
blurred photo, enhancing an image with defocused
subject, converting a black and white image to color
image, removing stains and unwanted marks from the
image, etc. Image inpainting is one such technique that
falls under image restoration.

Image inpainting [3] is a form of image
restoration and conservation. The technique is generally
used to repair photos with missing areas due to damage
or aging, or mask out unpleasant deformed areas of the
image. The use of inpainting can be traced back to the
1700s when Pietro Edwards, director of the Restoration
of the Public Pictures in Venice, Italy, applied his
scientific methodology to restore and preserve historic
artworks. The modern approach to inpainting was

Author α σ: Government College of Engineering and Ceramic
Technology, Kolkata, India. e-mails: pchatterje105@gmail.com,
jsubhadeep1999@gmail.com
Author ρ: Heritage Institute of Technology, Kolkata, India.
e-mail: jeetsouradeep@gmail.com

established in 1930 during the International Conference
for the Study of Scientific Methods for the Examination
and Preservation of Works of Art. Technological
advancements led to new applications of inpainting.
Since the mid-1990’s, the method of inpainting has
evolved to include digital media. Widespread use of
digital inpainting techniques range from entirely
automatic computerized inpainting to tools used to
simulate the process manually. Digital inpainting
includes the use of software that relies on sophisticated
algorithms to replace lost or corrupted parts of the
image data. There are various advanced inpainting
methodologies [4], namely Partial Differential Equation
(PDE) based inpainting [5], Texture synthesis based
inpainting [6], Hybrid inpainting [7], Example based
inpainting [8] and Deep generative model based
inpainting [9].

In this paper, we have presented a detailed
comparative study of the three inpainting algorithms
natively provided by the Open CV library, and also
stated which is the most effective algorithm out of them.
The paper is structured as follows: Section II contains
the related work done in the past on comparative
analysis of inpainting techniques and algorithms.
Section III contains a brief theory behind the inpainting
algorithms to be discussed. Section IV contains the
details of the comparative study and experimental
setup. Section V presents the results we obtained from
our study and their critical explanations. Section VI
details the possibilities of further work that can be
performed on this topic. Section VII concludes the
paper. We have focused more on the practical analysis
of the three algorithms, and less on the theoretical and
mathematical interpretation of the algorithms.

II. Related Work

The first inpainting algorithm provided by
OpenCV is established on the paper “An Image
Inpainting Technique based on the Fast Marching
method” by Alexandru Telea [10] in 2004. It is based on
the Fast Marching Method. The second inpainting
algorithm provided by OpenCV is established on the
paper “Navier-Stokes, Fluid Dynamics, and Image and
Video Inpainting” by M. Bertalmio et al [11] in 2001. It is
based on fluid dynamics. The third inpainting algorithm
was reviewed in the paper “Demonstration of Rapid
Frequency Selective Reconstruction for Image
Resolution Enhancement” by Nils Genser et al [12] in

I

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

27

 (

)
G

Y
e
a
r

20
21

2017. It is based on the Rapid Frequency Selective
Reconstruction (FSR) method. They applied the
algorithm on Kodak and Tecnick image datasets over
custom error masks and presented the Peak Signal to
Noise Ratio (PSNR), Structural Similarity Index (SSIM)
and runtime metrics. We have used the same metrics for
comparison, explained later in Section IV.

Supriya Chhabra et al [13] presented a critical
analysis of different digital inpainting algorithms for still
images, and also a comparison of the computational
cost of the algorithms. We have considered execution
time and memory consumption as metrics to compare
computational cost between the algorithms. Raluca
Vreja et al [14] published a detailed analytical overview
of five advanced inpainting algorithms and
measurement benchmarks. They emphasized on the
advantages and disadvantages of the used algorithms
and also proposed an improved adaptation of the
Oliviera’s [15] and Hadhoud’s [16] inpainting
algorithms.

Kunti Patel et al [17] presented a study and
analysis of image inpainting algorithms and concluded
that exemplar based techniques are generally more
effective than PDE based or texture synthesis based
techniques. They also extensively listed the merits and
demerits of the algorithms, which makes it easy to

choose for end users without further research. Anupama
Sanjay Awati et al [18] detailed a review of digital image
inpainting algorithms, comparing hybrid techniques
against commonly used ones. K. Singh et al [19]
presented a comparison of patch based inpainting
techniques and proposed an adaptive neighborhood
selection method for efficient patch inpainting.

III. Theory

OpenCV is a library of programming functions
mainly aimed at real-time computer vision. It is a huge
open source library for computer vision, machine
learning, image and video processing tasks. OpenCV is
used in a lot of machine learning problems like face
recognition, object detection, image segmentation, etc.
mainly due to its simple syntax and presence of a large
number of predefined functions and modules.

There are several algorithms present for digital
image inpainting, but OpenCV natively provides three of
them, INPAINT_TELEA, INPAINT_NS and INPAINT_FSR,
which further has two profiles, FSR_FAST and
FSR_BEST. INPAINT_TELEA and INPAINT_NS can be
accessed by the function cv2.inpaint(). INPAINT_FSR
can be accessed by the function cv2.xphoto.inpaint().

Fig. 1: Code to run the inpainting algorithms

This section will contain a brief theory behind
the three inpainting algorithms.

a) INPAINT_TELEA
This algorithm is based on the paper “An Image

Inpainting Technique based on the Fast Marching
method” by Alexandru Telea [10] in 2004. It is based on
the Fast Marching Method (FMM), a solutional paradigm
which builds a solution outwards starting from the
“known information” of a problem. It is a numerical
method created by James Sethian for solving boundary
value problems of the Eikonal equation [20]. A simple
explanation of the working of the algorithm follows,
extracted from the original paper [10].

The first and foremost step in any inpainting
method is to identify the region to be inpainted. There is
the region to be inpainted, also known as the unknown
region and the surrounding known region of the image.

The algorithm first considers the boundary of the
unknown region, which is of infinitesimal width, and
inpaints one pixel lying on the boundary. Then it iterates
over all the pixels lying on the boundary to inpaint the
whole boundary. A single pixel is inpainted as a function
of all other pixels lying in its known neighborhood by
summing the estimates of all pixels, normalized by a
weighting function. A weighting function is necessary as
it ensures the inpainted pixel is influenced more by the
pixels lying close to it and less by the pixels lying far
away. After the boundary has been inpainted, the
algorithm propagates forward towards the center of the
unknown region.

To implement the propagation, the Fast
Marching Method (FMM) is used. FMM ensures the
pixels near the known pixels are inpainted first, so that it
mimics a manual inpainting technique. The FMM’s main

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

28

 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms

advantage is that it explicitly maintains a narrow band
that separates the known from the unknown image area
and specifies which pixel to inpaint next.

b) INPAINT_NS
This algorithm provided by OpenCV is

established on the paper “Navier-Stokes, Fluid
Dynamics, and Image and Video Inpainting” by M.
Bertalmio et al [11] in 2001. This algorithm is based on
fluid dynamics (fluid dynamics is a sub-discipline of fluid
mechanics that describe the flow of fluids: liquids and
gases) and utilizes partial differential equations. The
method involves a direct solution of the Navier-Stokes
equation [21] for an incompressible fluid. A simple
explanation of the working of the algorithm follows,
extracted from the original paper [11].

The basic principle is heuristic. After the user
selects the unknown region, the algorithm first travels
along the edges from known regions to unknown
regions, and automatically transports information into
the inpainting region. The algorithm makes use of
isophotes (a line in a diagram connecting points where
the intensity of light or brightness is the same). The fill-in
is done is such a way that the isophote lines arriving at
the unknown region’s boundary are completed inside,
which allows the smooth continuation of information
towards the center of the unknown region. M. Bertalmio
et al [11] drew an analogy between the image intensity
function of an image and the stream function in a 2D
incompressible fluid, and used techniques from the
computational fluid dynamics to produce an
approximate solution to image inpainting problem.

c) INPAINT_FSR
FSR stands for Rapid Frequency Selective

Reconstruction [12]. It is a high quality signal
extrapolation algorithm. FSR has proven to be very
efficient in the domain of inpainting. The FSR is a
powerful approach to reconstruct and inpaint missing
areas of an image.

The signal of a distorted block is extrapolated
using known samples and already reconstructed pixels
as support. This algorithm iteratively generates a generic
complex valued model of the signal, which
approximates the undistorted samples in the
extrapolation area of a particular size as a weighted
linear combination of Fourier basic function. The Fourier
basic function is a method to smooth out data varying
over a continuum (here the unknown region) and
exhibiting a cyclical trend. An important feature of FSR
algorithm is that the calculations are carried out in the
Fourier domain, which leads to fast implementation.

There are two implementations of the FSR
inpainting algorithm - INPAINT_FSR_FAST and
INPAINT_FSR_BEST. The Fast implementation of FSR
provides a great balance between speed and accuracy,
and the Best implementation mainly focuses on the
accuracy, with speed being slower compared to Fast.

IV. Comparative Study

a) Theoretical Comparison
All the three inpainting algorithms provided by

OpenCV are unique and works on different
methodologies. The similarity between the algorithms is
the inpainting procedure starts with the pixels lying in the
boundary of the unknown region, and slowly propagates
towards the centre of the unknown region. All the three
algorithms are heuristic in nature. The propagation
method used in each is different. TELEA uses the Fast
Marching Method (FMM), NS uses fluid dynamics
equations and FSR extrapolates the pixel values of the
unknown region using known samples.

b) Practical Comparison
For practical comparison of the 3 algorithms,

we ran some code in Python. Our testing setup had the
following specifications:

- CPU : i7-8700K (3.70 GHz)
- RAM : 16 GB (3200 MHz)
- GPU : 8 GB GTX 1080

We took the Kodak image set (which contains
25 uncompressed PNG true colour images of size
768x512 pixels) and four custom error masks for the
dataset. We applied all the inpainting algorithms
individually over each error mask on the images. We
compared the results using four main metrics:

- Peak Signal to Noise Ratio (PSNR): It is the ratio
between the maximum possible power of a signal
and the power of corrupting noise. To estimate the
PSNR of an image, it is necessary to compare the
distorted image to an ideal clean image with the
maximum possible power. PSNR is commonly used
to estimate the efficiency of compressors, filters etc.
A higher value of PSNR suggests an efficient
manipulation method. In our case, we will compute
the PSNR between the original image and the
inpainted image. The Python code to calculate
PSNR is given in Fig 2.

Fig. 2: PSNR code

- Structural Similarity Index (SSIM): It is a perceptual
metric that quantifies image quality degradation
caused due to any kind of manipulation on the
image. It is an improvement over the use of Mean
Squared Error (MSE) to find similarity between
images. In our case, we will compute the SSIM
between the original image and the inpainted
image. A higher value of SSIM suggests the
inpainted image is structurally closer to the original

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

29

 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms

image. The Python code to calculate SSIM is given
in Fig 3.

Fig. 3: SSIM code

- Runtime: It is the total time taken by the algorithm to
complete its task. The Python code to calculate the
runtime is given in Fig 4.

Fig. 4: Runtime code

- Memory: It is the total memory consumed by the
algorithm while completing the task. We use
tracemalloc module, which is a debug tool to trace
memory blocks allocated by Python. We find the
peak memory usage during the working of the
algorithm.

Fig. 5: Memory code

All the values have been taken up to three
decimal places. Apart from the four main metrics, we
also considered two hybrid metrics defined in Section V.
We also curated some custom images for testing of
certain specific cases. The results obtained are given in
the next section, along with their critical explanation.

V. Results and Discussion

a) Kodak image dataset results
There are 19 landscape and 6 portrait oriented

photos in the Kodak image set. We initially made the
custom error masks for landscape orientation, and
rotated them to fit the portrait orientation. We chose
striped masks as the error regions are equally
distributed. The four custom error masks we considered
are:

Fig. 6: Four custom error masks

The white stripes are the areas to be inpainted.
We have displayed the image results for just 1
landscape photo (2 error masks) and 1 portrait photo (2
error masks). These are the following results we
obtained:-

Sample_1 (Landscape)
The original, distorted and 4 inpainted results of

the first image sample over the first error mask are given
in Fig 7.

Fig. 7: First image sample results over first error mask

The metric values calculated for the first image
sample over the first error mask are given in Table 1.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

30

 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms

Table 1: First image sample metrics over first error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 27.218 26.713 26.612 26.315
SSIM 0.889 0.889 0.887 0.884

Runtime [s] 5.349 96.199 1.089 1.085
Memory

[MB]
1.339 1.339 1.339 1.339

The original, distorted and 4 in painted results
of the first image sample over the second error mask
are given in Fig 8.

Fig. 8: First image sample results over second error
mask

The metric values calculated for the first image
sample over the second error mask are given in Table 2.

Table 2: First image sample metrics over second error
mask

FSR

TELEA NS
Fast Best

PSNR [dB] 34.577 34.764 30.556 30.689
SSIM 0.974 0.975 0.950 0.952

Runtime [s] 2.887 35.132 1.049 1.047
Memory [MB] 1.339 1.339 1.339 1.339

We have not given the image results for the
third and fourth error masks, only the metric values. The
metric values calculated for the first image sample over
the third error mask are given in Table 3.

Table 3: First image sample metrics over third error
mask

FSR

TELEA NS
Fast Best

PSNR [dB] 27.143 27.229 27.096 26.796
SSIM 0.890 0.892 0.888 0.883

Runtime [s] 5.210 97.800 1.091 1.091
Memory [MB] 1.339 1.339 1.339 1.339

The metric values calculated for the first image
sample over the fourth error mask are given in Table 4.

Table 4: First image sample metrics over fourth error
mask

FSR

TELEA NS
Fast Best

PSNR [dB] 34.788 34.897 30.709 31.209
SSIM 0.975 0.976 0.952 0.955

Runtime [s] 3.114 39.762 1.055 1.049
Memory [MB] 1.339 1.339 1.339 1.339

Sample_2 (Portrait)
For portrait images, the error masks have been

rotated 90 degree clockwise to fit the orientation. Given
are the original, distorted and 4 in painted results of the
second image sample over the first error mask in Fig 9.

Fig. 9: Second image sample results over first

error mask

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

31

 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms

The metric values calculated for the second
image sample over the first error mask are given in
Table 5.

Table 5: Second image sample metrics over first error
mask

FSR

TELEA NS
Fast Best

PSNR [dB] 31.739 32.738 31.398 31.133
SSIM 0.936 0.941 0.934 0.932

Runtime [s] 4.574 65.644 1.092 1.088
Memory

[MB]
1.339 1.339 1.339 1.339

The original, distorted and 4 in painted results
of the second image sample over the second error
mask are given in Fig 10.

Fig. 10: Second image sample results over second
error mask

The metric values calculated for the second
image sample over the first error mask are given in
Table 6.

Table 6: Second image sample metrics over second
error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 39.632 39.673 36.063 35.106
SSIM 0.983 0.983 0.972 0.971

Runtime [s] 2.568 23.655 1.044 1.052

Memory [MB] 1.339 1.339 1.339 1.339

We have not given the image results for the
third and fourth error masks, only the metric values. The
metric values calculated for the second image sample
over the third error mask are given in Table 7.

Table 7: Second image sample metrics over third
error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 32.105 31.834 30.596 30.268
SSIM 0.933 0.936 0.929 0.927

Runtime [s] 4.334 67.520 1.089 1.085
Memory [MB] 1.339 1.339 1.339 1.339

The metric values calculated for the second
image sample over the fourth error mask are given in
Table 8.

Table 8: Second image sample metrics over fourth
error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 39.689 39.532 37.029 37.092
SSIM 0.985 0.985 0.975 0.975

Runtime [s] 2.634 25.407 1.056 1.057
Memory [MB] 1.339 1.339 1.339 1.339

We applied the in painting algorithms to all the
25 images present in the dataset. The average metric
values for first, second, third and fourth error masks are
given in tables 9,10,11,12 respectively.

 Average metric values for first error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 29.719 30.017 29.145 28.891
SSIM 0.929 0.932 0.925 0.923

Runtime [s] 4.346 72.229 1.089 1.091

Memory [MB] 1.339 1.339 1.339 1.339

Table 10: Average metric values for second error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 34.002 37.734 33.421 33.406
SSIM 0.952 0.983 0.968 0.969

Runtime [s] 3.546 27.488 1.047 1.048
Memory [MB] 1.339 1.339 1.339 1.339

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

32

 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms

Table 9:

 Average metric values for third error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 28.948 29.143 28.602 28.376
SSIM 0.925 0.927 0.922 0.920

Runtime [s] 4.282 73.604 1.095 1.093
Memory [MB] 1.339 1.339 1.339 1.339

Table 12: Average metric values for fourth error mask

FSR

TELEA NS
Fast Best

PSNR [dB] 37.831 38.039 34.088 33.958
SSIM 0.983 0.984 0.970 0.969

Runtime [s] 2.725 31.751 1.052 1.051
Memory [MB] 1.339 1.339 1.339 1.339

Generally speaking, lower memory
consumption and runtime values mean a better
algorithm. For other metrics, the higher the PSNR and
SSIM value, the better the algorithm. The average
memory consumption, as seen from Table 9,10,11,12 is
same for any mask on any image for any algorithm for
the particular dataset. Hence we will not consider it as a
factor for deciding the most efficient algorithm. We have
defined two hybrid metrics X and Y for deciding which
algorithm is most efficient based on our data. Metric X is
directly proportional to PSNR, directly proportional to
SSIM and inversely proportional to Runtime value:

X α PSNR
X α SSIM

X α (1/Runtime)

Combining all three above equations we get:

X α (PSNR * SSIM)/Runtime
X = k * ((PSNR * SSIM)/Runtime)

where k is a constant, taken to be 1 for comparison
purposes. Hence

X = (PSNR * SSIM)/Runtime

A high value of metric X means an effective
algorithm. We used the values obtained in Table
9,10,11,12 and calculated metric X values for the four
error masks. The values are given in Table 13.

Table 13:

X metric values for four error masks

 FSR

TELEA

NS

Fast

Best

1st Error Mask

6.353

0.387

24.756

24.442

2nd Error Mask

9.129

1.349

30.899

30.888

3rd Error Mask

6.253

0.367

24.083

23.885

4th Error Mask

13.647

1.179

31.431

31.309

From Table 13, we can see that TELEA
algorithm gets the highest value in all four error masks.
Hence, TELEA is the most efficient in

painting algorithm

when we consider metric X to be the comparison metric.

But as we can infer from the definition of metric X, it has
the runtime factor associated with it. Runtime is an
important factor for analysing algorithms, but can be
subjective at times to different end users. Some users
may have a time constraint, some users may not. Hence
we need to define such a metric which does not include
the runtime factor. Therefore, we define metric Y. Metric
Y is directly proportional to PSNR and directly
proportional to SSIM value:

Y α PSNR
Y α SSIM

Combining all two above equations we get:

Y α PSNR * SSIM
Y = k * (PSNR * SSIM)

where k is a constant, taken to be 1 for comparison
purposes. Hence

Y = PSNR * SSIM

A high value of metric Y means an effective
algorithm, without taking the runtime factor into account.
Similarly, we used the values in Table 9,10,11,12 and
calculated metric Y values for the four error masks. The
values are given in Table 14.

Table 14: Y metric values for four error masks

 FSR
TELEA NS

Fast Best

1st Error Mask 27.609 27.976 26.959 26.666
2nd Error Mask 32.369 37.093 32.352 32.370
3rd Error Mask 26.779 27.016 26.371 26.106
4th Error Mask 37.188 37.430 33.065 32.905

From Table 14, we can see that FSR_BEST
algorithm gets the highest value in all four error masks.
Hence, FSR_BEST is the most efficient inpainting
algorithm when we consider metric Y to be the
comparison metric, which does not take the runtime
factor into account.

Summing up our observation and results for the
Kodak image dataset, we can say that the most efficient
inpainting algorithm when runtime is a constraint is
TELEA algorithm and the most efficient inpainting
algorithm when runtime is not a constraint is FSR_BEST
algorithm.

b) Edge inpainting results
The inpainting algorithms produce very different

results when working on edges. To compare the
working, we have chosen an image which has clear
distinct foreground and background. We distorted a part
of the edge, and applied the inpainting algorithms to it.
The image results are given in Fig 11, and metric values
are given in Table 15.

As we can see from the results, TELEA has the
highest value for X metric. That is if we consider runtime
to be a factor, TELEA is the most efficient algorithm. But
FSR_BEST has the highest value for Y metric, i.e. if we

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

33

 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms

Table 11:

do not consider runtime to be a factor, then FSR_BEST
is the most efficient algorithm for edge inpainting. We
can also see from the image results that FSR_BEST
produces the most believable result, but also has the
largest runtime. TELEA and NS do a decent job in filling
up the edges and maintaining the edge difference. But
still some parts are hazed and distorted. FSR_FAST
does the worst job, mainly because it trades off
accuracy for runtime, and the result is bad.

Table 15: Metric values for edge inpainting

FSR

TELEA NS
Fast Best

PSNR [dB] 35.249 43.100 38.577 37.973
SSIM 0.995 0.996 0.994 0.994

Runtime [s] 1.642 21.282 1.028 1.023
Memory [MB] 2.079 2.079 2.079 2.079

X 21.359 2.017 37.301 36.897
Y 35.073 42.928 38.346 37.745

Fig. 11: Edge inpainting sample results

c) Pattern inpainting results
The inpainting algorithms produce very different

results when working on patterns. To compare the
working, we have chosen a checkerboard image as it is
the easiest pattern to replicate. We distorted a part of
the image in the centre, and applied the inpainting
algorithms to it. The image results are given in Fig 12,
and metric values are given in Table 16.

As we can see from the image results, none of
the inpainting algorithms can replicate the pattern in the

unknown region, which is understandable because the
inpainting algorithms are focused on filling up the
unknown region progressively based on information
from the nearest known region. They work on the small
scale spatial influences. In order to inpaint a pattern, the
algorithm must work over a broad range of the known
region to understand the dynamics of the pattern. An
exemplar based inpainting or patch based inpainting
method can work for pattern inpainting.

Comparing the metric values, TELEA has the
highest X value and FSR_BEST has the highest Y value.
From the image results, TELEA still does a decent job of
producing an arbitrary pattern, while FSR_BEST fills the
whole unknown region with a singular colour. Hence, no
algorithm provided by OpenCV is perfectly suitable for
inpainting a pattern, but TELEA can be used as a last
resort.

Table 16: Metric values for pattern inpainting

 FSR TELEA NS
Fast Best

PSNR [dB] 20.094 21.881 19.017 18.872
SSIM 0.959 0.964 0.962 0.958

Runtime [s] 2.827 60.066 1.051 1.047
Memory [MB] 1.188 1.188 1.188 1.188

X 6.816 0.351 17.407 17.268
Y 19.270 21.093 18.294 18.079

Fig. 12: Pattern inpainting sample results

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

34

 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms

d) Text error mask inpainting results
We also tested the working of the inpainting

algorithms on a custom text error mask. We took an
image from the Kodak dataset and wrote some random
text on it as error regions, then applied the algorithms on
it. The image results are given in Fig 13, and metric
values are given in Table 17.

Comparing the metric values, NS has the
highest X value and FSR_BEST has the highest Y value.
All the algorithms work decent, but from the image
results we can see that TELEA and NS have some
distortions near the fence area, while FSR_FAST and
FSR_BEST have inpainted smoothly in that area. If
runtime is a constraint, then NS is the most effective
algorithm to be used. Although, TELEA can also be
used as it produces very similar results to NS. If runtime
is not a constraint, then FSR_BEST is the most effective
choice for text error mask inpainting.

Table 17: Metric values for text error mask inpainting

 FSR
TELEA

NS

Fast Best

PSNR [dB] 45.019 45.497 30.784 31.571
SSIM 0.995 0.996 0.962 0.967

Runtime [s] 4.019 36.729 2.659 2.133
Memory [MB] 1.339 1.339 1.339 1.339

X 11.146 1.234 11.137 14.313
Y 44.794 45.315 29.614 30.529

Fig. 13: Text error mask inpainting sample results

e) Monochromatic image inpainting results
We tested the working of the inpainting

algorithms on a monochromatic image. We took an
image from the Kodak dataset and converted it into
monochrome and used a spiral error mask on it. The
image results are given in Fig 14, and metric values are
given in Table 18.

Comparing the metric values, NS has the
highest X value and FSR_BEST has the highest Y value.
All the algorithms work decent, but from the image
results, we see that TELEA and NS have some
distortions near the beak of the bird, while FSR_FAST
and FSR_BEST have inpainted smoothly in that area. If
runtime is a constraint, then NS is the most effective
algorithm to be used. Although, TELEA can also be
used as it produces very similar results to NS. If runtime
is not a constraint, then FSR_BEST is the most effective
choice for monochromatic image inpainting.

Table 18: Metric values for monochrome image
inpainting

 FSR
TELEA

NS

Fast Best

PSNR [dB] 45.649 46.040 36.509 36.417
SSIM 0.997 0.998 0.987 0.988

Runtime [s] 1.744 13.549 1.163 1.097

Memory [MB] 1.339 1.339 1.339 1.339
X 26.096 3.391 30.984 32.799
Y 45.512 45.948 36.034 35.979

Fig. 14: Monochromatic image inpainting sample results

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

35

 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms

f) Discussions
Summing up our observations and results for

the Kodak image dataset and other specific cases, we
can say that the TELEA inpainting algorithm is the most
efficient algorithm if runtime is a constraint i.e. the user
needs to perform the inpainting operation as fast as he
can and produce the best results. On the other hand,
FSR_BEST inpainting algorithm is the most efficient
algorithm if runtime is not a constraint i.e. the user has
no time limit for the inpainting operation and wants to
get the best result. The average memory consumption
for all the inpainting algorithms are modest, hence
memory will hardly be an issue in any system while
running the Open CV inpainting algorithms.

Table 19: Final results

 With runtime as
a constraint

Without runtime as
a constraint

Most effective
OpenCV

inpainting
algorithm

TELEA algorithm

FSR_BEST
algorithm

VI. Future Scope

Our inpainting comparison study was done on
the Kodak image dataset, a relatively small dataset
containing 25 images only. The study can be done on a
larger, more robust dataset which contains variety of
images. This can be done to get more extensive results.
We compared our results on the basis of four metrics
only; more intricate metrics may be defined for the
testing. Our study can be a base for analysing how
various OpenCV inpainting methods work on images
with different colour profiles.

We ran tests using four custom error masks.
The error masks considered were mostly linear in shape.
Other type of error masks such as curved, mixture of
linear and curved can be taken for testing. This study
can be a base for a comprehensive study on video
inpainting techniques, which would be beneficial for
people looking to work in this field.

VII. Conclusion

In conclusion, we present a comparative study
of the various OpenCV inpainting algorithms, focusing
extensively on their practical uses. The purpose of this
paper is to apprise new users and researchers of the
most efficient inpainting algorithm provided by OpenCV:
TELEA algorithm for time constrained operations and
FSR_BEST algorithm for non time constrained
operations. We present the most efficient OpenCV
inpainting algorithm to be used for various scenarios,
which can help a beginner at inpainting to make his
decision wisely without any further research. This study
can be a base for more detailed comparative works on
image and video inpainting. Inpainting is an evolving
domain of image processing with major strides being

made in the past, and much more sophisticated
algorithms yet to arrive. It opens up the doorway for new
image processing researchers to better the existing
algorithms and create finer advanced inpainting
algorithms which achieve near perfect accuracy.

References Références Referencias

1. R. S. Hegadi, “Image Processing: Research
Opportunities and Challenges”, In the Proceedings
of National Seminar on Research in Computers,
2010.

2. R. Farhan, “A Review on Some Methods used in
Image Restoration”, International Multidisciplinary
Research Journal, Vol. 10, pp.13-16, 2020.

3. O. Elharrous, N. Almaadeed, S. Al-Maadeed, Y.
Akbari “Image inpainting: A review”, Neural
Processing Letters, Vol. 51, pp.2007-2028, 2019.

4. A. Beniwal, D. Ahlawat, “Image Inpainting
Algorithms: A Survey”, International Journal of
Recent Research Aspects, Vol. 3/Issue 2, pp.165-
169, 2016.

5. F. Zhang, Y. Chen, Z. Xiao, L. Geng, J. Wu, T. Feng,
P. Liu, Y. Tan, J. Wang, “Partial Differential Equation
Inpainting Method Based on Image
Characteristics”, Image and Graphics: Lecture
Notes in Computer Science, Vol. 9219, pp.11-19,
2015.

6. T. Zhou, B. Johnson, R. Li, “Patch-based Texture
Synthesis for Image Inpainting”, arXiv: 1605.
01576v1, 2016.

7. Sreelakshmy I J, B. C. Kovoor, “A Hybrid Inpainting
Model Combining Diffusion and Enhanced Exemplar
Methods”, Journal of Data and Information Quality,
Vol. 13/Issue 3, pp.1-17, 2021.

8. S. R. Gaonkar, P. D. Hire, P. S. Pimple, Y. R. Kotwal,
B. A. Ahire, “Image Inpainting using Robust
Exemplar-based Technique”, International Journal of
Computer Sciences and Engineering, Vol. 2/Issue 4,
pp.176-179, 2014.

9. J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, T. S. Huang,
“Generative Image Inpainting with Contextual
Attention”, In the Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 2018.

10. A. Telea, “An Image Inpainting Technique Based on
the Fast Marching Method”, Journal of Graphics
Tools, Vol. 9/Issue 1, pp.23-34, 2004.

11. M. Bertalmio, A. L. Bertozzi, G. Sapiro, “Navier-
Stokes, Fluid Dynamics, and Image and Video
Inpainting”, In the Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2001.

12. N. Genser, J. Seiler, M. Jonscher, A. Kaur,
“Demonstration of Rapid Frequency Selective
Reconstruction for Image Resolution Enhancement”,
In the Proceedings of IEEE International Conference
on Image Processing, 2017.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

36

 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms

13. S. Chhabra, R. Lalit, S. Saxena, “An Analytical Study
of Different Image Inpainting Techniques”, Indian
Journal of Computer Science and Engineering, Vol.
3/Issue 3, pp.487-491, 2012.

14. R. Vreja, R. Brad, “Image Inpainting Methods
Evaluation and Improvement”, The Scientific World
Journal, Vol. 2014, 2014.

15. M. M. Oliveira, B. Bowen, R. McKenna, Y. Chang,
“Fast Digital Image Inpainting”, In the Proceedings
of International Conference on Visualization,
Imaging and Image Processing, 2001.

16. M. M. Hadhoud, K. A. Moustafa, S. Shenoda,
“Digital Images Inpainting using Modified
Convolution Based Method”, In Optical Pattern
Recognition XX, Vol. 7340 of Proceedings of the
SPIE, 2009.

17. K. Patel, A. Yerpude, “Study and Analysis of Image
Inpainting Algorithms”, International Journal of
Engineering Research and Technology, Vol. 3/Issue
20, pp.1-5, 2015.

18. A. S. Awati, M. R. Patil, “Review of Digital Image
Inpainting Algorithms”, International Journal of Latest
Trends in Engineering and Technology, pp.36-41,
2013.

19. K. Singh, J. Shaveta, “A Review on Patch Based
Image Restoration or Inpainting”, International
Journal of Computer Sciences and Engineering, Vol.
5/Issue 3, pp.119-123, 2017.

20. J. A. Sethian, “Fast Marching Methods”, SIAM
Review, Vol. 41/Issue 2, pp.199-235, 1999.

21. S. Algazin, “Numerical Study of Navier-Stokes
equations”, Journal of Applied Mechanics and
Technical Physics, Vol. 48/Issue 5, pp.656-663,
2007.

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
II

V
er
sio

n
I

37

 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms

	Comparative Study of OpenCV Inpainting Algorithms
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Theory
	a) INPAINT_TELEA
	b) INPAINT_NS
	c) INPAINT_FSR

	IV. Comparative Study
	a) Theoretical Comparison
	b) Practical Comparison

	V. Results and Discussion
	a) Kodak image dataset results
	b) Edge inpainting results
	c) Pattern inpainting results
	d) Text error mask inpainting results
	e) Monochromatic image inpainting results
	f) Discussions

	VI. Future Scope
	VII. Conclusion
	References Références Referencias

