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Comparative Study of OpenCV Inpainting 
Algorithms 

Preeti Chatterjee α, Subhadeep Jana σ & Souradeep Ghosh ρ

Abstract- Digital image processing has been a significant and 
important part in the realm of computing science since its 
inception. It entails the methods and techniques that are used 
to manipulate a digital image using a digital computer. It is a 
type of signal processing in which the input and output maybe 
image or features/characteristics associated with that image. 
In this age of advanced technology, digital image processing 
has its uses manifold, some major fields being image 
restoration, medical field, computer vision, color processing, 
pattern recognition and video processing. Image inpainting is 
one such important domain of image processing. It is a form 
of image restoration and conservation. This paper presents a 
comparative study of the various digital inpainting algorithms 
provided by Open CV (a popular image processing library) 
and also identifies the most effective inpainting algorithm on 
the basis of Peak Signal to Noise Ratio (PSNR), Structural 
Similarity Index (SSIM) and runtime metrics. 
Keywords: image processing, openCV, Image Inpainting, 
Artificial Intelligence, Machine Learning. 

I. Introduction 

mage processing is the technique of performing 
operations on an image to enhance the quality of the 
image, extract useful information from it, or 

manipulate it for better usage. Digital image processing 
techniques are applied in fields of computer vision, 
pattern recognition, video processing, image restoration 
and image correction [1].  

Image restoration [2] and correction entails all 
the techniques used to restore a damaged image. It 
includes noise removal from the image, correcting a 
blurred photo, enhancing an image with defocused 
subject, converting a black and white image to color 
image, removing stains and unwanted marks from the 
image, etc. Image inpainting is one such technique that 
falls under image restoration.  

Image inpainting [3] is a form of image 
restoration and conservation. The technique is generally 
used to repair photos with missing areas due to damage 
or aging, or mask out unpleasant deformed areas of the 
image. The use of inpainting can be traced back to the 
1700s when Pietro Edwards, director of the Restoration 
of the Public Pictures in Venice, Italy, applied his 
scientific methodology to restore and preserve historic 
artworks.  The   modern   approach   to   inpainting   was 
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established in 1930 during the International Conference 
for the Study of Scientific Methods for the Examination 
and Preservation of Works of Art. Technological 
advancements led to new applications of inpainting. 
Since the mid-1990’s, the method of inpainting has 
evolved to include digital media. Widespread use of 
digital inpainting techniques range from entirely 
automatic computerized inpainting to tools used to 
simulate the process manually. Digital inpainting 
includes the use of software that relies on sophisticated 
algorithms to replace lost or corrupted parts of the 
image data. There are various advanced inpainting 
methodologies [4], namely Partial Differential Equation 
(PDE) based inpainting [5], Texture synthesis based 
inpainting [6], Hybrid inpainting [7], Example based 
inpainting [8] and Deep generative model based 
inpainting [9]. 

In this paper, we have presented a detailed 
comparative study of the three inpainting algorithms 
natively provided by the Open CV library, and also 
stated which is the most effective algorithm out of them. 
The paper is structured as follows: Section II contains 
the related work done in the past on comparative 
analysis of inpainting techniques and algorithms. 
Section III contains a brief theory behind the inpainting 
algorithms to be discussed. Section IV contains the 
details of the comparative study and experimental 
setup. Section V presents the results we obtained from 
our study and their critical explanations. Section VI 
details the possibilities of further work that can be 
performed on this topic. Section VII concludes the 
paper. We have focused more on the practical analysis 
of the three algorithms, and less on the theoretical and 
mathematical interpretation of the algorithms. 

II. Related Work 

The first inpainting algorithm provided by 
OpenCV is established on the paper “An Image 
Inpainting Technique based on the Fast Marching 
method” by Alexandru Telea [10] in 2004. It is based on 
the Fast Marching Method. The second inpainting 
algorithm provided by OpenCV is established on the 
paper “Navier-Stokes, Fluid Dynamics, and Image and 
Video Inpainting” by M. Bertalmio et al [11] in 2001. It is 
based on fluid dynamics. The third inpainting algorithm 
was reviewed in the paper “Demonstration of Rapid 
Frequency Selective Reconstruction for Image 
Resolution Enhancement” by Nils Genser et al [12] in 
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2017. It is based on the Rapid Frequency Selective 
Reconstruction (FSR) method. They applied the 
algorithm on Kodak and Tecnick image datasets over 
custom error masks and presented the Peak Signal to 
Noise Ratio (PSNR), Structural Similarity Index (SSIM) 
and runtime metrics. We have used the same metrics for 
comparison, explained later in Section IV.  

Supriya Chhabra et al [13] presented a critical 
analysis of different digital inpainting algorithms for still 
images, and also a comparison of the computational 
cost of the algorithms. We have considered execution 
time and memory consumption as metrics to compare 
computational cost between the algorithms. Raluca 
Vreja et al [14] published a detailed analytical overview 
of five advanced inpainting algorithms and 
measurement benchmarks. They emphasized on the 
advantages and disadvantages of the used algorithms 
and also proposed an improved adaptation of the 
Oliviera’s [15] and Hadhoud’s [16] inpainting 
algorithms.  

Kunti Patel et al [17] presented a study and 
analysis of image inpainting algorithms and concluded 
that exemplar based techniques are generally more 
effective than PDE based or texture synthesis based 
techniques. They also extensively listed the merits and 
demerits of the algorithms, which makes it easy to 

choose for end users without further research. Anupama 
Sanjay Awati et al [18] detailed a review of digital image 
inpainting algorithms, comparing hybrid techniques 
against commonly used ones. K. Singh et al [19] 
presented a comparison of patch based inpainting 
techniques and proposed an adaptive neighborhood 
selection method for efficient patch inpainting. 

III. Theory 

OpenCV is a library of programming functions 
mainly aimed at real-time computer vision. It is a huge 
open source library for computer vision, machine 
learning, image and video processing tasks. OpenCV is 
used in a lot of machine learning problems like face 
recognition, object detection, image segmentation, etc. 
mainly due to its simple syntax and presence of a large 
number of predefined functions and modules. 

There are several algorithms present for digital 
image inpainting, but OpenCV natively provides three of 
them, INPAINT_TELEA, INPAINT_NS and INPAINT_FSR, 
which further has two profiles, FSR_FAST and 
FSR_BEST. INPAINT_TELEA and INPAINT_NS can be 
accessed by the function cv2.inpaint(). INPAINT_FSR 
can be accessed by the function cv2.xphoto.inpaint(). 

 

Fig. 1: Code to run the inpainting algorithms 

This section will contain a brief theory behind 
the three inpainting algorithms. 

a) INPAINT_TELEA 
This algorithm is based on the paper “An Image 

Inpainting Technique based on the Fast Marching 
method” by Alexandru Telea [10] in 2004. It is based on 
the Fast Marching Method (FMM), a solutional paradigm 
which builds a solution outwards starting from the 
“known information” of a problem. It is a numerical 
method created by James Sethian for solving boundary 
value problems of the Eikonal equation [20]. A simple 
explanation of the working of the algorithm follows, 
extracted from the original paper [10]. 

The first and foremost step in any inpainting 
method is to identify the region to be inpainted. There is 
the region to be inpainted, also known as the unknown 
region and the surrounding known region of the image. 

The algorithm first considers the boundary of the 
unknown region, which is of infinitesimal width, and 
inpaints one pixel lying on the boundary. Then it iterates 
over all the pixels lying on the boundary to inpaint the 
whole boundary. A single pixel is inpainted as a function 
of all other pixels lying in its known neighborhood by 
summing the estimates of all pixels, normalized by a 
weighting function. A weighting function is necessary as 
it ensures the inpainted pixel is influenced more by the 
pixels lying close to it and less by the pixels lying far 
away. After the boundary has been inpainted, the 
algorithm propagates forward towards the center of the 
unknown region.  

To implement the propagation, the Fast 
Marching Method (FMM) is used. FMM ensures the 
pixels near the known pixels are inpainted first, so that it 
mimics a manual inpainting technique. The FMM’s main 
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advantage is that it explicitly maintains a narrow band 
that separates the known from the unknown image area 
and specifies which pixel to inpaint next.     

b) INPAINT_NS 
This algorithm provided by OpenCV is 

established on the paper “Navier-Stokes, Fluid 
Dynamics, and Image and Video Inpainting” by M. 
Bertalmio et al [11] in 2001. This algorithm is based on 
fluid dynamics (fluid dynamics is a sub-discipline of fluid 
mechanics that describe the flow of fluids: liquids and 
gases) and utilizes partial differential equations. The 
method involves a direct solution of the Navier-Stokes 
equation [21] for an incompressible fluid. A simple 
explanation of the working of the algorithm follows, 
extracted from the original paper [11]. 

The basic principle is heuristic. After the user 
selects the unknown region, the algorithm first travels 
along the edges from known regions to unknown 
regions, and automatically transports information into 
the inpainting region. The algorithm makes use of 
isophotes (a line in a diagram connecting points where 
the intensity of light or brightness is the same). The fill-in 
is done is such a way that the isophote lines arriving at 
the unknown region’s boundary are completed inside, 
which allows the smooth continuation of information 
towards the center of the unknown region. M. Bertalmio 
et al [11] drew an analogy between the image intensity 
function of an image and the stream function in a 2D 
incompressible fluid, and used techniques from the 
computational fluid dynamics to produce an 
approximate solution to image inpainting problem.     

c) INPAINT_FSR 
FSR stands for Rapid Frequency Selective 

Reconstruction [12]. It is a high quality signal 
extrapolation algorithm. FSR has proven to be very 
efficient in the domain of inpainting. The FSR is a 
powerful approach to reconstruct and inpaint missing 
areas of an image. 

The signal of a distorted block is extrapolated 
using known samples and already reconstructed pixels 
as support. This algorithm iteratively generates a generic 
complex valued model of the signal, which 
approximates the undistorted samples in the 
extrapolation area of a particular size as a weighted 
linear combination of Fourier basic function. The Fourier 
basic function is a method to smooth out data varying 
over a continuum (here the unknown region) and 
exhibiting a cyclical trend. An important feature of FSR 
algorithm is that the calculations are carried out in the 
Fourier domain, which leads to fast implementation.  

There are two implementations of the FSR 
inpainting algorithm - INPAINT_FSR_FAST and 
INPAINT_FSR_BEST. The Fast implementation of FSR 
provides a great balance between speed and accuracy, 
and the Best implementation mainly focuses on the 
accuracy, with speed being slower compared to Fast.  

IV. Comparative Study 

a) Theoretical Comparison 
All the three inpainting algorithms provided by 

OpenCV are unique and works on different 
methodologies. The similarity between the algorithms is 
the inpainting procedure starts with the pixels lying in the 
boundary of the unknown region, and slowly propagates 
towards the centre of the unknown region. All the three 
algorithms are heuristic in nature. The propagation 
method used in each is different. TELEA uses the Fast 
Marching Method (FMM), NS uses fluid dynamics 
equations and FSR extrapolates the pixel values of the 
unknown region using known samples.   

b) Practical Comparison 
For practical comparison of the 3 algorithms, 

we ran some code in Python. Our testing setup had the 
following specifications: 

- CPU : i7-8700K (3.70 GHz) 
- RAM : 16 GB (3200 MHz) 
- GPU : 8 GB GTX 1080 

We took the Kodak image set (which contains 
25 uncompressed PNG true colour images of size 
768x512 pixels) and four custom error masks for the 
dataset. We applied all the inpainting algorithms 
individually over each error mask on the images. We 
compared the results using four main metrics: 

- Peak Signal to Noise Ratio (PSNR): It is the ratio 
between the maximum possible power of a signal 
and the power of corrupting noise. To estimate the 
PSNR of an image, it is necessary to compare the 
distorted image to an ideal clean image with the 
maximum possible power. PSNR is commonly used 
to estimate the efficiency of compressors, filters etc. 
A higher value of PSNR suggests an efficient 
manipulation method. In our case, we will compute 
the PSNR between the original image and the 
inpainted image. The Python code to calculate 
PSNR is given in Fig 2. 

 

Fig. 2: PSNR code 

- Structural Similarity Index (SSIM): It is a perceptual 
metric that quantifies image quality degradation 
caused due to any kind of manipulation on the 
image. It is an improvement over the use of Mean 
Squared Error (MSE) to find similarity between 
images. In our case, we will compute the SSIM 
between the original image and the inpainted 
image. A higher value of SSIM suggests the 
inpainted image is structurally closer to the original 
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image. The Python code to calculate SSIM is given 
in Fig 3.  

 

Fig. 3: SSIM code 

- Runtime: It is the total time taken by the algorithm to 
complete its task. The Python code to calculate the 
runtime is given in Fig 4. 

 

Fig. 4: Runtime code 

- Memory: It is the total memory consumed by the 
algorithm while completing the task. We use 
tracemalloc module, which is a debug tool to trace 
memory blocks allocated by Python. We find the 
peak memory usage during the working of the 
algorithm.  

 

Fig. 5: Memory code 

All the values have been taken up to three 
decimal places. Apart from the four main metrics, we 
also considered two hybrid metrics defined in Section V. 
We also curated some custom images for testing of 
certain specific cases. The results obtained are given in 
the next section, along with their critical explanation.  

V. Results and Discussion 

a) Kodak image dataset results 
There are 19 landscape and 6 portrait oriented 

photos in the Kodak image set. We initially made the 
custom error masks for landscape orientation, and 
rotated them to fit the portrait orientation. We chose 
striped masks as the error regions are equally 
distributed. The four custom error masks we considered 
are: 

 

Fig. 6: Four custom error masks 

The white stripes are the areas to be inpainted. 
We have displayed the image results for just 1 
landscape photo (2 error masks) and 1 portrait photo (2 
error masks). These are the following results we 
obtained:- 

Sample_1 (Landscape) 
The original, distorted and 4 inpainted results of 

the first image sample over the first error mask are given 
in Fig 7. 

 

Fig. 7: First image sample results over first error mask 

The metric values calculated for the first image 
sample over the first error mask are given in Table 1. 
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Table 1: First image sample metrics over first error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 27.218 26.713 26.612 26.315 
SSIM 0.889 0.889 0.887 0.884 

Runtime [s] 5.349 96.199 1.089 1.085 
Memory 

[MB] 
1.339 1.339 1.339 1.339 

The original, distorted and 4 in painted results 
of the first image sample over the second error mask 
are given in Fig 8. 

 

Fig. 8: First image sample results over second error 
mask 

The metric values calculated for the first image 
sample over the second error mask are given in Table 2. 

Table 2: First image sample metrics over second error 
mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 34.577 34.764 30.556 30.689 
SSIM 0.974 0.975 0.950 0.952 

Runtime [s] 2.887 35.132 1.049 1.047 
Memory [MB] 1.339 1.339 1.339 1.339 

We have not given the image results for the 
third and fourth error masks, only the metric values. The 
metric values calculated for the first image sample over 
the third error mask are given in Table 3. 
 

Table 3: First image sample metrics over third error 
mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 27.143 27.229 27.096 26.796 
SSIM 0.890 0.892 0.888 0.883 

Runtime [s] 5.210 97.800 1.091 1.091 
Memory [MB] 1.339 1.339 1.339 1.339 

The metric values calculated for the first image 
sample over the fourth error mask are given in Table 4. 

Table 4: First image sample metrics over fourth error 
mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 34.788 34.897 30.709 31.209 
SSIM 0.975 0.976 0.952 0.955 

Runtime [s] 3.114 39.762 1.055 1.049 
Memory [MB] 1.339 1.339 1.339 1.339 

Sample_2 (Portrait) 
For portrait images, the error masks have been 

rotated 90 degree clockwise to fit the orientation. Given 
are the original, distorted and 4 in painted results of the 
second image sample over the first error mask in Fig 9. 

 
Fig. 9: Second image sample results over first           

error mask 
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The metric values calculated for the second 
image sample over the first error mask are given in 
Table 5. 

Table 5: Second image sample metrics over first error 
mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 31.739 32.738 31.398 31.133 
SSIM 0.936 0.941 0.934 0.932 

Runtime [s] 4.574 65.644 1.092 1.088 
Memory 

[MB] 
1.339 1.339 1.339 1.339 

The original, distorted and 4 in painted results 
of the second image sample over the second error 
mask are given in Fig 10. 

 

Fig. 10: Second image sample results over second  
error mask 

The metric values calculated for the second 
image sample over the first error mask are given in 
Table 6.   

Table 6: Second image sample metrics over second 
error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 39.632 39.673 36.063 35.106 
SSIM 0.983 0.983 0.972 0.971 

Runtime [s] 2.568 23.655 1.044 1.052 

Memory [MB] 1.339 1.339 1.339 1.339 

We have not given the image results for the 
third and fourth error masks, only the metric values. The 
metric values calculated for the second image sample 
over the third error mask are given in Table 7. 

Table 7: Second image sample metrics over third           
error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 32.105 31.834 30.596 30.268 
SSIM 0.933 0.936 0.929 0.927 

Runtime [s] 4.334 67.520 1.089 1.085 
Memory [MB] 1.339 1.339 1.339 1.339 

The metric values calculated for the second 
image sample over the fourth error mask are given in 
Table 8. 

Table 8: Second image sample metrics over fourth   
error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 39.689 39.532 37.029 37.092 
SSIM 0.985 0.985 0.975 0.975 

Runtime [s] 2.634 25.407 1.056 1.057 
Memory [MB] 1.339 1.339 1.339 1.339 

We applied the in painting algorithms to all the 
25 images present in the dataset. The average metric 
values for first, second, third and fourth error masks are 
given in tables 9,10,11,12 respectively.  

 Average metric values for first error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 29.719 30.017 29.145 28.891 
SSIM 0.929 0.932 0.925 0.923 

Runtime [s] 4.346 72.229 1.089 1.091 

Memory [MB] 1.339 1.339 1.339 1.339 

Table 10: Average metric values for second error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 34.002 37.734 33.421 33.406 
SSIM 0.952 0.983 0.968 0.969 

Runtime [s] 3.546 27.488 1.047 1.048 
Memory [MB] 1.339 1.339 1.339 1.339 
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Table 9:



 Average metric values for third error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 28.948 29.143 28.602 28.376 
SSIM 0.925 0.927 0.922 0.920 

Runtime [s] 4.282 73.604 1.095 1.093 
Memory [MB] 1.339 1.339 1.339 1.339 

Table 12: Average metric values for fourth error mask 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 37.831 38.039 34.088 33.958 
SSIM 0.983 0.984 0.970 0.969 

Runtime [s] 2.725 31.751 1.052 1.051 
Memory [MB] 1.339 1.339 1.339 1.339 

Generally speaking, lower memory 
consumption and runtime values mean a better 
algorithm. For other metrics, the higher the PSNR and 
SSIM value, the better the algorithm. The average 
memory consumption, as seen from Table 9,10,11,12 is 
same for any mask on any image for any algorithm for 
the particular dataset. Hence we will not consider it as a 
factor for deciding the most efficient algorithm. We have 
defined two hybrid metrics X and Y for deciding which 
algorithm is most efficient based on our data. Metric X is 
directly proportional to PSNR, directly proportional to 
SSIM and inversely proportional to Runtime value: 

X α PSNR 
X α SSIM 

X α (1/Runtime) 

Combining all three above equations we get: 

X α (PSNR * SSIM)/Runtime 
X = k * ((PSNR * SSIM)/Runtime) 

where k is a constant, taken to be 1 for comparison 
purposes. Hence 

X = (PSNR * SSIM)/Runtime 

A high value of metric X means an effective 
algorithm. We used the values obtained in Table 
9,10,11,12 and calculated metric X values for the four 
error masks. The values are given in Table 13. 

Table 13:
 
X metric values for four error masks

 

 FSR
 

TELEA
 

NS
 

Fast
 

Best
 

1st Error Mask
 

6.353
 

0.387
 

24.756
 

24.442
 

2nd Error Mask
 

9.129
 

1.349
 

30.899
 

30.888
 

3rd Error Mask
 

6.253
 

0.367
 

24.083
 

23.885
 

4th Error Mask
 

13.647
 

1.179
 

31.431
 

31.309
 

From Table 13, we can see that TELEA 
algorithm gets the highest value in all four error masks. 
Hence, TELEA is the most efficient in

 
painting algorithm 

when we consider metric X to be the comparison metric. 

But as we can infer from the definition of metric X, it has 
the runtime factor associated with it. Runtime is an 
important factor for analysing algorithms, but can be 
subjective at times to different end users. Some users 
may have a time constraint, some users may not. Hence 
we need to define such a metric which does not include 
the runtime factor. Therefore, we define metric Y. Metric 
Y is directly proportional to PSNR and directly 
proportional to SSIM value: 

Y α PSNR 
Y α SSIM 

Combining all two above equations we get: 

Y α PSNR * SSIM 
Y = k * (PSNR * SSIM) 

where k is a constant, taken to be 1 for comparison 
purposes. Hence 

Y = PSNR * SSIM 

A high value of metric Y means an effective 
algorithm, without taking the runtime factor into account. 
Similarly, we used the values in Table 9,10,11,12 and 
calculated metric Y values for the four error masks. The 
values are given in Table 14. 

Table 14: Y metric values for four error masks 

 FSR 
TELEA NS

 
Fast Best 

1st Error Mask 27.609 27.976 26.959 26.666 
2nd Error Mask 32.369 37.093 32.352 32.370 
3rd Error Mask 26.779 27.016 26.371 26.106 
4th Error Mask 37.188 37.430 33.065 32.905 

From Table 14, we can see that FSR_BEST 
algorithm gets the highest value in all four error masks. 
Hence, FSR_BEST is the most efficient inpainting 
algorithm when we consider metric Y to be the 
comparison metric, which does not take the runtime 
factor into account. 

Summing up our observation and results for the 
Kodak image dataset, we can say that the most efficient 
inpainting algorithm when runtime is a constraint is 
TELEA algorithm and the most efficient inpainting 
algorithm when runtime is not a constraint is FSR_BEST 
algorithm.  

b) Edge inpainting results 
The inpainting algorithms produce very different 

results when working on edges. To compare the 
working, we have chosen an image which has clear 
distinct foreground and background. We distorted a part 
of the edge, and applied the inpainting algorithms to it. 
The image results are given in Fig 11, and metric values 
are given in Table 15. 

As we can see from the results, TELEA has the 
highest value for X metric. That is if we consider runtime 
to be a factor, TELEA is the most efficient algorithm. But 
FSR_BEST has the highest value for Y metric, i.e. if we 
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Table 11: 



do not consider runtime to be a factor, then FSR_BEST 
is the most efficient algorithm for edge inpainting. We 
can also see from the image results that FSR_BEST 
produces the most believable result, but also has the 
largest runtime. TELEA and NS do a decent job in filling 
up the edges and maintaining the edge difference. But 
still some parts are hazed and distorted. FSR_FAST 
does the worst job, mainly because it trades off 
accuracy for runtime, and the result is bad. 

Table 15: Metric values for edge inpainting 

 
FSR 

TELEA NS 
Fast Best 

PSNR [dB] 35.249 43.100 38.577 37.973 
SSIM 0.995 0.996 0.994 0.994 

Runtime [s] 1.642 21.282 1.028 1.023 
Memory [MB] 2.079 2.079 2.079 2.079 

X 21.359 2.017 37.301 36.897 
Y 35.073 42.928 38.346 37.745 

 
Fig. 11: Edge inpainting sample results 

c) Pattern inpainting results 
The inpainting algorithms produce very different 

results when working on patterns. To compare the 
working, we have chosen a checkerboard image as it is 
the easiest pattern to replicate. We distorted a part of 
the image in the centre, and applied the inpainting 
algorithms to it. The image results are given in Fig 12, 
and metric values are given in Table 16. 

As we can see from the image results, none of 
the inpainting algorithms can replicate the pattern in the 

unknown region, which is understandable because the 
inpainting algorithms are focused on filling up the 
unknown region progressively based on information 
from the nearest known region. They work on the small 
scale spatial influences. In order to inpaint a pattern, the 
algorithm must work over a broad range of the known 
region to understand the dynamics of the pattern. An 
exemplar based inpainting or patch based inpainting 
method can work for pattern inpainting.  

Comparing the metric values, TELEA has the 
highest X value and FSR_BEST has the highest Y value. 
From the image results, TELEA still does a decent job of 
producing an arbitrary pattern, while FSR_BEST fills the 
whole unknown region with a singular colour. Hence, no 
algorithm provided by OpenCV is perfectly suitable for 
inpainting a pattern, but TELEA can be used as a last 
resort.   

Table 16: Metric values for pattern inpainting 

 FSR TELEA NS 
Fast Best 

PSNR [dB] 20.094 21.881 19.017 18.872 
SSIM 0.959 0.964 0.962 0.958 

Runtime [s] 2.827 60.066 1.051 1.047 
Memory [MB] 1.188 1.188 1.188 1.188 

X 6.816 0.351 17.407 17.268 
Y 19.270 21.093 18.294 18.079 

 

Fig. 12: Pattern inpainting sample results 
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d) Text error mask inpainting results 
We also tested the working of the inpainting 

algorithms on a custom text error mask. We took an 
image from the Kodak dataset and wrote some random 
text on it as error regions, then applied the algorithms on 
it. The image results are given in Fig 13, and metric 
values are given in Table 17. 

Comparing the metric values, NS has the 
highest X value and FSR_BEST has the highest Y value. 
All the algorithms work decent, but from the image 
results we can see that TELEA and NS have some 
distortions near the fence area, while FSR_FAST and 
FSR_BEST have inpainted smoothly in that area. If 
runtime is a constraint, then NS is the most effective 
algorithm to be used. Although, TELEA can also be 
used as it produces very similar results to NS. If runtime 
is not a constraint, then FSR_BEST is the most effective 
choice for text error mask inpainting. 

Table 17: Metric values for text error mask inpainting 

 FSR 
TELEA

 
NS

 
Fast Best 

PSNR [dB] 45.019 45.497 30.784 31.571 
SSIM 0.995 0.996 0.962 0.967 

Runtime [s] 4.019 36.729 2.659 2.133 
Memory [MB] 1.339 1.339 1.339 1.339 

X 11.146 1.234 11.137 14.313 
Y 44.794 45.315 29.614 30.529 

 

Fig. 13: Text error mask inpainting sample results 

e) Monochromatic image inpainting results 
We tested the working of the inpainting 

algorithms on a monochromatic image. We took an 
image from the Kodak dataset and converted it into 
monochrome and used a spiral error mask on it. The 
image results are given in Fig 14, and metric values are 
given in Table 18. 

Comparing the metric values, NS has the 
highest X value and FSR_BEST has the highest Y value. 
All the algorithms work decent, but from the image 
results, we see that TELEA and NS have some 
distortions near the beak of the bird, while FSR_FAST 
and FSR_BEST have inpainted smoothly in that area. If 
runtime is a constraint, then NS is the most effective 
algorithm to be used. Although, TELEA can also be 
used as it produces very similar results to NS. If runtime 
is not a constraint, then FSR_BEST is the most effective 
choice for monochromatic image inpainting. 

Table 18: Metric values for monochrome image 
inpainting 

 FSR 
TELEA

 
NS

 
Fast Best 

PSNR [dB] 45.649 46.040 36.509 36.417 
SSIM 0.997 0.998 0.987 0.988 

Runtime [s] 1.744 13.549 1.163 1.097 

Memory [MB] 1.339 1.339 1.339 1.339 
X 26.096 3.391 30.984 32.799 
Y 45.512 45.948 36.034 35.979 

 
Fig. 14: Monochromatic image inpainting sample results 
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f) Discussions 
Summing up our observations and results for 

the Kodak image dataset and other specific cases, we 
can say that the TELEA inpainting algorithm is the most 
efficient algorithm if runtime is a constraint i.e. the user 
needs to perform the inpainting operation as fast as he 
can and produce the best results. On the other hand, 
FSR_BEST inpainting algorithm is the most efficient 
algorithm if runtime is not a constraint i.e. the user has 
no time limit for the inpainting operation and wants to 
get the best result. The average memory consumption 
for all the inpainting algorithms are modest, hence 
memory will hardly be an issue in any system while 
running the Open CV inpainting algorithms. 

Table 19: Final results 

 With runtime as 
a constraint 

Without runtime as 
a constraint 

Most effective 
OpenCV 

inpainting 
algorithm 

 
TELEA algorithm 

 
FSR_BEST 
algorithm 

VI. Future Scope 

Our inpainting comparison study was done on 
the Kodak image dataset, a relatively small dataset 
containing 25 images only. The study can be done on a 
larger, more robust dataset which contains variety of 
images. This can be done to get more extensive results. 
We compared our results on the basis of four metrics 
only; more intricate metrics may be defined for the 
testing. Our study can be a base for analysing how 
various OpenCV inpainting methods work on images 
with different colour profiles.  

We ran tests using four custom error masks. 
The error masks considered were mostly linear in shape. 
Other type of error masks such as curved, mixture of 
linear and curved can be taken for testing. This study 
can be a base for a comprehensive study on video 
inpainting techniques, which would be beneficial for 
people looking to work in this field. 

VII. Conclusion 

In conclusion, we present a comparative study 
of the various OpenCV inpainting algorithms, focusing 
extensively on their practical uses. The purpose of this 
paper is to apprise new users and researchers of the 
most efficient inpainting algorithm provided by OpenCV: 
TELEA algorithm for time constrained operations and 
FSR_BEST algorithm for non time constrained 
operations. We present the most efficient OpenCV 
inpainting algorithm to be used for various scenarios, 
which can help a beginner at inpainting to make his 
decision wisely without any further research. This study 
can be a base for more detailed comparative works on 
image and video inpainting. Inpainting is an evolving 
domain of image processing with major strides being 

made in the past, and much more sophisticated 
algorithms yet to arrive. It opens up the doorway for new 
image processing researchers to better the existing 
algorithms and create finer advanced inpainting 
algorithms which achieve near perfect accuracy.  

References Références Referencias 

1. R. S. Hegadi, “Image Processing: Research 
Opportunities and Challenges”, In the Proceedings 
of National Seminar on Research in Computers, 
2010.  

2. R. Farhan, “A Review on Some Methods used in 
Image Restoration”, International Multidisciplinary 
Research Journal, Vol. 10, pp.13-16, 2020.  

3. O. Elharrous, N. Almaadeed, S. Al-Maadeed, Y. 
Akbari “Image inpainting: A review”, Neural 
Processing Letters, Vol. 51, pp.2007-2028, 2019. 

4. A. Beniwal, D. Ahlawat, “Image Inpainting 
Algorithms: A Survey”, International Journal of 
Recent Research Aspects, Vol. 3/Issue 2, pp.165-
169, 2016. 

5. F. Zhang, Y. Chen, Z. Xiao, L. Geng, J. Wu, T. Feng, 
P. Liu, Y. Tan, J. Wang, “Partial Differential Equation 
Inpainting Method Based on Image 
Characteristics”,  Image and Graphics: Lecture 
Notes in Computer Science, Vol. 9219, pp.11-19, 
2015. 

6. T. Zhou, B. Johnson, R. Li, “Patch-based Texture 
Synthesis for Image Inpainting”, arXiv: 1605. 
01576v1, 2016. 

7. Sreelakshmy I J, B. C. Kovoor, “A Hybrid Inpainting 
Model Combining Diffusion and Enhanced Exemplar 
Methods”, Journal of Data and Information Quality, 
Vol. 13/Issue 3, pp.1-17, 2021. 

8. S. R. Gaonkar, P. D. Hire, P. S. Pimple, Y. R. Kotwal, 
B. A. Ahire, “Image Inpainting using Robust 
Exemplar-based Technique”, International Journal of 
Computer Sciences and Engineering, Vol. 2/Issue 4, 
pp.176-179, 2014.  

9. J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, T. S. Huang, 
“Generative Image Inpainting with Contextual 
Attention”, In the Proceedings of IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, 2018. 

10. A. Telea, “An Image Inpainting Technique Based on 
the Fast Marching Method”, Journal of Graphics 
Tools, Vol. 9/Issue 1, pp.23-34, 2004. 

11. M. Bertalmio, A. L. Bertozzi, G. Sapiro, “Navier-
Stokes, Fluid Dynamics, and Image and Video 
Inpainting”, In the Proceedings of IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition, 2001. 

12. N. Genser, J. Seiler, M. Jonscher, A. Kaur, 
“Demonstration of Rapid Frequency Selective 
Reconstruction for Image Resolution Enhancement”, 
In the Proceedings of IEEE International Conference 
on Image Processing, 2017. 

© 2021 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
I 
Is
su

e 
II 

V
er
sio

n 
I 

  
  
 

  

36

  
 (

)
Y
e
a
r

20
21

G
Comparative Study of OpenCV Inpainting Algorithms



13. S. Chhabra, R. Lalit, S. Saxena, “An Analytical Study 
of Different Image Inpainting Techniques”, Indian 
Journal of Computer Science and Engineering, Vol. 
3/Issue 3, pp.487-491, 2012. 

14. R. Vreja, R. Brad, “Image Inpainting Methods 
Evaluation and Improvement”, The Scientific World 
Journal, Vol. 2014, 2014. 

15. M. M. Oliveira, B. Bowen, R. McKenna, Y. Chang, 
“Fast Digital Image Inpainting”, In the Proceedings 
of International Conference on Visualization, 
Imaging and Image Processing, 2001. 

16. M. M. Hadhoud, K. A. Moustafa, S. Shenoda, 
“Digital Images Inpainting using Modified 
Convolution Based Method”, In Optical Pattern 
Recognition XX, Vol. 7340 of Proceedings of the 
SPIE, 2009. 

17. K. Patel, A. Yerpude, “Study and Analysis of Image 
Inpainting Algorithms”, International Journal of 
Engineering Research and Technology, Vol. 3/Issue 
20, pp.1-5, 2015. 

18. A. S. Awati, M. R. Patil, “Review of Digital Image 
Inpainting Algorithms”, International Journal of Latest 
Trends in Engineering and Technology, pp.36-41, 
2013. 

19. K. Singh, J. Shaveta, “A Review on Patch Based 
Image Restoration or Inpainting”, International 
Journal of Computer Sciences and Engineering, Vol. 
5/Issue 3, pp.119-123, 2017. 

20. J. A. Sethian, “Fast Marching Methods”, SIAM 
Review, Vol. 41/Issue 2, pp.199-235, 1999. 

21. S. Algazin, “Numerical Study of Navier-Stokes 
equations”, Journal of Applied Mechanics and 
Technical Physics, Vol. 48/Issue 5, pp.656-663, 
2007. 

© 2021 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
I 
Is
su

e 
II 

V
er
sio

n 
I 

  
  
 

  

37

  
 (

)
G

Y
e
a
r

20
21

Comparative Study of OpenCV Inpainting Algorithms


	Comparative Study of OpenCV Inpainting Algorithms
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Theory
	a) INPAINT_TELEA
	b) INPAINT_NS
	c) INPAINT_FSR

	IV. Comparative Study
	a) Theoretical Comparison
	b) Practical Comparison

	V. Results and Discussion
	a) Kodak image dataset results
	b) Edge inpainting results
	c) Pattern inpainting results
	d) Text error mask inpainting results
	e) Monochromatic image inpainting results
	f) Discussions

	VI. Future Scope
	VII. Conclusion
	References Références Referencias



