
Parallel String Matching with Multi Core Processors-A1

Comparative Study for Gene Sequences2

Chinta Someswara Rao13

1 SRKR Engineering College affiliated to Andhra University4

Received: 13 December 2012 Accepted: 3 January 2013 Published: 15 January 20135

6

Abstract7

The increase in huge amount of data is seen clearly in present days because of requirement for8

storing more information. To extract certain data from this large database is a very difficult9

task, including text processing, information retrieval, text mining, pattern recognition and10

DNA sequencing. So we need concurrent events and high performance computing models for11

extracting the data. This will create a challenge to the researchers. One of the solutions is12

parallel algorithms for string matching on computing models. In this we implemented parallel13

string matching with JAVA Multi threading with multi core processing, and performed a14

comparative study on Knuth Morris Pratt, Boyer Moore and Brute force string matching15

algorithms. For testing our system we take a gene sequence which consists of lacks of records.16

From the test results it is shown that the multicore processing is better compared to lower17

versions. Finally this proposed parallel string matching with multicore processing is better18

compared to other sequential approaches.19

20

Index terms— string matching; parallel string mathing; computing model, DNA, multicore processing.21

1 INTRODUCTION22

he crisis of finding exact or non-exact occurrences of a pattern P in a text T over some alphabet is a central23
difficulty of combinatorial string matching and has a variety of applications in many areas of computer science24
??1][2][3]. String searching algorithms can be accomplished in two ways: 1. Exact match, meaning that the25
passages returned will contain an exact match of the key input. 2. Approximate match, meaning that the26
passage will contain some part of the key word input [4][5][6].27

Although the dramatic development of processor technology and other advances have reduced search response28
to negligible times, string matching problem still remains a useful area of research and development for a number29
of reasons. Initially, as the size of data continues to grow, sequence searches will become increasingly taxing30
on search engines. Secondly, the pattern matching still remains an integral part of faster matching algorithms,31
typically comprising the final part of a search. Finally, researchers have to understand the classical methods of32
pattern matching to develop new efficient algorithms [7][8] ??9] ??10].33

With the developments of new string matching techniques, efficiency and speed are the main factors in deciding34
among different options available for each application area. Each application area has certain special features35
that can be used by string matching technique best suited for that area [11] ??12] ??13]. This study implements36
a multithreading text searching approach to improve text searching performance at a multicore processing. The37
idea is to have more than one searcher thread that search the text from different positions. Since the required38
pattern may occur at any position, having multiple searchers is better than searching the text sequentially from39
the first character to the last one.40

The main contributions of this work are summarized as follows. This work offers a comprehensive study as well41
as the results of typical parallel string matching algorithms at various aspects and their application on multicore42
computing models. This work suggests the most efficient algorithmic models and demonstrates the performance43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

8 RESULT

gain for both synthetic and real data. The rest of this work is organized as, review typical algorithms, algorithmic44
models and finally conclude the study.45

2 II.46

3 RELATED WORK47

Now a day’s information retrieval attracted by the many researchers because of their importance in IT industry.48
So, this many researchers worked on this area since several years. In this paper we propose some of the49
techniques comparisons with multicore processing. In this section we discuss some previous techniques proposed50
by several authors’ later section we will discuss about our actual procedure. S.V. Raju et.al [14] proposes about51
grid computing in parallel string matching. Grid computing provides solutions for various complex problems.52
The function of the grid is to parallelize the string matching problem using grid MPI parallel programming53
method or loosely coupled parallel services on Grid. Parallel applications fall under three categories namely54
Perfect parallelism, Data parallelism and Functional parallelism, use data parallelism, and it is also called Single55
Program Multiple Data (SPMD) method, where given data is divided into several parts and working on the part56
simultaneously.57

4 Perfect Parallelism58

Also known as embarrassingly parallel. An application can be divided into sets of processes that require little or59
no communication.60

5 Data Parallelism61

The same operation is performed on many data elements simultaneously. An example would be using multiple62
processes to search different parts of a database for one specific query.63

Functional parallelism: Often called control parallelism. Multiple operations are performed simultaneously,64
with each operation addressing a particular part of the problem.65

6 Result66

Here it shows the performance of string matching algorithms namely execution-time and speedup improved.67
HyunJin Kim and Sungho Kang [15] propose an algorithm that partitions a set of target patterns into multiple68

subgroups for homogeneous string matchers. Using a pattern grouping metric, the proposed pattern partitioning69
makes the average length of the mapped target patterns onto a string matcher approximately equal to the70
average length of total target patterns. The target architecture is based on a memory-based string matching71
with homogeneous string matchers. In a string matcher, ?? homogeneous finite state machine (FSM) tiles are72
contained. An FSM tile contains a maximum of ?? states and takes ?? bits of one character at each cycle. Target73
patterns are distributed and mapped onto ?? string matchers. Each state has 2?? pointers for the next state74
based on an ??-bit input.75

7 Result76

By adopting the pattern grouping metric, the proposed pattern group partitioning decreases the number of77
adopted string matchers by balancing the numbers of mapped target patterns between string matchers.78

Daniel Luchaup, et.al [16] they propose a method to search for arbitrary regular expressions by scanning79
multiple bytes in parallel using speculation. They break the packet in several chunks, opportunistically scan80
them in parallel, and if the speculation is wrong, correct it later. They present algorithms that apply speculation81
in single-threaded software running on commodity processors as well as algorithms for parallel hardware.82

8 Result83

It is a speculative pattern matching method which is a powerful technique for low latency regularexpression84
matching. The method is based on three important observations. The first key insight is that the serial nature85
of the memory accesses is the main latency-bottleneck for a traditional DFA matching. The second observation86
is that a speculation that does not have to be right from the start can break this serialization The third insight,87
which makes such a speculation possible, is that the DFA-based scanning for the intrusion detection domain88
spends most of the time in a few hot states.89

Hyun Jin Kim, et.al [17] propose a memoryefficient parallel string matching scheme. In order to reduce the90
number of state transitions, the finite state machine tiles in a string matcher adopt bit-level input symbols. Long91
target patterns are divided into sub patterns with a fixed length; deterministic finite automata are built with the92
sub patterns. Using the pattern dividing, the variety of target pattern lengths can be mitigated, so that memory93
usage in homogeneous string matchers can be efficient.94

2

9 Result95

The proposed DFA-based parallel string matching scheme minimizes total memory requirements. The problem96
of various pattern lengths can be mitigated by dividing long target patterns into sub patterns with a fixed length.97
The memory-efficient bit-split FSM architectures can reduce the total memory requirements. Considering the98
reduced memory requirements for the real rule sets, it is concluded that the proposed string matching scheme is99
useful for reducing total memory requirements of parallel string matching engines.100

Charalampos S, et.al [18] they proposes that Graphics Processing Units (GPUs) have evolved over the past101
few years from dedicated graphics rendering devices to powerful parallel processors, outperforming traditional102
Central Processing Units (CPUs) in many areas of scientific computing. The use of GPUs as processing elements103
was very limited until recently, when the concept of General-Purpose Computing on Graphics Processing Units104
(GPGPU) was introduced. GPGPU made possible to exploit the processing power and the memory bandwidth of105
the GPUs with the use of APIs that hide the GPU hardware from programmers. This paper presents experimental106
results on the parallel processing for some well known on-line string matching algorithms using one such GPU107
abstraction API, the Compute Unified Device Architecture (CUDA).108

10 Result109

In this, both the serial and the parallel implementations were compared in terms of running time for different110
reference sequences, pattern sizes and number of threads. It was shown that the parallel implementation of the111
algorithms was up to 24x faster than the serial implementation, especially when larger text and smaller pattern112
sizes where used. The performance achieved is close to the one reported for similar string matching algorithms.113
In addition, it was discussed that in order to achieve peak performance on a GPU, the hardware must be as114
utilized as possible and the shared memory should be used to take advantage of its very low latency. Future115
research in the area of string matching and GPGPU parallel processing could focus on the performance study116
of the parallel implementation of additional categories of string matching algorithms, including approximate and117
two dimensional string matching.118

Thierry Lecroq [19] propose a very fast new family of string matching algorithms based on hashing q-grams.119
The new algorithms are the fastest on many cases, in particular, on small size alphabets. The string matching120
problem consists in finding one or more usually all the occurrences of a pattern x = x[0..m ? 1] of length m in121
a text y = y[0..n ? 1] of length n. It can occur, for instance, in information retrieval, bibliographic search and122
molecular biology.123

11 Result124

In this article they presented simple and though very fast adaptations and implementations of the Wu-Manber125
exact multiple string matching algorithm to the case of exact single string matching algorithm. Experimental126
results show that the new algorithms are very fast for short patterns on small size alphabets comparing to the127
well known fast algorithms using bitwise techniques. The new algorithms are also fast on long patterns (length128
32 to 256) comparing to algorithms using an indexing structure for the reverse pattern (namely the Backward129
Oracle Matching algorithm). This new type of algorithm can serve as filters for finding seeds when computing130
approximate string matching.131

Derek Pao, et.al [20] proposes that a memoryefficient hardware string searching engine for antivirus applications132
is presented. The proposed QSV method is based on quick sampling of the input stream against fixed-length133
pattern prefixes, and on-demand verification of variable-length pattern suffixes. Patterns handled by the QSV134
method are required to have at least 16 bytes, and possess distinct 16-byte prefixes. The latter requirement can135
be fulfilled by a preprocessing procedure. The search engine uses the pipelined Aho-Corasick (P-AC) architecture136
developed by the first author to process 4 to 15-byte short patterns and a small number of exception cases. Our137
design was evaluated using the Clam AV virus database having 82,888 strings with a total size that exceeds 8138
MB. In terms of byte count, 99.3 percent of the pattern set is handled by the QSV method and 0.7 percent of the139
pattern set is handled by P-AC. A pattern with distinct 16-byte prefix only occupies up to three lookup table140
entries in QSV. The overall memory cost of our system is about 1.4 MB, i.e., 1.4 bit per character of the ClamAV141
pattern set. The proposed method is memory-based, hence, updates to the pattern set can be accommodated by142
modifying the contents of the lookup tables without reconfiguring the hardware circuits.143

Hassan Ghasemzadeh ??21] proposes that Mobile sensor-based systems are emerging as promising platforms144
for healthcare monitoring. An important goal of these systems is to extract physiological information about145
the subject wearing the network. Such information can be used for life logging, quality of life measures, fall146
detection, extraction of contextual information, and many other applications. Data collected by these sensor147
nodes are overwhelming, and hence, an efficient data processing technique is essential.148

12 Result149

Results show the effectiveness of this approach, both for reliable movement classification and reduction of150
communication.151

HyunJin Kim and Seung-Woo Lee [22] propose a memory-based parallel string matching engine using the152
compressed state transitions. In the finite-state machines of each string matcher, the pointers for representing153

3

14 IV.

the existence of state transitions are compressed. In addition, the bit fields for storing state transitions can be154
shared. Therefore, the total memory requirement can be minimized by reducing the memory size for storing155
state transitions Result This letter proposed a memory-efficient parallel string matching engine in DFA-based156
string matching. The proposed string matcher can reduce the memory size for storing the existence of state157
transitions. In addition, the memory requirements can be reduced by sharing state transitions in the transition158
table. Considering the experiment results, it is evident that the proposed architecture is useful for reducing159
the storage cost of the DFA-based string matching engine. Ali Peiravi and Mohammad Javad Rahimzadeh [23]160
proposes that String matching is a fundamental element of an important category of modern packet processing161
applications which involve scanning the content flowing through a network for thousands of strings at the line rate.162
To keep pace with high network speeds, specialized hardware-based solutions are needed which should be efficient163
enough to maintain scalability in terms of speed and the number of strings. In this paper, a novel architecture164
based upon a recently proposed data structure called the Bloomier filter is proposed which can successfully support165
scalability. The Bloomier filter is a Compact data structure for encoding arbitrary functions, and it supports166
approximate evaluation queries. By eliminating the Bloomier filter’s false positives in a space efficient way, a167
simple yet powerful exact string matching architecture is proposed that can handle several thousand Strings at168
high rates and is amenable to onchip realization. The proposed scheme is implemented in reconfigurable hardware169
and compare it with existing solutions. The results show that the proposed approach achieves better performance170
compared to other existing architectures measured in terms of throughput per logic cells per character as a metric.171

In this paper, we use parallel algorithms with multicore processors because with multicore processors we can172
increase the efficiency and the performance.173

13 III. COMPUTING MODEL WITH MULTICORE POR-174

CESSING175

As personal computers have become more prevalent and more applications have been designed for them, the end-176
user has seen the need for a faster, more capable system to keep up. Speedup has been achieved by increasing177
clock speeds and, more recently, adding multiple processing cores to the same chip. Although chip speed has178
increased exponentially over the years, that time is ending and manufacturers have shifted toward multicore179
processing. However, by increasing the number of cores on a single chip challenges arise with memory and cache180
coherence as well as communication between the cores. Coherence protocols and interconnection networks have181
resolved some issues, but until programmers learn to write parallel applications, the full benefit and efficiency of182
multi core processors will not be attained [24][25][26][27].183

14 IV.184

PROPOSED SYSTEM ARCHITECTURE a) System Architecture System Architecture describes ”the overall185
structure of the system and the ways in which the structure provides conceptual integrity”. Architecture is the186
hierarchical structure of a program components (modules), the manner in which these components interact and187
the structure of data that are used by that components. The existing string matching system architecture is as188
shown in Fig 1 and in this the efficiency is not good. In the existing string matching architecture we search the189
required pattern sequentially at first we pass the required that is to be searched and this pattern is searched by190
using the three algorithms Brute force, KMP, Boyer Moore the entire string is passed through all the algorithms191
and the output match and the running time is calculate for the required pattern from all the algorithms and the192
algorithm with the least running time is selected, all this is done sequentially which takes more time to execute to193
improve the efficiency and the performance in this we use the parallel string matching algorithms with multicores194
processors as shown in Fig 2.195

The proposed system Architecture of Comparison of parallel String Matching Algorithms is as follows in the196
below diagram. In this search the pattern parallel. in this at first we take the input as a string or text. The197
required text that is to be searched is further divided into further small patterns and all this patterns are passed198
on the different parallel algorithms like KMP199

4

15 BM Algorithm200

16 BF Algorithm201

17 Output match positions and running time202

18 Output match positions and running time203

19 Browse file and enter pattern204

20 Comparison KMP Algorithm205

21 Output match positions and running time206

boyar Moore, brute force and at all the output position match and running time of all the patterns is calculated207
and the all the patterns of same algorithm are added and all the resulted running time are compared with other208
algorithms resulting time and from them the best one is taken as the efficient algorithm for the string matching.209

22 PROPOSED APPROACH210

In now a day as the current free textual database is growing vast there is a problem of finding the pattern by211
string matching the efficiency is decreased and takes more time. In our paper, we use parallel algorithms to212
increase the efficiency on multicore processor we pass the same string to all the three algorithms and we select213
the best based on the running time.214

23 a) Implementation215

Here we have to implement the proposed system with JAVA 1.7 multi threading, initially we have to implement the216
BF, KMP, and BM sequentially and then go for parallel implementation with threading on Multicore processor.217
Here we discuss some of them.218

i. Brute force Algorithm (BF) description and Implementation with parallel programming [28][29][30] The219
brute force algorithm consists in checking, at all positions in the text between 0 and n -m. whether an occurrence220
of the pattern starts there or not. Then, after each attempt, it shifts the pattern by exactly one position to the221
right. The brute force algorithm requires no preprocessing phase, and a constant extra space in addition to the222
pattern and the text. During the searching phase the text character comparisons can be done in any order. The223
algorithm can be designed to stop on either the first occurrence of the pattern, or upon reaching the end of the224
text. This code was run parallel in multiple threads to achieve good efficiency searching, which is shown in Table225
??. ii. Knuth Morris Pratt description and Implementation with parallel programming [28][29][30] Consider an226
attempt at a left position j, that is when the window is positioned on the text factor y[j .. j+m-1]. Assume that227
the first mismatch occurs between x [i] and y [i+j] with 0 < i < m. Then, x[0 .. i-1] = y[j .. i+j-1]=u and a =228
x [i] ? y [i+j]=b. When shifting, it is reasonable to expect that a prefix v of the pattern matches some suffix of229
the portion u of the text. Moreover, if we want to avoid another immediate mismatch, the character following230
the prefix v in the pattern must be different from a. The longest such prefix v is called the tagged border of231
u. This code was run parallel in multiple threads to achieve good efficiency searching, which is shown in Table232
??. The algorithm scans the characters of the pattern from right to left beginning with the rightmost one. In233
case of a mismatch (or a complete match of the whole pattern) it uses two precomputed functions to shift the234
window to the right. These two shift functions are called the good-suffix shift (also called matching shift) and the235
bad-character shift (also called the occurrence shift). This code was run parallel in multiple threads to achieve236
good efficiency searching, which is shown in Table ??.237

Table ?? : Pseudo code for BM FileInputStream fstream = new FileInput-238
Stream(”F:/multi/genesequence.txt”); DataInputStream in = new DataInputStream(fstream); BufferedReader239
br = new BufferedReader(new InputStreamReader(in)); time = System.currentTimeMillis(); while (((str =240
br1.readLine()) != null) && (i<=i1)){ BoyerMoore bms = new BoyerMoore(); String pattern = ”AAGG”;241
bms.setString(str, pattern); first_occur_position = bms.search(); System.out.println(”The text ’” + pattern242
+ ”’ is first found after the ” + first_occur_position + ” position.”); i++;} time System.currentTimeMillis()243
-time; System.out.println(”Time elapsed-in thread-1”+time); b) Claims Implementation is the stage where the244
theoretical design is turned into a working system. The most crucial stage in achieving a new successful system245
and in giving confidence on the system for the users that will work efficiently and effectively. The system246
will be implemented only after thorough testing and if it is found to work according to the specification. For247
testing our proposed system we will take the gene sequence data set, consists of the four nucleotides a, c, g248
and t (standing for adenine, cytosine, guanine, and thymine, respectively) used to encode DNA. Therefore, the249
alphabet is O={A, C, G, T}. The text is consisted of 7,50,000 records. Our test tested with different processors250
like i3, i5 etc., here we put some achievements what we develop and observe, finally our system shows that251
parallel approach is much better than sequential approach with multi core processor The Fig ?? shows(Graph)252
Execution time vs File size on sequential search with intel i5 processor using Boyer Moore, Brute force, KMP253
Algorithm. From the graph we clearly observe that BM is better compared to other approaches.254

5

24 CONCLUSIONS

24 CONCLUSIONS255

In this paper we performed a comparative study on Knuth Morris Pratt, Boyer Moore and Brute force string256
matching algorithms based on the running time and in our tests with multicore processing, we used strings of257
varying lengths and texts of varying lengths. From the test results it is shown that the Boyer Moore algorithm258
is extremely efficient in most cases and Knuth-Morris-Pratt algorithm is not better on the average than the259
Brute force algorithm. We conclude that Boyer Moore string matching algorithm is the most efficient one260
among the three string matching algorithms with multicore processing compared to earlier versions. As a future261
enhancement, these algorithms can be compared with other efficient parallel string matching algorithms thereby262
finding the most efficient algorithm which can be used in many fields such as cryptography, molecular biology.263
Thus the problem of matching becomes easier. This page is intentionally left blank 1 2 3 4

2013

Figure 1: T © 2013
264

1© 2013 Global Journals Inc. (US)
2Parallel String Matching with Multi Core Processors-A Comparative Study for Gene Sequences
3© 2013 Global Journals Inc . (US)
4. Badoiu M. and Indyk P., ”Fast Approximate Pattern Matching with Few Indels via Embeddings,” ACM-©

2013 Global Journals Inc. (US)

6

Browse file (text) and
enter pattern

Divide text in to number
of patterns

1 st
pattern

2 nd pattern 3 rd
pattern

BF
algo-
rithm
(a1)
found
&
run-
nin g
time

KMP
algo-
rithm
(b1)
found
&
runnin
g time

BM
algo-
rithm
(c1)
found
&
run-
nin g
time

BF
algorithm
(a2) found
& runnin g
time

KMP
algorithm
(b2) found &
runnin g time

BM
algo-
rithm
(c2)
found
&
run-
nin g
time

BF
algo-
rithm
(a3)
found
&
run-
nin g
time

KMP
algo-
rithm
(b3)
found &
runnin
g time

BM
algo-
rithm
(c3)
found
&
run-
nin g
time

Volume XIII
Issue I Ver-
sion I D D D
D D D D D
) A

(
a1+a2+?an b1+b2+?bn

Running
Times
comparison
Output

c1+c2+?..cn Global
Journal of
Computer
Science and
Technology

Figure 2:

7

24 CONCLUSIONS

8

[Knuth] , Donald Knuth .265

[Mhashi et al. ()] ‘A Fast Approximate String Searching Algorithm’. M Mhashi , A Rawashdeh , A Hammouri .266
Computer Journal of Science Publication 2005. p. .267

[Boyer and Moore ()] A fast string searching algorithm, Carom. Association of computing Machinary, R S Boyer268
, J S Moore . 1977. p. .269

[Kim and Lee ()] ‘A Hardware-Based String Matching Using State Transition Compression for Deep Packet270
Inspection’. Hyunjin Kim , Seung-Woo Lee . ETRI Journal 2013. 35 (1) p. .271

[Kim et al. (2011)] ‘A Memory-Efficient Bit-Split Parallel String Matching Using Pattern Dividing for Intrusion272
Detection Systems’. Hyun Jin Kim , Hong-Sik Kim , Sungho Kang . IEEE Transactions on Parallel and273
Distributed Systems Nov. 2011. 22 (11) p. .274

[Hyunjinkim ()] ‘A memory-efficient bitsplit parallel string matching using pattern dividing for intrusion275
detection systems’. Hyunjinkim . ieee transactions on parallel and distributed systems, 2011. 22 p. .276

[Kim et al. (2009)] ‘A Memory-Efficient Parallel String Matching for Intrusion Detection Systems’. H Kim , H277
Hong , H.-S Kim , S Kang . IEEE Comm. Letters Dec. 2009. 13 (12) p. .278

[Peiravi and Javed Rahimzadeh ()] A novel scalable and storage-efficient architecture for high speed exact string279
matching, Ali Peiravi , Mohammad Javed Rahimzadeh . 2009. 31 p. .280

[Kim and Kang ()] A pattern group partitioning for parallel string matching using a pattern grouping metric,281
Hyunjin Kim , Kang . 2010. 14 p. . (ieee communications letters)282

[JonathanL ()] Analysis of Fundamental Exact and Inexact Pattern Matching Algorithms, JonathanL . 2004.283
Stanford University (Technical Document)284

[Breslauer et al. ()] ‘Constant-Time word-size string matching’. Dany Breslauer , Leszek G?sieniec , Roberto285
Grossi . Proceedings of the 23rd Annual conference on Combinatorial Pattern Matching, (the 23rd Annual286
conference on Combinatorial Pattern MatchingHelsinki, Finland) 2012.287

[Thierry Lecroq (2007)] Fast exact string matching algorithms”, ”litis, faculty des sciences et des techniques,288
university de rouen, 76821 mont-saintavignon cedex, france, Thierry Lecroq . january 2007.289

[Morris et al. ()] ‘Fast pattern matching in strings’. James H Morris , Vaughan Jr , Pratt . SIAM Journal on290
Computing 1977. p. .291

[Leow and Ng ()] ‘Generating hardware from OpenMP programs’. Y Leow , C &w F Ng , W . International292
Conference on Field Programmable Technology, 2006. p. .293

[Pao ()] ‘Hassan ghasemzadeh,” structural action recognition in body sensor networks: distributed classification294
based on string matching’. Derek Pao . ieee transactions on information technology in biomedicine, 2011.295
2010. 60 p. . (string searching engine for virus scanning)296

[Grama et al. ()] Introduction to Parallel Computing, A Grama , G Karypis , V Kumar , A Gupta . 2003. Addison297
Wesley.298

[Marr et al. ()] D T Marr , F Binns , D L Hill , G Hinton , D A Koufaty , J A Miller , M Upton . Hyper-Threading299
Technology Architecture and Microarchitecture, 2002. p. .300

[Galil ()] ‘Optimal parallel algorithms for string matching’. Z Galil . Proc. 16th Annu. ACM symposium on Theory301
of computing, (16th Annu. ACM symposium on Theory of computing) 1984. p. .302

[Raju ()] ‘parallel string matching algorithm using grid”, ”international journal of distributed and parallel303
systems’. S Raju . ijdps 2012. 3 (3) .304

[Geist et al. ()] ‘PVM: Parallel Virtual Machine’. A Geist , A Beguelin , J Dongarra , W Jiang , R & V Manchek305
, S . A Users Guide and Tutorial for Networked Parallel Computing, 1994. MIT Press.306

[Someswararao et al. ()] ‘Recent Advancement is Parallel Algorithms for String matching on computing models -307
A survey and experimental results’. Chinta Someswararao , Butchiraju , ; Viswanadharaju , K Someswararao308
, Butchiraju , ; K Viswanadharaju , S Butchiraju , Viswanadharaju . IEEE conference on Application of309
Information and Communication Technologies, 2011. 2011. 2012. Springer. ISBN p. . (IJAC)310

[Simon et al. (2004)] ‘Recent Advancement is String matching algorithms-A survey and experimental results’. Y311
Simon , M. ; K Inayatullah , S Butchiraju , ; K Viswanadharaju , S Butchiraju , Viswanadharaju . Proceedings312
of Symposium on Principles and Practice of Programming in Java, (Symposium on Principles and Practice of313
Programming in Java) 2004. July -Sept, ISSN 2229-4333, 2012. 2013. 12 p. . IJCST (Improving Approximate314
Matching Capabilities for Meta Map Transfer Applications)315

[SIAM Symposium on Discrete Algorithms ()] SIAM Symposium on Discrete Algorithms, 2004. p. .316

[Daniel ()] ‘speculative parallel pattern matching’. Daniel . ieee transactions on information forensics and317
security, 2011. 6 p. .318

[Charalampos] String matching on a multicore gpu using cuda”, ”parallel and distributed processing laboratory319
department of applied informatics, university of macedonia 156 egnatia str, S Charalampos . greece. 1591.320

[Faro and Lecroq ()] ‘The Exact Online String Matching Problem: a Review of the Most Recent Results’. S Faro321
, T Lecroq . ACM Computing Surveys 2013. 45 (2) .322

9

	1 INTRODUCTION
	2 II.
	3 RELATED WORK
	4 Perfect Parallelism
	5 Data Parallelism
	6 Result
	7 Result
	8 Result
	9 Result
	10 Result
	11 Result
	12 Result
	13 III. COMPUTING MODEL WITH MULTICORE PORCESSING
	14 IV.
	15 BM Algorithm
	16 BF Algorithm
	17 Output match positions and running time
	18 Output match positions and running time
	19 Browse file and enter pattern
	20 Comparison KMP Algorithm
	21 Output match positions and running time
	22 PROPOSED APPROACH
	23 a) Implementation
	24 CONCLUSIONS

