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Abstract7

Hyper-parameters tuning is a key step to find the optimal machine learning parameters.8

Determining the best hyper-parameters takes a good deal of time, especially when the9

objective functions are costly to determine, or a large number of parameters are required to be10

tuned. In contrast to the conventional machine learning algorithms, Neural Network requires11

tuning hyperparameters more because it has to process a lot of parameters together, and12

depending on the fine tuning, the accuracy of the model can be varied in between 2513

14

Index terms— machine learning, hyper parameter optimization, grid search, random search, BO-GP.15

1 Introduction16

n the era of Machine learning, performance (based on accuracy and computing time) is very important. The17
growing number of tuning parameters associated with the Machine learning models is tedious and timeconsuming18
to set by standard optimization techniques. Researchers working with ML models often spend long hours to find19
the perfect combination of hyperparameters [1]. If we think w, x, y, z as the parameters of the model, and if all20
of these parameters are integers ranging from 0.0001 to say 5.00, then hyperparameter tuning is the finding the21
best combinations to make the objective function optimal.22

One of the major difficulties in working with the Machine learning problem is tuning hyperparameters. These23
are the design parameters that could directly affect the training outcome. The conversion from a nontuned24
Machine learning model to a tuned ML model is like learning to predict everything accurately from predicting25
nothing correctly [2]. There are two types of parameters in ML models: Hyperparameters, and Model parameters.26
Hyperparameters are arbitrarily set by the user even before starting to train the model, whereas, the model27
parameters are learned during the training.28

The quality of a predictive model mostly depends on the configuration of its hyperparameters, but it is often29
difficult to know how these hyperparameters interact with each other to affect the final results of the model [14].30
To determine accuracy and make a comparison between two models it is always better to make comparisons31
between two models with both of the models’ parameters tuned. It would be unfair to compare a Decision Tree32
model with the best parameter against an ANN model whose hyperparameters haven’t been optimized yet.33

2 II.34

3 Literature Review35

The hyperparameter tuning, due to its importance, has changed to a new interesting topic in the ML community.36
The hyperparameter tuning algorithms are either model-free or model-based.37

Model-free algorithms are free of using knowledge about the solution space extracted during the optimization;38
a few of this category includes manual search [4], random search [2,[6][7], and grid search [5]. In the Manual39
search categories, we assume the values of the parameters based on our previous experience. In this technique,40
the user allows some sets of hyperparameters based on judgments or previous experience, trains the algorithm41
by them, observes the performance, keeps repeating to train the model until achieving a satisfactory accuracy42
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5 METHODOLOGY A) DATASET DESCRIPTION

and then selects the best set of hyperparameters that gives the maximum accuracy. However, this technique43
is heavily dependent on the judgment and previous expertise and its reliability is dependent on the correctness44
of the previous knowledge [3]. Some of the few of the main parameters used by Random forest classifiers are:45
criterion, max_depth, n_estimators, min_samples_split etc.46

In the Random search, we train and test our model based on some random combinations of the hyper-47
parameters. This method is better used to identify new combinations of the parameters or to discover new48
hyperparameters. Although it may take more time to process, it often leads to better performance. Bergstra et49
al. (2012) in their work mentioned that, over the same domain, random search is able to find models that are50
as good as or even better in a reduced computation time. After granting the same computational budget for the51
random search, it was evident that random search can find better models by effectively searching for larger and52
less promising configuration spaces [16]. Random Search, which is developed based on grid research, sets up a53
grid of hyper-parameter values and selects random combinations to train the algorithm; [2].54

In the grid search, the user sets a grid of hyperparameters and trains the model based on each possible55
combination. Amirabadi et al. (2020) proposes two novel suboptimal grid search techniques on the four separate56
dataset to show the efficiency of their hyperparameter tuning model and later compare it with some of the other57
recently published work. The main drawback of the grid search method is its high complexity. It is commonly58
used when there are a few numbers of hyperparameters to be tuned. In other words, grid search works well when59
the best combinations are already determined. Some of the similar works of grid search applications have been60
reported by Zhang et al. (2014) [17], Ghawi et al. (2019) [18], and Beyramysoltan et al. (2013) [19].61

Zhang et al. (2019) [20] in their work reported a few of the drawbacks of the existing hyperparameter62
tuning methods. In their work, they mentioned grid search as an ad-hoc process, as it traverses all the possible63
combinations, and the entire procedure requires a lot of time. Andradóttir (2014) [13] shows that Random Search64
(RS) eradicates some of the limitations of the grid search technique to an extent. RS can reduce the overall time65
consumption, but the main disadvantage is that it cannot converge to the global optimal value.66

The combination of randomly selected hyperparameters can never guarantee a steady and widely acceptable67
result. That’s why, apart from the manually tuning methods, automated tuning methods are becoming more68
and more popular in recent times; snoek et al. (2015) [10]. Bayesian Optimization is one of the most widely69
used automated hyperparameter tuning methods to find the global optimum in fewer steps. However, Bayesian70
optimization’s results are sensitive to the parameters of the surrogate model and the accuracy is greatly depending71
on the quality of the learning model; Amirabadi et al. ( ??020) [3].72

To minimize the error function of hyperparameter values, Bayesian optimization adopts probabilistic surrogate73
models like Gaussian processes. Through precise exploration and development, an alternative model of74
hyperparameter space is established; Eggensperger et al. (2013) [8]. However, probabilistic surrogates need75
accurate estimations of sufficient statistics of error function distribution. So, a sizable number of hyperparameters76
is required to evaluate the estimations and this method doesn’t work well when there is to process myriad77
hyperparameters altogether.78

4 III.79

5 Methodology a) Dataset description80

Denier: Denier is a weight measurement usually refers to the thickness of the threads. It is the weight (grams)81
of a single optical fiber for 9 kilometers. If we have a 9 km fiber weighs 1 gram, this fiber has a denier of 1, or82
1D. A fiber with less than 1 gram weight calls Microfibers [22]. Microfibers become a new development trend in83
the synthetic polymer industry. The higher the denier is, the more thick and strong the fiber is. Conversely, less84
denier means that the fiber/fabric will be softer and more transparent. Fine denier fibers are becoming a new85
standard and are very useful for the development of new textiles with excellent performance [21].86

Breaking Elongation (%): Elongation at break is one of the few main quality parameters of any synthetic fiber87
[24]. It is the percentage of elongation at break. Fiber elongation partly reflects the extent of stretching a filament88
under a certain loading condition. Fibers with high elongation at break are determined to be easily stretched89
under a predetermined load. Fibers showing these characteristics are known to be flexible. The elongation90
behavior of any single fiber can be complex because of its multiplicity of structural factors affecting it. Moreover,91
a cotton fiber comes up with a natural crimp, which is important for fibers to stick together while undergoing92
other production processes [23]. If L is the length of the fiber, then the equation for the percentages of the93
breaking elongation would be:?? ???????????????? ???????????????????? = ??? ?????????? ?? 0 * 100%94

Breaking elongation for the cotton fiber might be varied from 5% to 10%, which is significantly lower than95
that of wool fibers (25%-45%), and much lower than polyester fibers (typically over 50%).96

Breaking force (cN) and Tenacity (cN/tex): Breaking tenacity is the maximum load that a single fiber can97
withstand before breaking. For the Polypropylene and PET staple fibers, 10 mm lengths sample filaments is98
drawn until failure. Breaking tenacity is measured in grams/denier. Very small forces are encountered when99
evaluating fiber properties, so an instrument with gramlevel accuracy is required [25]. The tenacity of virgin PP100
fibers is about 5-8 g/den, and the elongation at break is about 100%. At the same time, the tenacity of recycled101
PET is about 3.5-5.7 g/den; the elongation at break usually exceeds 100%. Draw Ratio: The drawing ration is102
the ratio of the diameter of the initial blank form to the diameter of the drawn part. The limiting drawing ratio103
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(Capstan speed/Nip reel speed) for the extruder section is between 1.6 and 2.2 [26], whereas, for the stretching104
section it is in between 3 and 4.105

6 b) Hyper-parameter Optimization (HPO)106

The purpose of hyperparameter optimization is to find the global optimal value ?? * of the objective function f(x)107
can be evaluated for any arbitrary ?? ? ??, ?? * = arg ?????? ????? ð�??”ð�??”(??), and X is a hyperparameter108
space that can contain categorical, discrete, and continuous variables [27].In order to construct the design109
of different machine learning models, the application of effective hyperparameter optimization techniques can110
simplify the process of identifying the best hyperparameters for the models. HPO contains four major components:111
First, an estimator that could be a regressor or any classifier with one or more objective functions, second: a112
search space, Third: an optimization method to find the best combinations, and Fourth: a function to make113
a comparison between the effectiveness of various hyperparameter configurations [28]. Some of the common114
hyperparameter techniques is discussed below: Grid Search: Grid search is a process that exhaustively searches115
a manually specified subset of the hyperparameter space of the target algorithm [30]. A traditional approach116
to finding the optimum is to do a grid search, for example, to run experiments or processes on a number of117
conditions, for example, if there are three factors, a 15 × 15× 15 would mean performing 3375 experiments under118
different conditions. [32]. Grid search is more practical when [31]: (1) the total number of parameters in the119
model is small, say M <10. The grid is M-dimensional, so the number of test solutions is proportional to L M ,120
where L is the number of test solutions along each dimension of the grid. (2) The solution is known to be within121
a specific range of values, which can be used to define the limits of the grid. (3) The direct problem d = g (m)122
can be computed quickly enough that the time required to compute L M from them is not prohibitive. (4) The123
error function E (m) is uniform on the scale of the grid spacing, Î?”m, so that the minimum is not lost because124
the grid spacing is too coarse.125

There are many problems with the grid search method. The first is that the number of experiments can be126
prohibitive if there are several factors. The second is that there can be significant experimental error, which means127
that if the experiments are repeated under identical conditions, different responses can be obtained; therefore,128
choosing the best point on the grid can be misleading, especially if the optimum is fairly flat. The third is that129
the initial grid may be too small for the number of experiments to be feasible, and it could lose characteristics130
close to the optimum or find a false (local) optimum [32].131

Random Search: Random search [33] is a basic improvement on grid search. It indicates a randomized132
search over hyper-parameters from certain distributions over possible parameter values. The searching process133
continues till the predetermined budget is exhausted, or until the desired accuracy is reached. This methods are134
the simplest stochastic optimization and are very useful for certain problems, such as small search space and135
fast-running simulation. RS finds a value for each hyperparameter, prior to the probability distribution function.136
Both the GS and RS estimate the cost measure based on the produced hyperparameter sets. Although RS is137
simple, it has proven to be more effective than Grid search in many of the cases [33].138

Random search has been shown to provide better results due to several benefits: first, the budget can be139
set independently according to the distribution of the search space, therefore, random search can work better140
especially when multiple hyper-parameters are not uniformly distributed [34]. Second: Because each evaluation141
is independent, it is easy to parallelize and allocate resources. Unlike GS, RS samples a number of parameter142
combinations from a defined distribution, which maximizes system efficiency by reducing the likelihood of wasting143
a lot of time in a small, underperforming area. In addition, this method can detect global optimum values or144
close to global if given a sufficient budget. Third, although getting optimal results using random search is not145
promising, more time consumption will lead to a greater likelihood of finding the best hyperparameter set, whereas146
longer search BO is more efficient than GS and RS because it can detect optimal combinations of hyperparameters147
by analyzing previously tested values, and running the surrogate model is usually much cheaper than running148
the objective function as a whole. However, because Bayesian optimization models are run based on previously149
tested values, it is difficult to belong to them with parallel sequential methods; but they are generally able to150
detect optimal close hyperparameter combinations in a few iterations [36]. Common substitution models for BO151
include the Gaussian process (GP) [37], random forest (RF) [38], and Parzen estimator (TPE) ??39]. Therefore,152
there are three main BO algorithms based on their substitution models: BO-GP, BO-RF, BO-TPE. GP is an153
attractive reduced order model of BO that can be used to quantify forecast uncertainty. This is not a parametric154
model and the number of its parameters depends only on the input points. With the right kernel function,155
your GP can take advantage of the data structure. However, the GP also has disadvantages. For example, it is156
conceptually difficult to understand with BO theory. In addition, its low scalability with large dimensions or a157
large number of data points is another important issue [36]. Applying HPO in ML Models158

In order to put the theory into practice, several experiments have been performed on an industrialbased159
synthetic polymer model. This section describes experiments with four different HPO techniques on three general160
and representative ML algorithms. In the first part of the section, we discussed the experimental setup and the161
main HPO process. In the second part, we compare and analyze the results of the application of different162
HPO methods. The use of random search is recommended in the early stages of HPO to narrow the search163
space quickly, before using guided algorithms to get better results. The main drawback [28] of RS and GS is164
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7 DISCUSSION & CONCLUSION

that each evaluation in its iteration does not depend on previous evaluations; thus, they waste time evaluating165
underperforming areas of the search space.166

Table ??: Performance evaluation of applying HPO methods to the regressor on the synthetic polymer dataset167

7 Discussion & Conclusion168

Machine learning has become the primary strategy for dealing with data problems and is widely used in various169
applications. To apply ML models to practical problems, hyperparameters must be tuned to handle specific170
datasets. However, as the size of the generated data increases greatly in real life, and manual tuning of171
hyperparameters is extremely computationally expensive, it has become essential to optimize the hyperparameters172
by an automatic process. In this work, we used hyperparameter techniques in the ML model to find the best set of173
hyperparameters. Our data set was small, and in this small datset we can see that the randomly selected subsets174
are very representative for the given data set, as they can effectively optimize all types of hyperparameters. Our175
future work would be to test our model on a much larger data set and see the feedback.

1

Figure 1: Figure 1 :

Figure 2:
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Figure 3: Figure 2 :

1

Machine Learning Model Optimization with Hyper Parameter Tuning Approach
Year 2021
10
( ) D
ML Model Hyper-parameter
RF Regressor n_estimators, max_depth, min_samples_split,

min_samples_leaf, criterion, max_features
SVM Regressor C, kernel, epsilon
KNN Regressor n neighbors

[Note: © 2021 Global JournalsGlobal Journal of Computer Science and TechnologyVolume XXI Issue II Version
I]

Figure 4: Table 1 :
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